
Genre-Oriented Web Content Extraction with Deep Convolutional
Neural Networks and Statistical Methods

Bao-Dai Nguyen-Hoang
Knorex Vietnam Co., Ltd.
46 Bach Dang, Tan Binh,

Ho Chi Minh city, Vietnam
dai_nguyen@knorex.com

Bao-Tran Pham-Hong
Knorex Vietnam Co., Ltd
46 Bach Dang, Tan Binh

Ho Chi Minh city, Vietnam
tran_pham@knorex.com

Yiping Jin
Knorex Pte. Ltd.

2 Science Park Drive,
Singapore 118222

jinyiping@knorex.com

Phu T. V. Le
Knorex Pte. Ltd.

2 Science Park Drive,
Singapore 118222

le.phu@knorex.com

Abstract

Extracting clean textual content from the Web
is the first and an essential step to resolve most
of down-stream natural language processing
tasks. Previous works in web content extrac-
tion focus mainly on web pages with a single
main block of textual content, such as news ar-
ticles and blog posts. They employ techniques
that rely largely on the HTML structure of the
page to extract the main content.

Little attention has been paid to recogniz-
ing different genres of web pages, which
can have a tremendous impact on the accu-
racy of the content extraction algorithms. In
this paper, we propose Genre-Oriented Con-
tent Extraction (GOCE), a novel content ex-
traction framework consisting of two steps:
web genre classification and content extrac-
tion algorithms based on the detected genre.
GOCE first employs state-of-the-art convolu-
tional neural network models to classify the
genre of the web page given a rendered image
of the page. Then it applies content extrac-
tion algorithm utilizing the genre information
for a more robust and accurate textual con-
tent extraction. Experiments show that GOCE
achieves promising results in both web genre
classification and the end-to-end content ex-
traction task. Furthermore, GOCE greatly im-
proves from a well-cited competitive baseline.
We will also publish our dataset which con-
tains annotations of both the web genre and
the gold-standard textual content.

1 Introduction

Web content extraction is the task of pulling the
main textual content out of web pages while remov-
ing noise such as clutters (for e.g. HTML tags,
scripts, etc.) and boilerplate contents (for e.g. nav-
igation bar, headers, footers, etc.) (Gupta et al.,
2003). Humans can easily identify the main content
based on the layout and visuals of web pages. How-
ever, it is not trivial for a computer program to ac-
curately detect the meaningful content and skip the
noise due to the complex and dynamic content lay-
out of web pages.

Content extraction algorithms promise multiple
applications by extracting only the important and
relevant content from web pages. Firstly, the ex-
tracted content is more readable for humans, which
is an important criteria for third-party data con-
sumers, such as an application that subscribes to
the content of a website. Secondly, by removing
the noisy textual content such as advertisements,
headers and footers from the web page, it helps
to improve the performance of down-stream natu-
ral language processing tasks, such as text classifi-
cation (Jena and Kamila, 2013) and text summarisa-
tion (Joseph and Jeba, 2016).

Kohlschütter et al. (2010) introduced a content
extraction algorithm that uses heuristic rules to de-
tect and eliminate boilerplate content. Boilerplate
content describes sections of code that have to be
reused repeatedly in HTML documents, which does

PACLIC 32

476
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

(a) Sample of article page (b) Sample of list-view page

Figure 1: Two examples of different web genres

not contribute to the main content. The method de-
tects and removes short text spans (likely appear-
ing in navigation bars), and only keep long text
spans (likely the main content). The authors defined
density-specific rules to classify atomic text blocks
into boilerplate or content category. They showed
that boilerplate detection using shallow text features
is an effective approach, with the assumption that
main content is likely followed by main content and
clutter is likely followed by clutter. Their method
outperformed previous methods on multi-domain
corpora consisting of news articles and blogs pages.

However, most existing works on website content
extraction (Kohlschütter et al., 2010; Hssina et al.,
2013) attempt to pull the main content based only on
HTML document using heuristic rules, which might
result in three main shortcomings. Firstly, it is prone
to wrongly removing short but important text spans
due to hard-coded rules. Secondly, when the main
content of the page are not adjacent to each other
(e.g. separated by a block quote or are located in dif-
ferent sections), the algorithm often fails to extract
the whole content, but extracts the most prominent
chunk instead. Thirdly, the algorithm is engineered
for web pages with a single main text span. it may
not work for list-view page, where important content
spreads across numerous tags (e.g. tag). This
genre of pages contributes to a large proportion of
content in the Internet, such as product listing, fo-
rums and review pages.

Figure 1 depicts two different genres of web
pages: article and list-view page. The article page
has the main content located in the center of the

page. The page may optionally contain extraneous
content, such as navigation bars and comments. The
list-view page has the main content spread across
different parts of the page. The text spans are of
various length but in general are much shorter than
the text spans in article pages. We hypothesise that
the overall content extraction accuracy will be im-
proved if we apply different extraction algorithm for
different genres of web pages.

This paper presents Genre-Oriented Content Ex-
traction (GOCE), a novel 2-stage system that au-
tomatically extracts the main content from differ-
ent genres of web pages. GOCE first uses convo-
lutional neural network (CNN) (Krizhevsky et al.,
2012) models to detect the genre of web page based
on the rendered image of the web page. It then
applies extraction algorithm guided by the detected
genre to retain only the main relevant content. Our
experiments showed that GOCE achieves promising
results in both web genre classification and the end-
to-end content extraction task. Furthermore, GOCE
greatly improves from a well-cited competitive base-
line.

Overall, the contributions of this paper are:

• Introduce an image classifier to identify gen-
res of the web pages using convolutional neural
networks.

• Improve the article extraction method
and outperform the boilerplate removal
pipeline (Kohlschütter et al., 2010) by a large
margin.

• Propose a novel method to extract main content

PACLIC 32

477
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

from list-view web pages.

• Provide a complete evaluation framework and
a manually labelled dataset to evaluate end-to-
end content extraction algorithms for different
genres of web pages.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the related works. Section 3 de-
scribes the web genre detection model and our ap-
proach to extract main content from article pages
and list-view pages. Experimental results are pre-
sented in Section 4. Finally, we conclude the paper
and point out directions for future works.

2 Related work

In this section, we introduce three areas of research
which are related to this work: web content extrac-
tion, web genre classification and image classifica-
tion.

2.1 Content Extraction

Many previous works in content extraction focus on
applying manually crafted or automatically mined
rules on HTML documents to remove the noise.
Sandip et al. (2005) proposed a method to iden-
tify the primary informative content of a Web page.
After that, they detect primary informative content
block and then remove all the irrelevant blocks from
HTML document. Jinbeom Kang et al. (2010) intro-
duced repetition-based page segmentation to recog-
nize repetitive tag patterns in the DOM tree struc-
ture of a page. Badr Hssina et al. (2013) used
hand-crafted rules to remove noise present in the
HTML document. Their hand-crafted rules manip-
ulate string not only to remove noise but also to
extract common patterns where the main content
often locates. Kohlschütter et al. (2010) proposed
an approach for boilerplate detection using shallow
text features, which can effectively remove irrele-
vant content such as navigational boilerplate text.

Apart from HTML-based methods, another direc-
tion of research is to exploit the visual information
besides the HTML document. Cai et al. (2003) in-
troduced Vision-based Page Segmentation algorithm
which extracts web content by simulating how a user
understands web layout structure based on his vi-
sual perception. This approach is independent to

underlying documentation representation and makes
full use of page layout features in HTML document.
Wei Liu et al. (2010) explored the visual regularity
of the data records and data items on web pages,
and came up with ViDe, a vision-based approach
for web data extraction. Nethra and Anitha (2014)
proposed a content extraction algorithm integrating
textual and visual scores to extract informative con-
tent from web. Textual and visual scores are calcu-
lated based on each node in the DOM tree converted
from HTML document. Their algorithm derives hy-
brid density from textual and visual scores and uses
it to extract the informative content from web pages.
Lavanya and Dhanalakshmi (2013) provided struc-
tured and comprehensive vision-based features of
research efforts made in the field of web content ex-
traction.

2.2 Web genre classification

Eissen and Stein (2004) presented results from the
construction of a web genre classifier using discrim-
inant analysis, neural network learning, and support
vector machines. Boese and Howe (2005) exam-
ined the effects of page evolution on genre classifica-
tion of web pages. Santini (2007) analyzed the web
genre classification problems in terms of two broad
phenomena: genre hybridism and individualization.
This not only helps pinpoint the range of flexibility,
but also accounts for multi-genre variation of the in-
dividual web page. Dong et al. (2008) described a
set of experiments to examine the effect of various
attributes of web page on web genre classification
task. Their results indicated that fewer features pro-
duce better precision but more features produce bet-
ter recall, and attributes in combinations will always
outperform single attribute.

2.3 Image Classification

Deep Convolutional Neural Networks (Krizhevsky
et al., 2012; LeCun et al., 1989) have led to a series
of breakthroughs for image classification (Sermanet
et al., 2013; Zeiler and Fergus, 2014). Deep net-
works can automatically derive features from raw
image pixels and generate different levels of rep-
resentation (Zeiler and Fergus, 2014). The levels
of features can be enriched by stacking more lay-
ers to the network (He et al., 2016a). Krizhevsky
et al. (2012) proposed a deep CNN to classify

PACLIC 32

478
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

 Web page

<html>
 <header>…</header>
 <body class="title-content">
 <h1> Lorem ipsum </h1>
 <div class=" content">
 Lorem ipsum dolor sit amet,
 consectetur adipiscing elit.
 …
 </div>
 </body>
</html>

HTML document

Image rendered
from web page

Web genre

tit
le

-c
on

te
nt

he
ad

er
fo

ot
er

si
de

ba
r

sd value

Content
extractors

Lorem ipsum
dolor sit amet,
consectetur
adipiscing
elit.
…

Lorem
 ipsum

Main content
…

CNN-based web genre
classification model

Figure 2: Genre-oriented content extraction pipeline

1.2 million high-resolution images in the ImageNet
LSVRC-2010 contest. Their network achieved top-
1 and top-5 error rates of 37.5% and 17.0%, which is
considerably better than the previous state-of-the-art
using six sparse-coding models trained on different
features (A. Berg and Fei-Fei., 2010). Since then,
CNNs has become the dominant model family for
image classification.

Szegedy et al. (2015) proposed a deep convolu-
tional neural network architecture code-named In-
ception, with top-1 and top-5 error rates of 30.2%
and 10.4% on ImageNet LSVRC-2012 contest. He
et al. (2016a) firstly proposed ResNet, another
convolutional-based network, which has layers as
learning residual functions with reference to the
layer inputs, instead of learning unreferenced func-
tions. Szegedy et al. (2016b) introduced ResNet
V2 using identity mappings as the skip connections
and after-addition activation. Their report showed
that with top-1 and top-5 error rates of 23.0% and
6.3% on ImageNet LSVRC-2012 and 4.62% error
on CIFAR-10 dataset, ResNet V2 improved accu-
racy on image classification task compared with pre-
vious models.

3 Proposed method

3.1 GOCE - Genre-Oriented Content
Extraction pipeline

To overcome the challenges for content extraction
due to different genres of web pages, we propose
Genre-oriented content extraction (GOCE), which
applies extraction algorithm guided by the detected

genre.
Figure 2 shows the high-level architecture of

GOCE. Firstly, we download the HTML document
and render the web page as an image using a
headless-browser library. Secondly, we feed the im-
age to a CNN-based image classification model to
classify whether the web page is an article page or
a list-view page. Based on the classified page genre,
GOCE applies the appropriate content extraction al-
gorithm.

3.2 Web Page Genre Classification

We train deep CNN models to classify the genre
of the web page based on the rendered image. In-
stead of training from scratch, we fine-tune a pre-
trained model which was trained on the ImageNet
dataset. The pre-trained model can capture task-
independent representations in the internal layers,
which can be adapted to another target task with-
out retraining (Yosinski et al., 2014). We follow the
common practice of model fine-tuning: we freeze
the weights of all internal layers and retrain only the
final logits layer which predicts the two classes: ar-
ticle page and list-view page.

3.3 Content Extraction Algorithms

GOCE applies the appropriate content extraction al-
gorithm based on the classified genre of the page. In
this section, we introduce two novel content extrac-
tion algorithms designed for the two genres of web
pages: article page and list-view page.

PACLIC 32

479
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

<html>

<div class="main-part">

<p id="1" class="content">
Hello world,

</p>

<p id="2" class="content">
this is some text

</p>

</div>

</html>

level: 1

level: 2

level: 0

level: 2

Figure 3: Example of an HTML document

3.3.1 Terminologies
Figure 3 shows a toy example of an HTML page.

We treat each whole tag in HTML document as an
element (parts covered by curly brackets). The ele-
ment might have one or more child elements and as-
sociated text. For instance, the textual content of the
<p> element with id="1" is “Hello world,”,
and the <p> element with id="2" is “this is
some text”. Meanwhile, <div> tag has two <p>
tags as child elements, which means the text at-
tribute of the <div> tag is “Hello world,\n
this is some text”.

Each element can have zero or more class
names. For example, <div> element has the class
“main-part”. Last but not least, we also con-
cern about the depth level of each class name in
the HTML document. The depth level of each class
name is determined by the position of its element in
the DOM tree. The <html> tag represents the root of
an HTML document, which has depth level 0. From
that, we plus 1 to obtain the depth level of the one-
step deeper element. For example, <div> element
has a depth level 1, since it is the direct child node
of <html> element.

3.3.2 Article algorithm
Algorithm 1 summarises our recursive article ex-

traction algorithm for article pages. We take the first
element of the website and check the number of its
child elements. We will return the text in the ele-
ment tag if no child element is found, or traverse to
the child recursively if only one child is found.

Firstly, we calculate the standard deviation (SD)

Algorithm 1 Article extractor
1: function ARTICLEEXTRACT(element)
2: childEle← element.allChild
3: if childEle.length == 0 then
4: return element.text
5: if childEle.length == 1 then
6: return articleExtract(childEle[0])
7: m1, m2← getTwoMax(childEle)
8: lm1← wordCount(m1.text)
9: lm2← wordCount(m2.text)

10: stdDev← calcStdDev(childEle)
11: if (lm1− lm2) > stdDev then
12: return articleExtract(m1)
13: else
14: return element.text

of the length of all child elements, when the number
of child elements is greater than or equal to 2. SD
value represents the variation of a text length among
child elements. A high SD value indicates that the
child elements have very different text length, which
suggests that the main content should locate only in
elements with large amount of text. On the other
hand, a low SD indicates that the text length of the
child elements are roughly equal. Therefore, the
main content is distributed more evenly among the
elements. Secondly, we compare the difference in
length of the two longest text spans among the child
elements with the SD value. If the difference is
greater than the SD value, we extract the textual con-
tent of only the child node with the longest text. Oth-
erwise, we extract the whole text of the parent node.

3.3.3 List-view algorithm
Algorithm 2 summarises the list-view extraction

algorithm. The algorithm identifies the main con-
tent by ranking all the class names with their depth
levels, and choose only one which represents the el-
ements containing the main content.

We define the main function in line 13, which
takes the first element of the HTML document and
the n value as input. The n value denotes the num-
ber of candidate classes to be considered. In line
14, we iterate all the elements in the HTML doc-
ument recursively to retrieve the number of occur-
rences and corresponding text of each class. These
information are stored in two global dictionaries, id-

PACLIC 32

480
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

Algorithm 2 List-view extractor
1: global variables
2: idCount - occurrences of IDs
3: idText - text of IDs
4: end global variables
5: function UPDATEINFO(element, level)
6: id← combine(level, element.className)
7: idCount[id]← idCount[id] + 1
8: idText[id]← idText[id] + element.text
9: function RETRIEVEELE(element, level)

10: updateInfo(element, level)
11: for child in element.child do
12: updateInfo(child, level + 1)
13: function LISTVIEWEXTRACTOR(element, n)
14: retrieveEle(element, 0)
15: idR← calcRScores(idCount, idText)
16: topNId← getTopNId(idR, n)
17: predictedId← getMaxATL(topNId)
18: return predictedId.text

Count and idText. We assume that elements with the
same class name and depth level contain related con-
tent. Meanwhile, elements with different depth level
may not represent related content even if they share
the same class name. Therefore, we concatenate the
class name and depth level to form the key ID (which
is the id variable defined at line 6 in Algorithm 2).

R =
2OL

O + L
(1)

ATL =
L

O
(2)

After parsing the elements and populating the dic-
tionaries, we compute the ranking score R based on
the occurrences O of the ID and the length L of the
text from the corresponding ID, as shown in equa-
tion 1. Intuitively, the main content of a list-view
page is located in elements which not only have a
significant amount of text, but their attached class
name also appears often in elements with the same
depth level. We rank the IDs based on theirR scores
to have the list of top n IDs. After that, we compute
the average text lengthATL value for each ID in the
top-n list using equation 2.

Finally, the main content is extracted from all el-
ements occurring with the ID which has the maxi-

Method Acc P/R/F1

SVM 87.8 87.8/87.8/87.8
Inception V3 83.0 82.9/86.7/84.8
Inception V4 79.3 80.0/82.6/81.4

VGG 16 91.4 88.7/96.9/92.6
VGG 19 86.0 86.9/88.2/87.5

ResNet V2 101 94.8 95.8/94.5/95.2
ResNet V2 152 92.5 90.2/96.8/93.4

Inception ResNet V2 74.5 74.8/80.3/77.4

Table 1: Accuracy and Precision/Recall/F1 scores
(%) on web genre classification task

mum ATL value. We choose the top n = 15 candi-
date classes to evaluate our GOCE’s list-view algo-
rithm.

4 Experiments

4.1 Datasets

We manually annotated a dataset to evaluate our
model performance. Our dataset contains randomly
sampled web pages from the Internet. We annotated
the genre of the web pages with one label from S =
{article, list-view}.

The dataset includes 2,372 article pages and 3,350
list-view pages. We rendered images from this
dataset using PhantomJS library1. We used this set
of images to train and evaluate our web genre classi-
fier. Out of the dataset, we randomly picked 100 ar-
ticle documents and 100 list-view documents, then
manually curated the main content to build a gold
evaluation dataset for content extraction algorithms.

4.2 Evaluations on Web Genre Classifiers

In this section, we present evaluations on web genre
classification. To train the web genre classifier,
we fine-tuned pre-trained models with TensorFlow-
Slim toolkit2, using the gold image dataset with a
random 90%/10% train/test split. We benchmarked
some popular CNN models, including Inception
V3 (Szegedy et al., 2016), Inception V4 (Szegedy et
al., 2017), VGG 16, VGG 19 (Simonyan and Zisser-
man, 2014), 101-layer ResNet V2, 152-layer ResNet

1https://github.com/ariya/phantomjs
2https://github.com/tensorflow/models/

tree/master/research/slim

PACLIC 32

481
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

Data Metrics Default Boilerpipe Article List-view GOCE Oracle

Article
pages
only

Cosine similarity 80.72 92.78 94.70 66.38 92.30

-/-/-
Precision 39.07 80.57 81.31 53.93 79.81

Recall 98.21 91.53 95.22 57.28 92.80
F1 55.90 85.70 87.72 55.55 85.82

List-view
pages
only

Cosine similarity 76.83 48.76 72.53 78.16 80.07

-/-/-
Precision 46.31 56.84 63.54 71.21 74.53

Recall 86.95 22.11 64.27 72.91 72.23
F1 60.43 31.84 63.90 72.05 73.36

Full dataset

Cosine similarity 78.77 70.77 83.62 72.27 86.16 86.43
Precision 42.69 68.70 72.43 62.57 77.04 76.26

Recall 92.58 56.82 79.75 65.10 82.62 84.06
F1 58.43 62.20 75.91 63.81 79.74 79.97

Table 2: Comparison between using default mode, boilerpipe, article algorithm only, list-view algorithm
only, full pipeline of GOCE, and oracle mode (%) on two different data subsets and combined dataset

V2 (He et al., 2016b), and combined Inception-
ResNet V2 model (Szegedy et al., 2017). We
stopped the fine-tuning process until the model con-
verges.

We also compared deep CNN models with a SVM
baseline implemented using the Weka toolkit (Hall
et al., 2009). Based on an empirical analysis from
article and list-viewed pages, we came up with 11
features derived from the HTML document to train
the SVM model. The complete list of features is as
follows:

1. Text length of the whole document

2. Number of clusters containing elements having
the same class name, tag name, number of child
nodes, child tag name, and child class name
with others in their cluster

3. Occurrences of elements having the same class
name, tag name, number of child nodes, child
tag name, and child class name with other one
or more elements

4. Number of image URLs

5. Number of periods (.)

6. Number of commas (,)

7. Number of semicolons (;)

8. Number of colons (:)

9. Number of question marks (?)

10. Number of exclamation marks (!)

11. Number of digits (from 0 to 9)

Table 1 shows the performance of the SVM
baseline and various CNN-based networks on our
dataset. We can see that the 101-layer ResNet
V2 achieved the highest accuracy and F1 score.
ResNet follows a principled approach to add short-
cut connections every two layers to a VGG-style
network (Simonyan and Zisserman, 2014). It not
only facilitates training process but also helps model
achieve both lower training and test errors. The
result agrees with studies in previous work, which
evaluated using the ImageNet dataset (He et al.,
2016b).

4.3 End-to-End Evaluations on
Genre-Oriented Content Extraction

Following Bär et al. (2015), we used two evaluation
metrics to evaluate the content extraction perfor-
mance. The first is to compute precision, recall, and
F1 score based on Longest Common Subsequence
(LCS) (Hunt and Szymanski, 1977). We denoted
the manually curated content as gold sequence, and
the content which content extractor outputs as ex-
tracted sequence, and the LCS between these two
sequences as gold ∩ extracted sequence. Precision
p and recall r can be computed respectively using
equation 3 and 4. The second evaluation metric is
the cosine distance between the extracted content
and gold content when represented as bag-of-word
vectors wi and wj (as shown in equation 5).

PACLIC 32

482
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

p =
length(gold ∩ extracted sequence)

length(extracted sequence)
(3)

r =
length(gold ∩ extracted sequence)

length(gold sequence)
(4)

cos θ =
wi.wj

||wi||||wj ||
(5)

To evaluate our approach in the end-to-end man-
ner, we implemented the full GOCE pipeline using
101-layer ResNet V2 as the web genre classifier.
We compared GOCE with two baselines, includ-
ing Boilerpipe method (Kohlschütter et al., 2010)
and default mode, which extracts all the content of
the web page. Furthermore, we also reported the
results using only one algorithm of GOCE: article
mode or list-view mode. This helps conduct a fair
and comprehensive evaluation, since Boilerpipe was
designed to extract content from article web pages
only. To investigate whether the error in genre clas-
sification plays an important role in the end-to-end
content extraction accuracy, we also showed the per-
formance of the oracle mode, which uses the oracle
web page genre to choose the right content extrac-
tion algorithm. We evaluated these end-to-end con-
tent extraction approaches not only on full dataset
but also on two sub-datasets, which are article web
pages only and list-view web pages only.

The results of the different methods on con-
tent extraction task are summarised in Table 2.
On the article dataset, we can see that Boiler-
pipe method achieved a better performance com-
pared with default mode in terms of cosine simi-
larity and F1 score. However, Boilerpipe method
performed poorly for list-view dataset with 31.84%
on F1 score, which suggests the necessity of an-
other algorithm to extract contents from list-view
pages. Besides, article mode outperformed Boiler-
pipe across all datasets. In terms of cosine simi-
larity and F1 score, article mode improved the per-
formance of Boilerpipe by 1.92% and 2.02% on the
article dataset, and by 12.85% and 13.71% on the
full dataset. Oracle result on the sub-datasets is not
shown since they are identical with result obtained
from corresponding mode of that web genre.

Excluding GOCE, article and list-view mode per-
formed best on their corresponding corpus, which
shows that knowing the genre helps to improve
the performance of content extraction. Including
GOCE, it is noteworthy that the performance of
GOCE is slightly better than list-view mode on
the list-view dataset, since there are some list-view
pages wrapping the whole main content in one el-
ement without separating into smaller child nodes.
GOCE classified these pages as article and had bet-
ter result extracting with article mode. The full
GOCE pipeline achieved the best cosine similarity
and F1 score on full dataset. In terms of F1 score,
GOCE yielded a further improvement of 17.54%
compared with Boilerpipe, and 3.83% and 15.93%
compared with article mode and list-view mode, re-
spectively. This validates that our 2-stage pipeline
using the information of the web genre significantly
improves the performance of content extraction sys-
tems. However, there is still a gap between GOCE
and oracle mode due to incorrect web genre clas-
sifications, which decreases F1 score by 0.23%. It
motivates our future work to improve the individual
extraction algorithms prior to the web genre classi-
fication model.

5 Conclusion and future work

In this paper, we proposed Genre-Oriented Content
Extraction (GOCE) on HTML documents by using a
2-stage pipeline: we firstly identify the genre of the
web page and extract the main content based on the
detected genre.

We fine-tuned a CNN-based model, especially
ResNet architecture, to predict web genre based on
the rendered image of the web page. The classifier
achieves a promising F1 score of 95.20%. We also
proposed recursive statistical methods to extract the
main content from article pages and list-view pages.
The full GOCE model outperformed the competitive
baseline by 17.54% in terms of F1 score.

In future work, we plan to upgrade the GOCE
pipeline to a multi-task model that can predict the
genre of web page and its main content jointly. We
are also working on improving individual extrac-
tion algorithms and extending web genre classifier
to other genres of web pages, such as home pages
and image/video pages.

PACLIC 32

483
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

References
J. Deng A. Berg and L. Fei-Fei. 2010. Large scale visual

recognition challenge 2010.
Daniel Bär, Torsten Zesch, and Iryna Gurevych. 2015.

Composing measures for computing text similarity.
Elizabeth Sugar Boese and Adele E Howe. 2005. Ef-

fects of web document evolution on genre classifica-
tion. In Proceedings of the 14th ACM international
conference on Information and knowledge manage-
ment, pages 632–639. ACM.

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma.
2003. Extracting content structure for web pages
based on visual representation. In Asia-Pacific Web
Conference, pages 406–417. Springer.

Sandip Debnath, Prasenjit Mitra, Nirmal Pal, and C Lee
Giles. 2005. Automatic identification of informative
sections of web pages. IEEE transactions on knowl-
edge and data engineering, 17(9):1233–1246.

Lei Dong, Carolyn Watters, Jack Duffy, and Michael
Shepherd. 2008. An examination of genre attributes
for web page classification. In hicss, page 133. IEEE.

Suhit Gupta, Gail Kaiser, David Neistadt, and Peter
Grimm. 2003. Dom-based content extraction of html
documents. In Proceedings of the 12th International
Conference on World Wide Web, WWW ’03, pages
207–214, New York, NY, USA. ACM.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten. 2009.
The weka data mining software: an update. ACM
SIGKDD explorations newsletter, 11(1):10–18.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016a. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 770–778.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016b. Identity mappings in deep residual net-
works. In European Conference on Computer Vision,
pages 630–645. Springer.

Badr Hssina, Abdelkarim Merbouha, Hanane Ezzikouri,
Mohammed Erritali, and Belaid Bouikhalene. 2013.
An implementation of web content extraction using
mining techniques. Journal of Theoretical & Applied
Information Technology, 58(3).

James W Hunt and Thomas G Szymanski. 1977. A
fast algorithm for computing longest common subse-
quences. Communications of the ACM, 20(5):350–
353.

Lambodar Jena and Narendra Kumar Kamila. 2013.
Data extraction and web page categorization using text
mining. IJAIEM, ISSN, pages 2319–4847.

Jincymol Joseph and JR Jeba. 2016. Survey on web con-
tent extraction. International Journal of Applied Engi-
neering Research, 11(7):5338–5341.

Jinbeom Kang, Jaeyoung Yang, and Joongmin Choi.
2010. Repetition-based web page segmentation by de-
tecting tag patterns for small-screen devices. IEEE
Transactions on Consumer Electronics, 56(2).

Christian Kohlschütter, Peter Fankhauser, and Wolfgang
Nejdl. 2010. Boilerplate detection using shallow text
features. In Proceedings of the Third ACM Interna-
tional Conference on Web Search and Data Mining,
WSDM ’10, pages 441–450, New York, NY, USA.
ACM.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105.

M Lavanya and M Dhanalakshmi. 2013. Various ap-
proaches of vision-based deep web data extraction (vd-
wde) and applications. 4(1).

Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. 1989. Backpropagation applied
to handwritten zip code recognition. Neural computa-
tion, 1(4):541–551.

Wei Liu, Xiaofeng Meng, and Weiyi Meng. 2010. Vide:
A vision-based approach for deep web data extraction.
IEEE Transactions on Knowledge and Data Engineer-
ing, 22(3):447–460.

K Nethra and J Anitha. 2014. Web content extraction
by integrating textual and visual importance of web
pages. International Journal of Computer Applica-
tions, 91(3).

Marina Santini. 2007. Characterizing genres of web
pages: Genre hybridism and individualization. In Sys-
tem Sciences, 2007. HICSS 2007. 40th Annual Hawaii
International Conference on, pages 71–71. IEEE.

Pierre Sermanet, David Eigen, Xiang Zhang, Michaël
Mathieu, Rob Fergus, and Yann LeCun. 2013. Over-
feat: Integrated recognition, localization and detec-
tion using convolutional networks. arXiv preprint
arXiv:1312.6229.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, Andrew Rabinovich, et al.
2015. Going deeper with convolutions. Cvpr.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. 2016. Rethinking the
inception architecture for computer vision. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2818–2826.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alexander A Alemi. 2017. Inception-v4, inception-

PACLIC 32

484
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

resnet and the impact of residual connections on learn-
ing. In AAAI, volume 4, page 12.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lip-
son. 2014. How transferable are features in deep neu-
ral networks? In Advances in neural information pro-
cessing systems, pages 3320–3328.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Euro-
pean conference on computer vision, pages 818–833.
Springer.

Sven Meyer Zu Eissen and Benno Stein. 2004. Genre
classification of web pages. In Annual Conference on
Artificial Intelligence, pages 256–269. Springer.

PACLIC 32

485
32nd Pacific Asia Conference on Language, Information and Computation

Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

