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Abstract

We present a multi-dialect neural machine
translation (NMT) model tailored to Japanese.
While the surface forms of Japanese dialects
differ from those of standard Japanese, most
of the dialects share fundamental proper-
ties such as word order, and some also use
many of the same phonetic correspondence
rules. To take advantage of these properties,
we integrate multilingual, syllable-level, and
fixed-order translation techniques into a gen-
eral NMT model. Our experimental results
demonstrate that this model can outperform a
baseline dialect translation model. In addition,
we show that visualizing the dialect embed-
dings learned by the model can facilitate geo-
graphical and typological analyses of dialects.

1 Introduction

Since the use of automated personal assistants (e.g.,
Apple’s Siri, Google Assistant, or Microsoft Cor-
tana) and smart speakers (e.g., Amazon Alexa or
Google Home) has become more widespread, de-
mand has also grown to bridge the gap between di-
alects and the standard form of a given language.
The importance of handling dialects is especially ev-
ident in a rapidly aging society like Japan, where
older people use them extensively.

To address this issue, we consider a system for
machine translation (MT) between Japanese dialects
and standard Japanese. If this can provide cor-
rect translations in the dialect-to-standard direction,
then, other natural language processing systems
(e.g., information retrieval or semantic analysis) that

take standard Japanese as input could be applied to
dialects as well. In addition, if a standard-to-dialect
translation system were also available, smart speak-
ers could respond to the native speakers of a dialect
using that dialect. We believe that friendly interac-
tions of this sort might lead to such systems gaining
more widespread acceptance of in the Japanese so-
ciety.

In this paper, we present a multi-dialect neural
MT (NMT) system tailored to Japanese. Specifi-
cally, we employ kana, a Japanese phonetic lettering
system, as basic units in the encoder–decoder frame-
work to avoid the following: ambiguity in convert-
ing kana to kanji (characters in the Japanese writing
system); difficulties in identifying word boundaries
especially for dialects; and data sparseness problems
due to handling large numbers of words originating
from different dialects. Since dialects almost always
use the same word order as standard Japanese, we
employ bunsetsu (Japanese phrase units) as a unit of
sequences rather than sentence which is more com-
monly used in NMT.

One issue for Japanese dialects is a lack of train-
ing data. To deal with this, we build a unified
NMT model covering multiple dialects, inspired by
work on multilingual NMT (Johnson et al., 2016).
This approach utilizes dialect embeddings, namely
vector representations of Japanese dialects, to in-
form the model of the input dialect. An interesting
by-product of this approach is that the dialect em-
beddings the system learns illustrate the difference
between different dialect types from different geo-
graphical areas. In addition, we present an exam-
ple of using these dialect embeddings for dialectom-
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etry (Nerbonne and Kretzschmar, 2011; Kumagai,
2016; Guggilla, 2016; Rama and Çöltekin, 2016).

Another advantage of adopting a the multilingual
architecture for multiple related languages is it can
enable the system to acquire knowledge of their lex-
ical and syntactic similarities. For example, Lakew
et al. (2018) reported that including several related
languages in supervised training data can improve
multilingual NMT. Our results confirm the effec-
tiveness of using closely-related languages (namely
Japanese dialects) in multilingual NMT.

2 Related Work

Little dialectal text is available since dialects are
generally spoken rather than written. For this reason,
many dialect MT researchers work in low-resource
settings (Zbib et al., 2012; Scherrer and Ljubešić,
2016; Hassan et al., 2017).

However, the use of similar dialects has been
found to be helpful in learning translation mod-
els for particular dialects. Several previous studies
have investigated the characteristics of translation
models for closely-related dialects (Meftouh et al.,
2015; Honnet et al., 2018). For example, Honnet
et al. (2018) reported that a character-level NMT
model trained on one Swiss-German dialect per-
formed moderately well at translating sentences in
closely-related dialects.

Therefore, given this, we use multilingual
NMT (Johnson et al., 2016) to learn parameters
that encode knowledge of dialects’ shared lexical
and syntactic structure. Gu et al. (2018) demon-
strated that multilingual NMT can be useful for low-
resource language pairs, while Lakew et al. (2018)
found that a multilingual NMT system trained on
multiple related languages showed improved zero-
shot translation performance. We believe that multi-
lingual NMT can be effective for closely-related di-
alects, and can compensate for a lack of translation
data for the different dialects.

Multilingual NMT can also help us to analyze the
characteristics of each language. Östling and Tiede-
mann (2016) found that clustering the language em-
beddings learned by a character-level multilingual
system provided an illustration of the language fam-
ilies involved. In the light of this, we also analyze
our dialect embeddings to investigate whether our
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Figure 1: Proposed multi-dialect NMT model.

multi-dialect model can capture similarities between
dialects (Section 5).

Previous work reported that character-level sta-
tistical machine translation (SMT) using words as
translation units was effective for translating be-
tween closely-related languages (Nakov and Tiede-
mann, 2012; Scherrer and Ljubešić, 2016). There
are two reasons for this: the character-level informa-
tion enables the system to exploit lexical overlaps,
while using words as translation units takes advan-
tage of related languages’ syntactic overlaps.

In this study, we present a method of translat-
ing between Japanese dialects that combines three
ideas: multilingual NMT, character-level NMT, and
the use of base phrases (i.e., bunsetsu) as translation
units. We believe this enables our approach to fully
exploit the similarities among dialects and standard
Japanese, even in low-resource settings.

3 Data: Japanese Dialect Corpus

Japanese is a dialect-rich language, with dozens of
dialects that are used for everyday conversations in
most Japanese regions. They can be characterized
in terms of differences in their content words (vo-
cabulary) and regular phonetic shifts, mostly in their
postpositions and suffixes. That said, they nonethe-
less share most words with standard Japanese, as
well as mostly using common grammatical rules,
such as for word ordering, syntactic marker cate-
gories, and connecting syntactic markers. Some di-
alects also share the dialect-specific vocabulary.
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Figure 2: Number of sentences in each dialect in The National Dialect Discourse Database Collection.

In this study, we used a collection of parallel tex-
tual data for dialects and standard Japanese, the Na-
tional Dialect Discourse Database Collection (NIN-
JAL, 1980). This corpus includes 48 dialects, one
from each of the 47 prefectures and an additional di-
alect from the Okinawa Prefecture. For each dialect,
the texts consist of transcribed 30-minute conversa-
tions between two native speakers of that dialect.
The total number of dialect sentences (each paired
with a translation into standard Japanese) is 34,117,
and Figure 2 shows the number of sentences in each
dialect.

Japanese texts are generally written in a mix of
kanji and kana; therefore, we converted the kanji in
the sentences into kana and, then, segmented them
into bunsetsu.1 After preprocessing, the average
sentence lengths were 14.62 and 15.57 characters for
the dialects and standard Japanese, respectively, and
the average number of bunsetsus per sentence was
3.42.

4 NMT Model

Figure 1 gives an overview of our multi-dialect
NMT system’s network structure. Since our focus
is on examining the effectiveness of multi-dialect
NMT and its detailed behavior, rather than on cre-
ating a novel translation model, we used Open-
NMT (Klein et al., 2017), a stacking LSTM en-
coder–decoder model with a multilingual extension
similar to that of Johnson et al. (2016). However, to
improve its direct translation accuracy, we make the
following three modifications.

Dialect labels Following a previous multilingual
NMT study (Johnson et al., 2016), we train a unified
model that handled all 48 dialects simultaneously

1This is the smallest Japanese phrase unit, containing a sin-
gle content word and attached postpositions.

ID Encoder input order
a source label, sentence
b target label, sentence
c source label, target label, sentence
d source label, sentence, target label

Table 1: Dialect label input order variants.

using dialect embeddings that included auxiliary di-
alect labels. Johnson et al. (2016) added a label to
the beginning of each sequence to specify the output
language. We modify this to specify both the input
and output dialects to the model, and examine the
four different placements for these labels as shown
in Table 1.

Syllable-to-syllable translation As mentioned in
Section 3, one of the keys to translating between two
closely-related languages is to model the phonetic
correspondences between them. Thus, to consider
syllable-level translation rules that may be shared
by similar dialects, we define our translation task as
syllable-to-syllable translation.

We realize syllable-to-syllable translation by rep-
resenting the inputs and outputs as kana sequences
and performing character-based MT. A similar ap-
proach has been used to normalize Japanese text
from Twitter, where the main issue was phonologi-
cal transliteration (Saito et al., 2017). In our dataset,
the dialect utterances have all been transcribed using
kana; however, the standard Japanese translations
use a mix of kanji and kana characters. Therefore,
we converted these into kana sequences as well by
automatically analyzing the pronunciation of each
kanji character and replacing it with the correspond-
ing kana sequence.

Translation without distortion Standard MT
methods take a single sentence as input and yield
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a translated sentence in an appropriate word order
for the target language. However, in dialect trans-
lation, the input and output word orders are mostly
the same. To test this, we manually checked 100
randomly-selected sentence pairs from the training
set, finding no changes in ordering (distortion). This
fact could enable the model to be more efficiently
trained on the translation pairs, and hence require
less supervision data, because it does not need to
learn a distortion model. Based on this intuition, we
split each input sentence into base-phrase chunks,
namely a bunsetsu sequence, translate each chunk
from the source to the target language and, then, out-
put the translated chunks in the same order.

5 Experiments

Using parallel text data (standard Japanese and
48 regional dialects), we trained both a single
dialect-to-standard translation model and a reverse
(standard-to-dialect) model, measuring the transla-
tion quality using by BLEU scores. In addition,
we analyzed the trained dialect embeddings in de-
tail and conducted data ablation tests.

5.1 Experimental Setup

For these experiments, we split the corpus into train-
ing, development and the test sets in proportions of
8:1:1. We over-sampled the translation pairs to en-
sure that every dialect had the same amount of train-
ing data because there were different numbers of
training and test instances for each dialect.

Since Japanese dialects mostly share the same vo-
cabulary and grammatical rules and there are few
distortions (word order changes), translation be-
tween a Japanese dialect and standard Japanese is
relatively easy compared with translating between
different languages. Given that, the main focus
of these experiments was to evaluate how well the
model captured the phonological shifts between di-
alects and standard Japanese. For this reason, we
employed syllable-level BLEU scores as an evalua-
tion measure and, then, macro-averaged the scores
over all dialects. Note that, this evaluation mea-
sure generally gives higher scores than if we had
calculated it at the word-level. In fact, the macro-
averaged BLEU score reached 35.10 even when we
simply output the dialect sentences as they were

System BLEU
dialect-to-standard

None (w/o translation) 35.10
Mono NMT 22.45
Multi NMT (w/o labels) 71.29
Multi NMT-sentence (w/ labels) 69.74
Multi NMT (w/ labels) 75.66
Mono SMT 52.98
Multi SMT (w/o labels) 73.54

standard-to-dialect
Multi NMT (w/ labels) 64.04

Table 2: Syllable-level BLEU scores for all models

(without translation).
We used OpenNMT-py2 with its default hyper-

parameter settings, except for the number of the
training epochs (which we set to 20) and selected
the model that performed best on the development
set. In addition, we employed Moses3 (Koehn
et al., 2007) as the baseline SMT model and set
the distortion limit to 0. The standard Japanese
language model used in Moses was trained with
KenLM (Heafield, 2011).

Regarding the dialect label order used for the in-
put, our preliminary experiments indicated that the
best models were obtained using input sequence (d)
(Table 1) for dialect-to-standard translation and in-
put sequence (c) for standard-to-dialect translation.

Finally, we used MeCab 0.9964 to analyze the
kanji characters’ pronunciations.

5.2 Multi-Dialect NMT Model Performance
Table 2 shows the dialect translation performance of
all the models considered, with the first row group
comparing their scores for dialect-to-standard trans-
lation with different input settings.

Mono-lingual vs multi-lingual For comparison,
we first consider a model that was trained using
only a single set of dialect-standard parallel data
(Mono NMT). This performed quite poorly com-
pared with the other models that used data for all
the dialects (Multi NMT), and was even worse than
simply outputting the dialect sentences unchanged

2https://github.com/OpenNMT/OpenNMT-py
3http://www.statmt.org/moses
4http://taku910.github.io/mecab/
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Figure 3: Multi NMT models’ BLEU scores and translation difficulty for all dialect.

(35.10). This indicates that training independent
NMT models for each language pair with a limited
amount of training data is extremely inefficient. In
contrast, the multi-dialect model demonstrated dras-
tically improved the translation performance.

The Multi NMT model’s performance (BLEU
score) for standard-to-dialect translation was
slightly lower than that for dialect-to-standard
translation (last row of Table 2). This is consistent
with a previously-reported multilingual NMT
result (Johnson et al., 2016).

Dialect labels Including dialect labels improved
the Multi NMT model’s macro-averaged BLEU
score by 4.37 points (forth row of Table 2) com-
pared with the same model without dialect labels
(second row). Figure 3 shows these two models’
BLEU scores for all dialects in ascending order of
translation difficulty. Here, the translation difficulty
is defined as the average normalized Levenshtein
distance over all sentence pairs (dialect and stan-
dard Japanese) for a given dialect. As expected, the
BLEU scores for each dialect show a strong nega-
tive correlation (ρ = −0.82) with its translation dif-
ficulty. In addition, we can observe that the model
with language labels consistently outperforms the
model without labels, except for the Tottori dialect.
This indicates that explicitly providing the source
and target dialects can improve the encoding and de-
coding accuracy.

Fixed-order translation Comparing the proposed
model (Multi NMT) with the same model trained
via the standard approach of using entire sentences
as input/output sequences (Multi NMT-sentence)
shows that Multi NMT outperforms Multi NMT-
sentence by 5.92 points. One disadvantage of
chunk-wise translation is it cannot capture the con-

text beyond each chunk’s boundary. However, de-
spite this disadvantage, our Multi NMT model was
still able to outperform a model that had access to
a broader context (Multi NMT-sentence), indicating
that our fixed-order translation approach is suitable
for translating Japanese dialects despite its limited
context sensitivity.

NMT vs SMT Zoph et al. (2016) found that SMT
models largely outperformed state-of-the-art NMT
models for low-resource languages. Therefore, for
comparison, the second row group in Table 2 shows
results for a fixed-order character-based SMT base-
line. In these experiments, even though the NMT
model trained using a single dialect (Mono NMT)
gave the poorest performance, the one with dialect
labels outperformed the baseline Multi SMT model,
achieving the best performance overall.

5.3 Example Translation Results
To demonstrate how each of the proposed com-
ponents contributed to generating accurate trans-
lations, we now present some concrete examples
of our models’ translation results for the Hyogo,
Kagoshima, and Nigata dialects (Table 3).

Comparing the Multi NMT models with and with-
out dialect labels, we can see that adding labels en-
abled the model to better translate the chunks that
required dialect-specific knowledge. In Example 1,
the source sentence includes a local name (O -) for a
certain area (Aioi) in Hyogo, which only the model
with dialect labels could successfully translate. In
addition, in Example 2, including labels enabled
the model to capture a dialect-specific transliteration
rule for the functional suffix “ta ra”, a conditional-
mood marker in the last chunk of the reference sen-
tence (i.e., “ta ya” to “ta ra”).

Similarly, since the Multi SMT model could not
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Example 1 Hyogo region
Meaning Yes, until then, in Aioi ...
Source n - / so re ma de / o - ni wa

(んー /それまで /おーにわ)
Reference u n / so re ma de / a i o i ni ha

(うん /それまで /あいおいには)
Multi NMT (w/o label) u n / so re ma de / o o ni ha

(うん /それまで /おおには)
Multi NMT-sentence (w/ label) n - / so re ma de / a t ta n da

(んー /それまで /あったんだ)
Multi NMT (w/ label) n - / so re ma de / a i o i ni ha

(んー /それまで /あいおいには)
Multi SMT (w/o label) u n / so re ma de / o o ni ha

(うん /それまで /おおには)
Example 2 Kagoshima region
Meaning After a few days, then it was...
Source so i ga / mo / na n ni k ka / shi ta ya

(そいが /も /なんにっか /したや)
Reference so re ga / mo u / na n ni chi ka / shi ta ra

(それが /もう /なんにちか /したら)
Multi NMT (w/o label) so re ga / mo u / na n ni chi ka / shi ta da

(それが /もう /なんにちか /しただ)
Multi NMT-sentence (w/ label) so re ga / mo u / na n ni tsu ka / shi ta yo

(それが /もう /なんにっか /したよ)
Multi NMT (w/ label) so re ga / mo u / na n ni chi ka / shi ta ra

(それが /もう /なんにちか /したら)
Multi SMT (w/o label) so re ga / mo u / na ni ka / shi ta de

(それが /もう /なにか /したで)
Example 3 Nigata region
Meaning I want to go to the water park as soon as possible, but...
Source ha yo - / mi zu n / do ko e / i ko - to / o mo u ke do

(はよー /みずん /どこえ /いこーと /おもうけど)
Reference ha ya ku / mi zu no / to ko ro he / i ko u to / o mo u ke re do

(はやく /みずの /ところへ /いこうと /おもうけれど)
Multi NMT (w/o label) ha ya ku / mi zu ga / do ko he / i ko u to / o mo u ke do

(はやく /みずが /どこへ /いこうと /おもうけど)
Multi NMT-sentence (w/ label) ha ya ku / mi zu no / to ko ro he / i ko u to / o mo u ke do

(はやく /みずの /ところへ /いこうと /おもうけど)
Multi NMT (w/ label) ha ya ku / mi zu ga / do ko he / i ko u to / o mo u ke re do

(はやく /みずが /どこへ /いこうと /おもうけれど)
Multi SMT (w/o label) ha ya ku / mi zu ga / do ko he / i ko u to / o mo u ke do

(はやく /みずが /どこへ /いこうと /おもうけど)

Table 3: Example dialect-to-standard translations for the Hyogo, Kagoshima, and Nigata dialects.

take advantage of the dialect labels, it failed to cap-
ture dialect-specific translation rules.

In the previous section, we saw that our fixed-
order translation approach is suitable for translating
Japanese dialects, despite its limited context sensi-
tivity. However, this became a problem in Example

3, where the proposed chunk-wise translation mod-
els could not correctly translate a phrase due to the
lack of context. Here, none of the models, except
Multi NMT-sentence, could translate the phrase “mi
zu n” in the Nigata dialect to the correct standard
Japanese phrase “mi zu no”, since the translation of
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(a) Aomori-to-standard

(b) Okinawa-to-standard

Figure 4: Attention weight examples. (a) Aomori-to-
standard translation of “next time”. The Aomori word
konda is made by linking the syllables from two standard
Japanese words, kondo (next time) and ha (topic marker).
(b) Okinawa-to-standard translation of “we”. The Ok-
inawa word watta- combines two standard Japanese
words, watashi (I) and tachi (plural marker), with watt
and ta- roughly corresponding to watashi and tachi, re-
spectively.

the functional word “n” in the Nigata dialect is am-
biguous: it can be translated as either “ga” (nomina-
tive marker) or “no” (of) depending on the follow-
ing context. This example exposes the limitations
of our chunk-wise translation models and suggests
a potential future directions: extending fixed-order
translation to incorporate contextual information.

5.4 Visualizing Attention Weights

Here, to investigate how the proposed model trans-
lated kana sequences in various dialects, we vi-
sualize the the best-performing model’s attention
weights for some correctly-translated examples.

Figure 4(a) shows the model’s attention history
for an example where the target language syllables
were derived from those in the source language ac-
cording to a regular rule. In such cases, the model
tended to weight the dialect label heavily when ap-
plying the rule. Conversely, Figure 4(b) shows the

Dataset Avg. ∆ #Regions BLEU decreased
-nearest 5 -0.94 34 / 48 (71%)
-farthest 5 -0.22 31 / 48 (65%)

Table 4: Impact of excluding the nearest or farthest five
dialect regions from the training data when calculating
the BLEU score for each diaect region. Here, “Avg. ∆”
denotes the average BLUE score difference compared
with using all the data.

attention history for an example where almost all
of the syllables were transliterated. In these cases,
the model needed to disambiguate the morpheme-
level meanings to create a correct translation and
thus tended to focus on the entire sequence of
semantically- or grammatically-related morphemes.

5.5 Visualizing Language Labels

Östling and Tiedemann (2016) reported that cluster-
ing the language embeddings used to train a multi-
lingual language model produced a language clus-
ter structure similar to the established relationships
among language families. Inspired by their work,
we decided to examine the relationships between the
dialect embeddings and the dialects’ typology.

Figure 5 shows a t-SNE projection of the di-
alect embeddings. This indicates that dialects from
neighboring regions tend to form a single cluster.
Furthermore, we can observe an interesting agree-
ment between the cluster distances and the predic-
tions of a dialectological typology theory known
as center versus periphery (Yanagida, 1980), where
new language use trends gradually propagate from
the cultural center (the old capital, Kyoto) to less
culturally-influential areas. This potentially explains
why the dialects in the Tohoku region (E) are similar
to those of the Kyushu region (D), despite their large
geographical separation.

5.6 Effect of the Nearby Dialects

To investigate in more detail how jointly learn-
ing multiple dialects contributed to the dialect-to-
standard translations for each dialect, we performed
an ablation study of the different dialect regions. As
we saw in the previous section, the dialects in geo-
graphically close regions are generally more similar
to each other than those in other regions. There-
fore, we assumed that the impact of sharing data
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Figure 5: t-SNE projection of the dialect label vectors. Dialects belonging to the same region are shaded using the
same background color.

from other dialects will differ depending on their ge-
ographical distances from the target dialect.

To investigate this assumption, we prepared two
Multi NMT models per dialect, trained on data that
excluded the five geographically nearest or farthest
dialects5 for the given dialect region, and calculated
the differences in BLEU score between these mod-
els and the original model that used all the dialect
data. For example, one of the Tokyo dialect mod-
els excluded training data from the nearby Chiba,
Kanagawa, Saitama, Gumma, and Ibaraki dialects
but was otherwise trained the same way as the full
Multi NMT model. Then, we compared this model’s
BLEU score for Tokyo dialect instances in the test
set to that of the full model.

Table 4 shows the average results over all 48 mod-
els for both cases. Both the models trained with-
out the nearest five dialects and those without the
farthest five dialects yielded lower average BLEU
scores for their target dialects compared with the full
model, indicating that even very distant dialects still
helped with training other dialects. In addition, we
can see that removing the nearest five dialects had a
more significant impact than removing the farthest
five, implying that similar dialects contribute more

5The distances between dialect pairs were calculated using
the Euclidean distances between the points where the dialogs
were recorded.

to helping a multi-dialect NMT learn effectively.

6 Conclusion

We have examined the effectiveness of a syllable-
based, fixed-phrase-order multilingual NMT model
for translating Japanese dialects into standard
Japanese. The results showed that each component
of the multi-dialect NMT model successfully im-
proved translation accuracy when using a limited
amount of supervised training data. In addition, we
have demonstrated the potential benefit of analyz-
ing dialect embeddings to dialectological analysis
applications, and have also analyzed how the multi-
dialect NMT was able to leverage training data in-
volving similar dialects to translate a given dialect.

One limitation of the proposed model is it can-
not consider longer-range dependencies beyond the
chunk level. Therefore, our future research plans
include incorporating contextual information into
fixed-order translation models and investigating the
dialect embeddings’ characteristics further.
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