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Abstract

Named Entity Recognition (NER) is a chal-
lenging sequence labeling task which requires
a deep understanding of the orthographic and
distributional representation of words. In this
paper, we propose a novel neural architec-
ture that benefits from word and character
level information and dependencies across ad-
jacent labels. This model includes bidirec-
tional LSTM (BI-LSTM) with a bidirectional
Conditional Random Field (BI-CRF) layer.
Our work is the first to experiment BI-CRF
in neural architectures for sequence labeling
task. We show that CRF can be extended
to capture the dependencies between labels in
both right and left directions of the sequence.
This variation of CRF is referred to as BI-CRF
and our results show that BI-CRF improves
the performance of the NER model compare
to an unidirectional CRF and backward CRF
is capable of capturing most difficult entities
compare to the forward CRF. Our system is
competitive on the CoNLL-2003 dataset for
English and outperforms most of the existing
approaches which do not use any external la-
beled data.

1 Introduction

Named Entity Recognition is an important task
in Natural Language Processing (NLP) which has
drawn the attention for a few decades. NER is
widely used in downstream applications of NLP
and artificial intelligence such as machine trans-
lation, information retrieval, and question answer-
ing. Initially experimented sequence labeling mod-

els are linear statistical models which include Hid-
den Markov models (HMM) (Morwal et al., 2012),
Maximum Entropy models (MEMM) (McCallum et
al., 2000) and Conditional Random Fields (CRF)
(Lafferty et al., 2001). Later, (Qi et al., 2009)
proposed an effective neural network model using
the Convolutional neural network (CNN) combined
with CRF. However, this was purely based on word
embedding and not capable of processing variable
length input.

A well-studied solution for a neural network to
take into account an effectively infinite amount of
context is the BI-LSTM. (Graves et al., 2013) suc-
cessfully applied BI-LSTM for speech recognition
task. CNNs have also been investigated for mod-
eling character-level information, among other NLP
tasks and combination of BI-LSTM, CNN and CRF
has been shown to be very successful in the field of
sequence labeling task in past few years. BI-LSTM-
CRF (Huang et al., 2015), BI-LSTM-CNN (Chiu
and Nichols, 2016), BI-LSTM-CRF (Lample et al.,
2016) and LSTM-CNN-CRF (Ma and Hovy, 2016)
are few such architectures. Most recent approaches
to NER have focused on multi-task learning (Liu et
al., 2018a) which jointly conduct other related NLP
tasks like entity linking or chunking. Moreover,
very complex architectures such as stacked Recur-
rent Neural Network (Tran et al., 2017) and stack
of classifiers (Liu et al., 2018b) are experimented in
state-of-the-art models.

Conditional random field (CRF) jointly models
the label decision by capturing the dependencies
across adjacent labels. For example, I-XXX (label in-
dicates that the given word appears inside the name

PACLIC 32

531 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



of entity type XXX) of an entity cannot follow the B-
YYY (label indicates that the given word appears in
the beginning of the name of entity type YYY) of a
different entity. CRF has shown to be very effective
when combining with neural architectures (Lample
et al., 2016; Peters et al., 2017) for sequence labeling
task. However, the models with unidirectional CRF
(generally referred to as CRF) are capable of captur-
ing the dependencies between labels in the forward
direction only. This may mislead the prediction of
labels for a word sequence which is highly ambigu-
ous. For example in the sentence, ”Jones Medical
completes acquisition”, word Jones is generally be-
ing used as a name of a person. Labeling the se-
quence by considering the word sequence in forward
direction only may mislead the model to predict the
word Jones as an entity type Person (B-PER) and
Medical as an outside of a named entity (O). If the
word sequence is provided in the reverse direction
as well to a CRF model, identifying that the word
Medical is part of an entity type Organization (I-
ORG) will help the model to realize that the ambigu-
ous word Jones is also part of Organization entity
(B-ORG). Therefore, we propose a novel neural ar-
chitecture with an extended version of CRF, bidirec-
tional CRF (BI-CRF) which models the dependen-
cies between labels in both directions. (Hsu et al.,
2008) and (Murugesan et al., 2017) have success-
fully experimented BI-CRF in the field of medicine
for NER. However, these approaches purely rely on
BI-CRF, thus fail to utilize neural networks to au-
tomatically learn character and word level features.
Our work is the first to apply BI-CRF in a neural
architecture for NER.

In this paper, we present a neural architecture
based on BI-LSTM and BI-CRF. The model con-
sists of three components: a word embedding layer,
BI-LSTM, and a BI-CRF. We use the character-
based representation learning model (Lample et al.,
2016) combined with pre-trained word embedding,
Part-of-speech (POS) tag and casing features as the
initial layer. Character-based representation learn-
ing model captures the orthographic representation
(what does the word being tagged as a name look
like?) of a word and pre-trained word embedding
allows to represent the distributional evidence of
words (where does the word being tagged tend to
occur in a corpus?) in a vector space. This layer

Figure 1: Architecture of the network

is coupled with a BI-LSTM on top of it to gen-
erate a context-based representation of words. Fi-
nal BI-CRF layer uses the dependencies across la-
bels in both left and right directions and the scores
computed by previous layer to predict the correct
label sequence. Experiments in English dataset of
CoNLL-2003 (Sang and Meulder, 2003) shows, our
model is competitive and outperforms most of the
existing approaches that do not use any external la-
beled data. Moreover, we show that backward CRF
is capable of capturing complex named entities thus
it improves the performance of the model compare
to an unidirectional CRF.

The reminder of the paper is organized as fol-
lows. Section 2 describes our model and Section
3 explains the training process. Section 4 provides
the results and Section 5 discusses the performance
analysis of BI-CRF.

2 Model

Our neural network is inspired by (Lample et al.,
2016), where the combination of BI-LSTM and CRF
is applied for a language-independent NER with a
small supervised training data. Instead of a CRF, we
use BI-CRF to capture the dependencies between la-
bels in both right and left directions of a sequence.
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Figure 2: Illustration of character-based representation
learning using BI-LSTM

Figure 1 shows the architecture of the network. We
introduce the layers in our network in the following
subsections.

2.1 Word embedding layer

This layer computes a vector representation of a
word as a combination of following four features:

• Character-based vector representation

• Pre-trained word embedding

• POS tag of the word

• Casing features of the word

Character-based word representation is learned
using a BI-LSTM. A character look-up table repre-
senting the character embedding is randomly initial-
ized with the size of all possible characters. Word
vector constructed by concatenating the character
embedding of all the characters appearing in a word

is given as the input to a BI-LSTM. In our experi-
ments, the hidden dimension of 24 is used for for-
ward and backward LSTM so that a 48-dimensional
character-based vector representation is learned us-
ing this BI-LSTM. Figure 2 illustrates the architec-
ture of this component of the initial layer. Learning
character level information using BI-LSTM allows
to automatically capture the task-specific informa-
tion at character level without using handcraft fea-
tures such as prefix and suffix of a word. Moreover,
this has been found to be useful to handle the out-of-
vocabulary problem in NER tasks (Ling et al., 2015;
Ballesteros et al., 2015).

Even though CNNs have been experimented in
past (Zhang et al., 2015; Kim et al., 2016) to gen-
erate a character-based representation of words, it is
designed to discover the position-invariant features
of the input, especially in the field of computer vi-
sion. For example, detecting a cat appearing in an
image is a position invariant task. However, the
character-based information in a word such as cap-
italization, prefix, and suffix are position dependent
so that BI-LSTM would be a better option for cap-
turing the character-based representation of a word
compare to a CNN. Character-based representation
and word embedding are concatenated with POS tag
and casing features to obtain the final embedding
representation of a word. The following casing fea-
tures are extracted for a given word as boolean rep-
resentation.

• Start with capital letter

• All capital letters

• All lower case letters

• All digits

• Mix of words and digits

We observed a significant improvement in our
model’s performance after adding POS tag and cas-
ing features to the embedding layer (see Table 5).
Following (Lample et al., 2016), dropout (Srivastava
et al., 2014) is applied to the embedding layer which
is a regularization technique for reducing overfitting
in neural networks by randomly dropping neurons
in the network with a certain probability. This en-
courages the next layer (BI-LSTM) to utilize all four
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features of this layer to learn the contextual vector
representation of a word in the next layer.

2.2 Bidirectional LSTM

Long Short-term Memory Networks (LSTM)
(Hochreiter and Schmidhuber, 1997) are a special
kind of Recurrent Neural Network, capable of
learning long-term dependencies. The LSTM does
have the ability to remove or add information to the
cell state, carefully regulated by structures called
gates. Formally, the formulas to update an LSTM
unit at time t are,

it = σ(Wi[xt;ht−1] + bi)

ft = σ(Wf [xt;ht−1] + bf )

ot = σ(Wo[xt;ht−1] + bo)

c̃ = tanh(Wc[xt;ht−1] + bc)

ct = ft·ct−1 + it·c̃t
ht = ot·tanh(ct)

where σ is the element-wise sigmoid function and
· is the element-wise matrix multiplication. xt is
the input vector at time t and ht represents the hid-
den state vector. Weights Wi,Wf ,Wo,Wc and bias
bi, bf , bo, bc are the parameters to be learned. Given
a sequence of input vectors (x1, x2, ...xn), LSTM
computes a context representation vector ht for each
input xt.

When processing a sequence of words, both past
and future inputs are known for a given time thus
allows to effectively utilize the features in both right
and left directions. This variation of the LSTM is re-
ferred to as bidirectional LSTM (BI-LSTM) (Graves
and Schmidhuber, 2005). Here, the input is given to
forward and backward LSTMs to capture both left
and right context of the word. Final representation of
a word is obtained by concatenating the left context−→
ht and right context

←−
ht , h̃t = [

−→
ht ;
←−
ht ]. We use 150-

dimensional LSTM in forward and backward direc-
tion so that, a 300-dimensional vector representation
is learned for each word.

Following (Lample et al., 2016), a hidden layer of
size, equal to the number of distinct labels is placed
on top of BI-LSTM and h̃t is projected into this hid-
den layer. This layer produces a score matrix P,
where Pi,j represents the score of jth tag of ith input
token. This score matrix is given to the next layer,
BI-CRF.

2.3 Bidirectional Conditional Random Field

The discriminative method of classifiers model the
conditional probability distribution p(y | x) di-
rectly. This approach is used by Conditional Ran-
dom Field (CRF) (Lafferty et al., 2001) which com-
bines the advantage of graphical modeling to pre-
dict multivariate output y with a large number of in-
put features x. CRF is a variation Markov Random
Field where all the clique potentials φc, 1 ≤ c ≤ C
are conditioned on input features. The log-linear
representation of potential is generally assumed for
the cliques. A simple case of CRF, known as Lin-
ear Chain CRF built on top of a BI-LSTM effec-
tively models several hard constraints incorporating
dependencies across the output labels. Considering
general definition of CRF, let x = {x1, · · · , xT }
and y = {y1, · · · , yT } represent observed input to-
kens and corresponding output labels respectively.
A linear-chain CRF’s distribution p(y | x) given by

p(y | x) = 1

Z(x)

∏
c

φc(y,x) (1)

where Z(x) is a normalization function

Z(x) =
∑
y

∏
c

φc(yc,x) (2)

As the hidden layer on top of the BI-LSTM pro-
duces the score matrix P for a given sequence, the
CRF layer learns only the transition probability of
the output labels,A ∈ RK+2×K+2. K is the number
of distinct labels and +2 indicates one tag each for
start and end marker. The input features of observed
tokens x ∈ RK in the clique φc(x,y) is the score
matrix Pi,yi learned by the hidden layer. For the
given sequence of predictions y = {y1, · · · , yT },
the probability score including the start and end tag,
y0 and yT+1 introduced in the inference algorithm is
defined as

S(x,y) =

T∑
i=0

Ayi,yi+1 +

T∑
i=1

Pi,yi (3)

The probability for the sequence y is given by

p(y | x) = eS(x,y)∑
y′∈y e

S(x,y′)
(4)
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The objective function is the maximum likelihood
of the probability distribution denoted as,

ln p(y | x) = S(x,y)− ln
∑
y′∈y

eS(x,y
′) (5)

During training, maximum likelihood of the prob-
ability of correct sequences in the training are max-
imized. The final output tag sequence is decided
based on the maximum score given by

y∗ = argmax
y′∈y

S(x, y′) (6)

(5) and (6) can be computed efficiently using dy-
namic programming (Lafferty et al., 2001) based al-
gorithm known as forward and backward inference
since we model only the binary interactions among
the output labels.

We use a variant of CRF referred to as bidi-
rectional CRF (BI-CRF) which dissects the enti-
ties in both forward and backward directions. In
forward parsing (CRFA), the input tokens x =
{x1, · · · , xT } are read and labelled in the origi-
nal direction (left to right) and in backward pars-
ing (CRFB), the original input order is reversed and
labelled (right to left), x = {xT , · · · , x1} with its
corresponding labels y = {yT , · · · , y1}. The fi-
nal probability scores are computed by adding the
scores of CRFF and CRFB . Hence, the optimal
output tag sequence is given by

y∗ = argmax
y′∈y

[
SA(x, y

′) + SB(x, y
′)

]
(7)

During training, the negative sum of log proba-
bility of the correct sequences of both forward CRF
(ln p(y | x)F ) and backward CRF (ln p(y | x)B) is
minimized as indicated by equation (8). Different
variations of combining the forward CRF and back-
ward CRF results like maximum and average are ex-
perimented and it is noticed that the summation op-
eration gives the optimal performance (refer Table
5). Figure 3 illustrates the connectivity between the
last three layers, BI-LSTM, a hidden layer and BI-
CRF.

loss = −(ln p(y | x)F + ln p(y | x)B) (8)

Figure 3: Illustration of Final Three Layers

Dataset No. of Sentences No. of tokens
Train 14,987 203,621
Dev 3,466 51,362
Test 3,684 46,435

Table 1: Number of sentences and tokens in CoNLL-
2003 dataset

Dataset LOC MISC ORG PER
Train 7140 3438 6321 6600
Dev 1837 922 1341 1842
Test 1668 702 1661 1671

Table 2: Number of entities in CoNLL-2003 dataset

3 Training

3.1 Dataset

As mentioned before, we evaluate our neural model
on CoNLL-2003 dataset (Sang and Meulder, 2003)
for English language. The dataset contains four dif-
ferent types of named entities: Person (PER), Or-
ganization (ORG), Location (LOC) and Miscella-
neous (MISC). Sentences in the dataset are repre-
sented in the IOB format (Inside, Outside and Be-
ginning) where a token is labeled as I-XXX if it is
inside a named entity type XXX, O if it is outside
named entities and B-XXX if it is beginning of an
entity type XXX. Therefore, the model is trained to
classify a word sequence into nine different labels
including one O label and B-XXX & I-XXX tags for
each type of entity.

Table 1 and Table 2 summarize the statistics of the
dataset (Sang and Meulder, 2003). As the size of the
dataset is small, the final performance of the model
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is reported by training the model by combining the
training and validation set after tuning the hyper-
parameters. Moreover, it is worth to note that the
number of occurrences of MISC entity in the dataset
is very low compared to other three types of entities.
All the digits in the dataset were replaced with zero
as an only pre-processing step.

3.2 Tuning Hyper-Parameters

The model is trained using back-propagation algo-
rithm (Hecht-Nielsen, 1989) to minimize the com-
bined loss of forward and backward CRF as indi-
cated by equation (8). Parameter optimization is
performed with stochastic gradient descent (SGD)
with a learning rate of 0.01. We explored more so-
phisticated optimization algorithms such as Adam
(Kingma and Ba, 2014). Even though, other op-
timization algorithms lead to faster convergence,
none of them meaningfully improve upon SGD with
gradient clipping in our preliminary experiments.
Hyper-parameters are selected based on the perfor-
mance of the development dataset. To reduce the ef-
fect of ”gradient exploding”, gradient clipping of 5.0
(Pascanu et al., 2012) is used. Table 3 summarizes
the hyper-parameter space evaluated and the best pa-
rameters used for the final evaluation in the test set.
We use early stopping (Caruana et al., 2000) based
on performance on development dataset. After ob-
taining the optimal values for the hyper-parameters,
validation set is combined with the training set and
the model is trained again to evaluate the final per-
formance of the model.

4 Results

Table 4 shows the F1 scores of other models and
our model on the test dataset from CoNLL-2003
(Sang and Meulder, 2003). To make a fair com-
parison, we report the scores of other models with
and without the use of external labeled data. Our
model outperforms most of the existing approaches
which do not use any external labeled data. (Liu
et al., 2018b) uses a stack of classifiers and (Liu et
al., 2018a) experiments multi-task learning to im-
prove the scores. (Tran et al., 2017) uses a stack of
RNN which is more complex compared to a sim-
ple combination of BI-LSTM and CRF. The pro-
posed model’s performance is only behind the per-

Hyper-parameter Final Range
Batch size 14 [5, 20]
Char embedding 25 [20,50]
Char LSTM size 24 [10, 35]
BI-LSTM size 150 [50, 250]
Learning rate 0.01 [10−3, 10−1.8]
Gradient clipping 5.0 [1, 10]
Dropout 0.3 [0.1, 0.8]
Epochs 80 -
Glove dimension 100 [5-300]

Table 3: Hyper-parameter search space and the optimal
values chosen for the final evaluation. LSTM size indi-
cates the hidden state size of the corresponding LSTM
and Dropout indicate the dropout value applied to the
word embedding layer

Model F1
(Rei, 2017)* 86.26
(Qi et al., 2009)* 89.59
(Luo et al., 2015) 89.9
(Passos et al., 2014) 90.05
(Huang et al., 2015)* 90.10
(Yang et al., 2017) 90.20
(Yang et al., 2017)* 90.26
(Dernoncourt et al., 2017)* 90.54
(Chiu and Nichols, 2016) 90.69
(Chiu and Nichols, 2016)* 90.77
(Peters et al., 2017) 90.79
(Ratinov and Roth, 2009)* 90.80
(Passos et al., 2014)* 90.90
(Lample et al., 2016) 90.94
(Ratinov and Roth, 2009)* 91.20
(Ma and Hovy, 2016) 91.21
(Tran et al., 2017) 91.69
(Ghaddar and Langlais, 2018)* 91.73
(Liu et al., 2018a) 91.85
(Peters et al., 2017)* 91.93
(Liu et al., 2018b) 92.38
Our Model 90.84

Table 4: NER results for CoNLL-2003 test dataset. *
indicates, the model is trained with the use of external
labeled data

formance of simple architectures, BI-LSTM-CRF
(Lample et al., 2016) and CNN-BI-LSTM-CRF (Ma
and Hovy, 2016). (Ma and Hovy, 2016) uses CNN
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Variation F1
Basic 89.763
Basic + dropout 90.398
Basic + dropout + POS tag + cas 90.84
Basic + dropout (uni-CRF) 90.218
Model + maximum 90.722
Model + average 90.716

Table 5: Results of the model using different configu-
rations. ”Basic” indicates the model without dropout or
any other additional features. ”cas” indicates the casing
features and ”uni-CRF” indicates the unidirectional CRF.
maximum and average indicates operation performed to
combined backward and forward CRFs

to extract a character-level representation of words.
Both these approaches use IOBES tagging scheme,
a variant of IOB which encodes information about
singleton entities (S) and explicitly marks the end
of a named entity (E). (Ratinov and Roth, 2009)
has shown that using a more expressive tagging
scheme like IOBES improves the model perfor-
mance marginally. Therefore this could be a pos-
sible reason for why our model’s performance is be-
hind both (Lample et al., 2016) and (Ma and Hovy,
2016).

Moreover, we explored the impact of different
components of the system. Table 5 shows the re-
sults of this evaluation. The basic model shows the
result of the system when dropout at word embed-
ding layer is not applied and POS tag and casing
features are not provided to the model. We observed
that dropout at word embedding layer encourages
the model to utilize both character level representa-
tion and pre-trained word embedding for the learn-
ing. Dropout at word embedding layer improves
the performance of the model by 0.635. More-
over, the language-specific features such as Part-of-
speech (POS) tag and casing features further im-
proves the performance by 0.35.

In order to evaluate the contribution of the BI-
CRF, we report the performance of the model with
unidirectional CRF as well. The architecture of this
model is same as (Lample et al., 2016). It can be
observed that the performance of the model with
unidirectional CRF is behind its corresponding BI-
CRF. This indicates that BI-CRF helps the model
to identify more complex entities which the unidi-

Figure 4: Average F1 scores of individual labels

Label CRFF CRFB NOC
O 0.99443 0.0.99432 38356
B-PER 0.95481 0.95398 1617
I-PER 0.97923 0.97945 1156
B-LOC 0.931265 0.930925 1668
I-LOC 0.85455 0.85534 257
B-ORG 0.900925 0.900615 1661
I-ORG 0.86239 0.862645 835
B-MISC 0.81522 0.81625 702
I-MISC 0.68087 0.68231 216

Table 6: Average F1-Score of forward and backward
CRF. NOC indicates the number of observations of a la-
bel type in the test dataset

rectional CRF fails to capture. Moreover, the varia-
tion of BI-CRF is experimented by either taking the
maximum or average of the forward and backward
CRFs. However, there is no performance improve-
ment observed compared to the summation mecha-
nism explained in Section 2.3.

Finally, we evaluated the F1 score of different la-
bels individually to identify which type of entity is
more difficult for the model to identify. Figure 4
shows the results of this evaluation and it can be ob-
served from the results that name of Miscellaneous
entities and words inside the name of Location enti-
ties are difficult for the model to identify. Possible
reasons for this observation could be, lack of train-
ing observation for Miscellaneous entity (refer Table
2) and the absence of common patterns in Miscella-
neous entities and words inside the name of Location
entities. Therefore we can conclude that identify-
ing Miscellaneous entities is much more challenging
compared to other type of named entities.
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Token Label CRFF CRFB

... ... ... ...
a O O O
brozen O O O
medal O O O
in O O O
downhill O O O
at O O O
the O O O
1991 O B-MISC O
World B-MISC I-MISC B-MISC
Champion I-MISC I-MISC I-MISC
ship
. O O O

Table 7: Example sentence from the test dataset, where
backward CRF correctly identifies the beginning of a
miscellaneous entity

5 Performance Analysis of BI-CRF

In order to highlight the contribution of BI-CRF,
we evaluated the performance of the model on the
presence of forward and back CRF individually in
the final layer and an analysis of patterns of words
that backward CRF is excellent in correctly classify-
ing the label sequence compared to a forward CRF.
Table 6 shows the result of individual performance
evaluation of forward and backward CRF and sur-
prisingly, the performance of backward CRF was
slightly higher when classifying labels which are in-
side named entities and Miscellaneous entities. It is
worth to note that the occurrence of Miscellaneous
entities and words appearing inside a named entity is
lower compared to the beginning of a named entity
in the all three set of dataset (training, development
test) which makes the learning more difficult. There-
fore this could be a possible reason for the overall
improvement in the model when unidirectional CRF
is replaced with BI-CRF in the final layer. Table 7
and 8 show examples from the test dataset where the
backward CRF correctly identifies the beginning and
end of Miscellaneous entities.

6 Conclusion

In this paper, we propose a neural architecture for
NER based on BI-LSTM and BI-CRF. It is truly an
end-to-end model not relying on any other additional

Token Label CRFF CRFB

ALPINE O B-MISC B-MISC
SKIING O I-MISC I-MISC
-WOMEN
S O O O
WORLD B-MISC B-MISC B-MISC
CUP I-MISC I-MISC I-MISC
DOWNHILL O I-MISC O
RESULTS O O O
. O O O

Table 8: Example sentence from the test dataset, where
backward CRF correctly identifies the end of a miscella-
neous entity

labeled data. This model is the first work to ex-
periment BI-CRF in neural architecture in sequence
modeling task. The results show that our model is
competitive and outperforms most of the existing
approaches which do not use any external labeled
data. Moreover, the evaluations conclude that back-
ward CRF is more capable of identifying complex
labels such as words appearing inside a named en-
tity and name of Miscellaneous entities with a small
amount of training dataset thus improves the overall
performance of the model compared to a unidirec-
tional CRF architecture.

There are several potential directions for future
work. First, the performance of the model can be
further enhanced by using converting the dataset
from IOB to IOBES tagging scheme. Moreover, it
can be explored in multi-task learning approaches
to combine more useful and correlated information
among different NLP tasks.
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