
31st Pacific Asia Conference on Language, Information and Computation (PACLIC 31), pages 161–168
Cebu City, Philippines, November 16-18, 2017

Copyright c©2017 Mohamed Labidi, Mohsen Maraoui and Mounir Zrigui

Unsupervised Method for Improving Arabic Speech Recognition Systems

Mohamed Labidi

LaTICE laboratory

Unit of Monastir

5000 Monastir, Tunisia

labidi8mohamed@gmail.c

om

Mohsen Maraoui

Computational

Mathematics Laboratory,

Tunisia

5000 Monastir, Tunisia

maraoui.mohsen@gmail.c

om

Mounir Zrigui

LaTICE laboratory

Unit of Monastir

5000 Monastir, Tunisia

mounir.zrigui@fsm.rnu.tn

Abstract

One of the big challenges connected to large

vocabulary Arabic speech recognition is the

limit of vocabulary, which causes high out-

of-vocabulary words. Also, the Arabic

language characteristics are another

challenge. These challenges negatively affect

the performance of the created systems. In

this work we try to handle these challenges

by proposing a new unsupervised graph-base

method. Finally, we have obtained a 4.6%

relative reduction in the word error rate.

Comparing our suggested method with other

methods in the literature, it has given better

results. Moreover, it has presented a major

step towards solving this problem. In

addition, it can be easily adaptable to other

languages.

1 Introduction and state of the art

One of the big challenges in speech recognition

is how to cover all possible words by a speech

recognition system. The vocabulary of a

conventional large-vocabulary continuous speech

recognition system is finite, and this vocabulary

limits the terms that appear in speech

transcriptions. The words that do not occur in the

vocabulary of the recognizer are called “out-of-

vocabulary” words. This problem is a perennial

challenge for speech recognition, where the out-

of-vocabulary words are badly recognized. A

larger vocabulary for the automatic speech

recognition system is not the solution, since

language is in constant growth and new words

are steadily enriching the vocabulary. In (Ng and

Zue, 2000), an analysis of news text

demonstrated that the vocabulary size would

continue to grow as the dataset got larger. In

other words, it was not possible to create single

large vocabulary that would eliminate the out-of-

vocabulary problem. Consequently, it was not

possible to create a language model that would

cover all the words of any language.

Furthermore, under certain conditions, adding

more words could compromise the recognition

performance of words already in the vocabulary.

According to (Logan et al., 2005), up to 10% of

all query words in a typical application that used

a word-based recognizer with large vocabulary

could be out-of-vocabulary words. Of course it

was possible to update the vocabulary of the

Automatic Speech Recognition (ASR) systems

by adding new words to the language model.

However, as noted by (Logan et al., 2005), it

could be difficult to obtain enough training data

to train the language model for new words.

Additionally, for most application scenarios, it

would not be feasible to re-recognize spoken

content once the initial transcription was

generated, due to the high computation cost of

the ASR process and the huge sizes of daily

spoken content collections. For these reasons, the

out-of-vocabulary problem was a formidable

one.

For the Arabic language, this problem limits

the performances of speech recognition systems.

As noted in the previous paragraph, it is not

practical to recreate a new language model each

time we want to enrich our systems by new

vocabulary. To deal with these problems, some

superficial work has been done. In (Novotney et

al., 2011), a morpho-base language model was

used in speech recognition systems for four

morphologically rich languages which were

Turkish, Finnish, colloquial Egyptian Arabic and

Estonian. The authors said that the experiments

showed that the morph models performed fairly

well on out-of-vocabulary words without

compromising the recognition accuracy on in-

vocabulary ones. Nevertheless, they reported that

the Arabic language was the exception where

their proposed method failed. They noted that 161

this might be due to the Arabic language

characteristics. The second work belongs to (El-

Desoky et al., 2009), where the authors

addressed the out-of-vocabulary problem and the

non-appearance of diacritical-marks at the

Arabic written transcriptions. The authors

introduced a morphological decomposition, as

well as a diacritization in Arabic language

modeling. Their experiments showed a reduction

in the Word Error Rate (WER) by 3.7%.

However, they still suffer from the new words in

languages and diacritical marks in the Arabic

words, which present a big problem for Arabic

speech recognition. Other work related to this

topic has been done in other domains, as in (Al-

Shareef and Hain, 2012), (Razmara et al., 2013),

(Creutz et al., 2007), (Diehl et al., 2009) and

(Habash, 2009).

In our work, we investigate a graph-based

method to deal with the present challenge. We

use our web crawler to collect text data from the

Internet on a regular, continuous and up-to-date

basis. We use the collected text for the

construction of an oriented weighted graph,

where each node presents a word and each arc

presents the relationship of succession between

two words in the Arabic language. After that, we

use a graph search method to detect the false

words in the transcription. Finally, we discover

the best words that can be replacements.

The paper is organized as follows. In section

2, we present our methodology of performing

false-word correction and we deal with out-of-

vocabulary words. Our experiments are

discussed in section 3, while section 4 gives the

conclusions.

2 Methodology

In this section we describe how the corrections of

false words are performed. Figure 1 describes the

steps of the work.

Figure 1: Architecture of the proposed system.

2.1 Linguistic tools

Our acoustic model is built with the help of the

CMU Sphinx (Lamere et al., 2003). We train it

using 51h of audio material for the modern

standard Arabic, recorded by 41 native speakers.

Each audio file is accompanied by its

transcription. The audio files are converted to 16

kHz, 16 bits, mono speakers, and in an MS WAV

format, as required by the Sphinx trainer. The

phonetic dictionary is similarly used by almost

all researchers in the construction of Arabic

speech recognition systems (Ali et al., 2009).

 Our language model training corpora consist

of around 200 million running full words

including data from Ajdir Corpora, Tashkeela

corpora (Zerrouki and Balla, 2017), Abbas

corpora (Abbas et al., 2011), OSAC corpora

(Saad and Ashour, 2010) and collected corpora.

Our statistical language model is constructed

using the SRILM toolkit (Stolcke and others,

2002).

To evaluate the recognition performance, our

small audio corpus of 8h for all our experiments

is divided into 12 audio files. Each one contains

almost 40 minutes of speech. They contain

almost 48,000 Arabic words where 2,000 of

them are out of vocabulary (they do not exist in

the vocabulary of the system).

For the construction of the oriented weighted

graph we use our web crawler to collect text

from the Internet and our Java implementation to

construct the graph, where each sentence in the

collected corpus is transformed to a set of

connected words in the graph (i.e., each node of

the graph contains one word).

2.2 Speech recognition (B0)

To make the speech correction, it is much easier

to work on the text more than spoken documents.

For this reason, we have to use a speech

recognition system to get the transcriptions of the

spoken documents.

We use the CMU Sphinx tools to construct our

speech recognition systems. The utilized data are

described in the linguistic tools section (section

2.1) and the obtained results are described in

section 3. The system gives us the transcriptions

for the recognized speech files.

2.3 Text collection (B1)

The text collection is a process to collect Arabic

texts from the Internet to establish a corpus of 162

Arabic text. We use our web crawler in this task.

It proceeds as follows:

 Search for the addresses of Arabic web

sites in the Internet using API search

engines.

 Only Keep addresses of authentic sites:

(using the WOT tool, which is a tool

powered by 140 million users, machine

learning, which is a free browser

extensions, and mobile app and API,

which let us check whether a website is

safe and contains correct information

before reaching it).

 Save the authentic addresses in a

database.

 Parse the authentic web pages and

collect the Arabic texts.

 Save the collected Arabic texts in files

(text corpus).

The first successful execution of our web

crawler allows collecting more than 2,981 Arabic

text files. The advantage of our web crawler is

that it systematically updates the corpus. That

way we guarantee that our corpus is updated and

increased each time. We guarantee also that each

new word in the language will be added as soon

as possible. The collected corpus is used to

create our oriented weighted graph in the next

section.

The graph is systematically auto-updated by

new texts from the Internet, which make it bigger

day after day. The update of the corpus follows

the next steps:

 Search for the addresses of Arabic web

sites in the Internet using API search

engines.

 Only Keep addresses of authentic site:

(using the WOT tool).

 For each found authentic address check

whether it does not exist in our database,

then save it; else do not save it.

 Parse the authentic web pages and

collect the Arabic texts.

 Save the collected Arabic texts in files

(text corpus).

2.4 Graph construction (B2)

Using the collected corpus in the previous

section, where our web crawler is issued, we

create an oriented weighted graph that depicts

the Arabic language words succession (Figure 2).

Each word in the corpus is transformed to a node

in the graph. And each two words that succeed in

the corpus they will linked by an arc in the graph

as described in the following table.

(a) Graph illustration

Node
Word
Number of

occurrences

Date of first use

Next nodes

Weight of next

relations

(b) Node structure

Figure 2: Illustration of the constructed oriented

weighted graph and the structure of its nodes.

The graph of Figure 2 presents the relationship

of succession between the four words and the

probabilities of these successions. Where the

value (0.5) that exist on the arc between “word

1” and “word 2” presents the probability

P(“word 2”| “word 1”). It is systematically auto-

updated by new texts from the Internet, which

make it bigger day after day. This graph is used

to correct false words in the transcription.

Each node in the graph is a word from the

corpus. Also, it contains only one Arabic word

and the information related to it. (a) describes the

node structure and its fields. Hence, each

sentence in the corpus is transformed to a set of

connected nodes in the graph. The following

points describe the following node fields.

 Word: Field containing the word

 Number of occurrences: Field containing

the number of occurrences of the word in

the corpus

Word 1 Word 2

Word 3 Word 4

0.5

0.5

1

163

 Date of first use: Field containing the

first appearance of the word in the

Internet or in documents

 Next nodes: Links to the next nodes

 Weight of the next relations: Field

containing the weight of the relations

between the current word and the next

words.

To create our graph we pass by the following

steps:

 Create for each word in the corpus a

node in the graph. Each word has only

one node in the graph, even if it exists

several times.

 If a word “X” comes after another word

“Y” in the textual corpus, then the node

of the word “X” will be linked by an arc

to the node of the word “Y” in the graph.

The following example explains how

two words can be transformed to the

graph and how we make the link

between them.

In the

text

In the graph

« Hello

word »

Table 1: Illustration of the arc construction

between words.

The arc between any two words “W” and “Y”

is weighted by P(W|Y), which is the probability

of the appearance of “W” and “Y” together such

as that “Y” arrives after “W”.

2.5 Word correction (B3)

Our goal in this section is to correct the false

words in the transcriptions using the graph

created in section 2.4. The correction passes by

the steps explained in the next sections:

Suppose we have the following sentence,

which contains a false word (Word 3).

Word1 Word2 Word3 Word4 Word5 Word6

To correct the false word (Word 3) we follow

the following steps:

2.5.1 False-word detection

First of all, we should detect the false words in

the transcriptions, for that we use the oriented

weighted graph created in section 2.4. The graph

contains the Arabic words collected from the

Internet, books, journals, etc. Added to that, the

graph is automatically updated by the new words

that appear in the language. Logically, any

correct word in the transcription should be

presented in the graph. To know whether a word

is false or not, we search for it in our created

graph. If it exists, then it will be correct. Else, it

will be considered as a false word and it will pass

to the correction step.

2.5.2 Context-window construction

The context window is a set of words that

appears with the false word in the same sentence

or in the same phrase. It contains N words from

both the left and the right of the false word. The

context window is used to search correct words

that appear in the same context as our false word.

Table 2 gives an example of the context-window

construction.

Therefore, each false word has more than one

context window. Each context window has a

different size. The size of the context windows

for a false word starts from N=1 (one word from

the left and one word from the right of the false

words) and reaches N=N, which is the maximum

number of words that appear with the false word

in the transcription.

We vary the size of the context window for

each false word in order to search for the most

appropriate context window size that filters out

the best possible replacements for the false word.

We consider the best context window size as the

size that gives us the minimum of possible

replacements. We make this choice because we

consider that the context window which gives the

minimum number of replacements is a better

semantic filter than the windows which give

more replacements.

The false word (Word 3) in the following

example :

Word1 Word2 Word3 Word4 Word5 Word6

 has 2 words on the left and 3 words on the right.

Two or more of these words can describe the

context of the false word that we want to replace.

The number of words of the context window (N

words) cannot exceed 3 in the example provided

in section 2.5, because this is the maximum

number of words that can be found with the false

Word X Word Y

164

word (Word 3) in one of its two sides (left and

right).

Context

window

size

N=1 N=2 N=3

Left

side

Word

2

(Word2-

Word1)

(Word2-

Word1)

Right

side

Word

4

(Word4-

Word5)

(Word4-

Word5-

Word6)

Table 2: Example of context-window

construction.

2.5.3 Search for possible replacements

After the construction of the context windows,

we search for possible replacements of false

words, using the context windows created in the

previous section. We search in the graph for the

word that has the same context window as our

false word. We take the words order of the

context windows into consideration. For

example, if the false word “word3” appears

between the two words “word4” and “word2” in

the transcription, then we search in the graph for

replacements that appear between “word4” and

“word2”.

The result of this search step is a set of words.

Each set contains a set of possible replacements

for the false word. Also, each set presents the

search results using one of the context windows

of the false word; i.e., for each context window

for the false word, this step will give us a set of

possible replacements. Table 3 describes the

created context windows for the false word

(Word 3) given in as example in the following

sentence : “Word1 Word2 Word3 Word4 Word5

Word6”.

Context

window size

N=1 N=2 N=3

Possible

founded

replacement

Word

X

Word

Y

Word

Z

Word

W

Word

X

Word

Z

Word

Y

Word

Z

Word

W

Table 3: Example of searching possible

replacements.

The next section describes the selection of the

best set of replacements for the false word.

2.5.4 Selection of best set of replacements

The best context window is the one that gives us

the replacements that are semantically the closest

to the false word in its context. Then, the best

context window will give us the minimum

possible of replacements because it filters the

words well and it proposes only the semantically

closest words to the false one. Thus, the best set

of replacements is the one that contains the

minimum number of replacements. This step is

explained in Table 3 and Table 4.

Context window size N= 2

Possible replacement
Word X

Word Z

Table 4: Example of selecting the best

replacement set.

2.5.5 Replacement of false word

In the previous step, we chose the set of

replacements that were semantically closest to

the false word because they have the same

context and it works as a semantic filter.

Researchers usually choose one word as a

substitute to the wrong one. For us, we opt for

replacing the false word by all possible

replacements selected from the previous step. On

the other hand, each replacement is put with its

probability of succession that appears in the

graph. This probability defines its relationship of

succession of the replacement with its successor

and predecessor. This process is explained in the

following example.

We suppose that the replacements appear in

the graph as represented in Figure 3 where 165

“Word X” and “Word Z” are the possible correct

replacements of the false word.

Figure 3: Replacement relations in the graph.

These two possible replacements will replace

the false word in the transcription as described in

Table 5. Where, the false word is replaced by its

possible replacements. And each replacement is

accompanied by its probabilities of successions

between it and the words of the contextual

window.

Replacing false word by the selected ones

Word1 Word2 (65%)WordX (45%) Word4

Word5 Word6

Word1 Word2(35%)WordZ (55%) Word4

Word5 Word6

Table 5: Replacing the false word.

3 Experiments

Our experiments are decomposed in two parts.

The first one is the post-correction experiments

where we evaluate our speech recognition system

performance before the use of our proposed

method. The second one is the correction

experiments where we evaluate our suggested

method. We evaluate our correction method

twice: the first one before updating the graph and

the second one after updating it. The material

used in the experiments is described in the

experimental setup section just after the

introduction. We use the WER metric, because it

is mostly used by researchers to evaluate

automatic speech recognition systems (Ali et al.,

2009), (Diehl et al., 2009).

3.1 Experiments results

WER% before correction 12.5%

WER% after first correction 8.11%

WER% after second correction

(after updating the graph)

7.9%

Table 6: Tests results.

Table 6 shows the obtained results. The first line

describes the WER obtained with our speech

recognition system before the correction step.

The obtained WER is 12.5% ,which means that

the transcription contains 6,000 wrongly

recognized words, including the 2,000 out-of-

vocabulary words. After that, to decrease the

WER we execute our proposed method. The

second line of Table 6 contains the WER%

obtained after the execution of our correction

approach, which is 8.11%. This execution was

released with the graph constructed in section

3.3. We notice that the WER is decreased. We

have recorded a gain of 4.39% in terms of WER,

which means a reduction in the number of the

false words. We pass from 6,000 to 3,896 false

words in the transcriptions. Then, 2,104 words

are corrected and 956 of them are out-of-

vocabulary words.

After the correction step, we update our graph

automatically. Then, we relaunch the correction

again, but this time with a richer graph. Line 3 of

Table 6 indicates the obtained results. The WER

becomes 7.9%, with a reduction of 0.21% from

the previous correction; i.e., we pass from 6,000

false words in the transcription to 3,792 ones.

However, the number of the corrected out-of-

vocabulary words is bigger this time. We pass

from 956 corrected out-of-vocabulary words in

the first correction to 1,148 ones in the second

correction, which proves that the update of the

graph has added new words and has positively

influenced the correction process.

Work Gain in WER%

(El-Desoky et al.,

2009)

3.7%

Our method 4.6%

 (Messaoudi et al.,

2006)

1.2%

 (Afify et al., 2005) 1.4%

Table 7: Comparison between methods.

The obtained results show the efficiency of

our proposed method in the detection and

correction of false words. In addition, the results

show the ease, speed and performance of our

method in the enrichment of the corpus and in

correction, unlike the classical language models

and the difficulties of their enrichment. As cited

in the methodology section, our method does not

replace the false word by another word from the 166

possible replacements, but it replaces it by all

possible replacements accompanied by their

probabilities, which gives a huge advantage to

the transcription so that it can be used in various

fields. Moreover, any researcher can utilize any

selection method to give preference to the

suitable word. Furthermore, Table 8 shows that

our proposed method gives better results and

deals better with false words and out-of-

vocabulary ones in the Arabic speech recognition

systems than that of the most recent work in the

field.

3.2 Discussion

We have proposed a method to correct badly

recognized words by any Arabic speech

recognition system. Our method shows a good

performance in the correction task. Furthermore,

it shows an admirable performance in dealing

with out-of-vocabulary words. This is thanks to

our proposed graph which is systemically auto-

updated by new vocabulary and texts from the

Internet. Also, it gives a probabilistic description

for the words succession in the language. Our

method shows a better correction rate than other

methods in the literature (El-Desoky et al.,

2009), (Creutz et al., 2007) especially for out-of-

vocabulary words. In addition, our proposed

method provides better results because it takes

into consideration the Arabic language

characteristics. All this gives our method a great

advantage over other ones. Besides, our proposed

method can be adapted to other languages easily.

We believe that the correction of false

recognized words in any transcription given by

any Arabic automatic speech recognition system

should take into account two major points. The

first is the language characteristics and the

second is the new vocabulary that is appearing in

the language day after day. Our proposed method

is a good step in this field and it can be improved

by other methods like the rule-based ones. This

is going to be our goal during the next work.

4 Conclusion

In this paper we have tried to deal with the

challenges of the limit of vocabulary and the

Arabic language characteristics in large

vocabulary Arabic speech recognition systems.

We have tested a graph-based method. It has

given a good reduction by 4.6% in terms of

WER. Furthermore, it has fairly dealt with the

Arabic language characteristics. The proposed

method presents a good step in this field and in

dealing with the challenges. Another important

thing is that our method can be easily adapted to

work with other languages.

References

Mourad Abbas, Kamel Smaïli, and Daoud Berkani.

2011. Evaluation of Topic Identification Methods

on Arabic Corpora. JDIM, 9(5):185–192.

Mohamed Afify, Long Nguyen, Bing Xiang, Sherif

Abdou, and John Makhoul. 2005. Recent progress

in Arabic broadcast news transcription at BBN. In

Interspeech, volume 5, pages 1637–1640.

Mohamed Ali, Moustafa Elshafei, Mansour Al-

Ghamdi, and Husni Al-Muhtaseb. 2009. Arabic

phonetic dictionaries for speech recognition.

Journal of Information Technology Research

(JITR), 2(4):67–80.

Sarah Al-Shareef and Thomas Hain. 2012. CRF-based

Diacritisation of Colloquial Arabic for Automatic

Speech Recognition. In INTERSPEECH, pages

1824–1827.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo,

Antti Puurula, Janne Pylkkönen, Vesa Siivola,

Matti Varjokallio, Ebru Arisoy, Murat Saraçlar,

and Andreas Stolcke. 2007. Morph-based speech

recognition and modeling of out-of-vocabulary

words across languages. ACM Transactions on

Speech and Language Processing (TSLP), 5(1):3.

Frank Diehl, Mark JF Gales, Marcus Tomalin, and

Philip C Woodland. 2009. Morphological analysis

and decomposition for Arabic speech-to-text

systems. In INTERSPEECH, pages 2675–2678.

Amr El-Desoky, Christian Gollan, David Rybach,

Ralf Schlüter, and Hermann Ney. 2009.

Investigating the use of morphological

decomposition and diacritization for improving

Arabic LVCSR. In Interspeech, pages 2679–2682.

Nizar Habash. 2009. REMOOV: A tool for online

handling of out-of-vocabulary words in machine

translation. In Proceedings of the 2nd International

Conference on Arabic Language Resources and

Tools (MEDAR), Cairo, Egypt.

Paul Lamere, Philip Kwok, William Walker, Evandro

B Gouvêa, Rita Singh, Bhiksha Raj, and Peter

Wolf. 2003. Design of the CMU sphinx-4 decoder.

In INTERSPEECH. Citeseer.

Beth Logan, J-M Van Thong, and Pedro J Moreno.

2005. Approaches to reduce the effects of OOV

queries on indexed spoken audio. IEEE

transactions on multimedia, 7(5):899–906.

Abdelkhalek Messaoudi, J Gauvain, and Lori Lamel.

2006. Arabic broadcast news transcription using a

one million word vocalized vocabulary. In

Acoustics, Speech and Signal Processing, 2006. 167

ICASSP 2006 Proceedings. 2006 IEEE

International Conference on, volume 1, pages I–I.

IEEE.

Kenney Ng and Victor W Zue. 2000. Subword-based

approaches for spoken document retrieval. Speech

Communication, 32(3):157–186.

Scott Novotney, Richard M Schwartz, and Sanjeev

Khudanpur. 2011. Unsupervised Arabic Dialect

Adaptation with Self-Training. In INTERSPEECH,

pages 541–544.

Majid Razmara, Maryam Siahbani, Reza Haffari, and

Anoop Sarkar. 2013. Graph Propagation for

Paraphrasing Out-of-Vocabulary Words in

Statistical Machine Translation. In ACL (1), pages

1105–1115. Citeseer.

Motaz K Saad and Wesam Ashour. 2010. Arabic

morphological tools for text mining. Corpora,

18:19.

Andreas Stolcke and others. 2002. SRILM-an

extensible language modeling toolkit. In

Interspeech, volume 2002, page 2002.

Taha Zerrouki and Amar Balla. 2017. Tashkeela:

Novel corpus of Arabic vocalized texts, data for

auto-diacritization systems. Data in Brief, 11:147–

151.

168

