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Abstract

Syntax-based machine translation (MT) is
an attractive approach for introducing addi-
tional linguistic knowledge in corpus-based
MT. Previous studies have shown that tree-
to-string and string-to-tree translation mod-
els perform better than tree-to-tree translation
models since tree-to-tree models require two
high quality parsers on the source as well as
the target language side. In practice, high
quality parsers for both languages are difficult
to obtain and thus limit the translation quality.
In this paper, we explore a method to transfer
parse trees from the language side which has a
high quality parser to the side which has a low
quality parser to obtain transferred parse trees.
We then combine the transferred parse trees
with the original low quality parse trees. In
our tree-to-tree MT experiments we have ob-
served that the new combined trees lead to bet-
ter performance in terms of BLEU score com-
pared to when the original low quality trees
and the transferred trees are used separately.

1 Introduction

Depending on whether or not monolingual parsing is
utilized, there are about 4 types of machine transla-
tion (MT) methods. string-to-string (Koehn et al.,
2007; Chiang, 2005), string-to-tree (Galley et al.,
2006; Shen et al., 2008), tree-to-string (Liu et al.,
2006; Quirk et al., 2005; Mi and Huang, 2008), and
tree-to-tree (Zhang et al., 2008; Richardson et al.,
2014).

Though the tree-to-tree system that employs syn-
tactic analysis for both source and target sides seems

to be the best intuitively, in practice, two good qual-
ity parsers are difficult to acquire which affects the
translation quality which is sensitive to the differ-
ences in syntax annotation. In many cases, one
parser is of a much higher quality than the other
since one of the languages is easier to parse and has
a well annotated treebank. In case of Japanese to
Chinese translation, Japanese is easier to parse than
Chinese and Japanese parsers typically make fewer
mistakes compared to Chinese parsers.

In this paper, we explore a method which relies on
using parallel text for transferring syntactic knowl-
edge from a high quality (HQ) parser to a low quality
(LQ) parser using alignment information(Ganchev
et al., 2009; Hwa et al., 2005). Henceforth we shall
refer to Japanese as HQ or HQ side, indicating that
it is the language which has a high quality parser.
Conversely Chinese will be referred to as the LQ or
LQ side since the Chinese parser is of a relatively
lower quality and makes a number of parsing mis-
takes. One advantage is that the transferred parse in-
formation will possibly be more similar to the other
side’s parse. This will also reduce the parsing error
on the LQ side and unify the syntactic annotation on
both sides.

This idea has been proposed before, but not much
has been done in the case of dependency-based tree-
to-tree SMT system, which is the setting of this pa-
per. Furthermore, this method results in two types
of trees on the LQ side: The original LQ tree and
the tree transferred from the HQ side. These two
trees have their individual strengths: The transferred
tree could be more precise compared to the original
LQ one in theory, but it is much more sensitive to
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alignment errors or bad parallel sentences (not di-
rect translation). To address these problems, previ-
ous studies simply apply language dependent rules
to the transferred trees, for example in English have
and be must have an object modifier. In this pa-
per we consider combining these two trees and get
improved results. We show in our experiments that
combining the LQ-parsed trees with the transferred
trees yield better translation results rather than only
using them individually.

2 Related Work

2.1 Syntax Transfer for Non-MT Task

There are many previous works describing methods
to improve the performance of NLP tasks for a re-
source poor language by using a related resource
rich language (mainly English). Amongst these the
ones which employ methods which transfer infor-
mation perform better than unsupervised methods.
(Das and Petrov, 2011) describe an approach for
inducing unsupervised part-of-speech tags for lan-
guages that have no labeled training data. (Jiang et
al., 2010) show a transfer strategy to construct a con-
stituency parser. (Ganchev et al., 2009) present a
partial, approximate transfer through linear expec-
tation constraints to project only parts of the parse
trees to the low resource language side.

However, improving monolingual parsing accu-
racy does not directly lead to higher MT perfor-
mance, as it does not address the annotation criteria
difference problem.

2.2 Syntax Transfer for MT Task

For MT tasks, most transfer based works assume
that the source side has a poor tree-bank, a bad qual-
ity parser and/or little training data (parallel cor-
pus to be precise). For phrase-based models, (Goto
et al., 2015) proposed a cross transfer pre-ordering
model which employs a target-language syntactic
parser without requiring a source language parser.
For tree based models, most works focus on the fact
that they have no source side parse tree and create a
parse tree with transfer. (Jiang et al., 2010) showed
that a transferred constituent tree parser leads to re-
sults that are comparable with those obtained using
a supervised tree parser. (Hwa et al., 2005) worked
on transferring the results of an English parser to

a resource poor language and applied post-transfer
transformations like An aspectual marker should
modify the verb to its left.

These previous works typically assume that only
one out of the two languages has a parser. In practice
however, the resource poor language has a parser,
whose quality is worse than that of a resource rich
language’s parser. In this work, we consider such
a setting. If we combine the transferred parse tree
with the original parse tree, the performance should
improve.

3 The Difficulties of Tree-to-Tree
Approaches

A tree-to-tree model is the most natural in the MT
scenario because it respects syntax. However for
tree-to-tree translation models, we need both a good
target-side parser and a good source-side parser.
Even if the parsers are of high quality, we may have
problems due to different syntax annotation crite-
ria. Our main objective is thar we want to improve
the translation quality a dependency-based tree-to-
tree system such as kyotoEBMT (Richardson et al.,
2014). The differences between the tree-to-string
model and tree-to-tree models are shown in Fig 1
and Fig 2.

In Fig 2, it can be seen that the target side pars-
ing error affects tree-to-tree system’s search space.
It shows that a relatively low quality parser limits
the system. Unlike the tree-to-string approach, the
tree to tree approach is affected by the parsing error
on both sides. Another problem is shown in Fig 3,
where the coordination relation ‘wo he ta (my and
his)’ in the Chinese parse tree (bottom side) is an-
notated as ’siblings’, but in Japanese side (top side)
these three words ‘watashi oyobi kareno (my and
his) have a parent-child relation. Even if both of
them are correct in their own tree-banks, tree-to-tree
decoder won’t match a sibling relation pair with a
parent-child relation pair as is explained in Fig 2.

A transfer based method should solve these prob-
lems, because it makes LQ trees more similar to the
HQ trees. Transferring HQ side syntax relation not
only fixes the LQ side parsing error, but also unifies
the syntax annotation criterion.
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Figure 1: For tree-to-string system, it searches the case
watashi katta (I buy) akai honwo (red book) because
there are dependency pairs in source parse tree and does
not search the case watashi akai (I red) because it is not
a pair in source parse tree
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Figure 2: For tree-to-tree system, it searches the case
watashi katta (I buy) because it is a dependency pair in
source parse tree and target parse tree. It does not search
the case watashi akai (I red) because it is not a depen-
dency pair in source parse tree neither in target parse tree.
Unlike Fig.1, it does not search akai honwo (red book)
because although it is a dependency pair in source side, it
is disconnected in target side

4 Transfer of Syntactic Dependencies

4.1 Overview and Notation

This section gives an overview of our approach. In
the description below we use dependency tree struc-
ture. To represent dependency we will use the fol-
lowing notation tree = {(i, j), · · · }. It means that
the word in position j is the parent of the word in
position i; we use (i,−1) to represent that i is the
root. To represent alignment we will use the follow-
ing notation a = {i-j, · · · }. It means that the word
in the source side position i is aligned to the word in
the target side position j.

By this we mean that, we first transfer the en-
tire high quality (HQ) dependency tree TreeS to
low quality (LQ) side which replaces the original
LQ tree TreeoldT to a transferred tree TreenewT (Sec-
tion 4.2). For each word wi in LQ side sentence,
parent of wi is denoted by winewp after transfer and
wioldp before transfer. This direct mapping method
always transfers source side syntax structure to the
target side by alignment regardless of the possibil-
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Figure 3: An example of different syntax annotation

ity of alignment error or different expression. In
practice, if we test TreenewT in our tree-to-tree sys-
tem, we get about a 2 point reduction in BLEU. As
a result, the second step contains a backstep which
makes some winewp back to wioldp for keeping the
sentence projective. Notice that the original mono-
lingual dependency tree is always projective (Most
parsers give projective results). The worst case is to
let all winewp point back to wioldp , i.e. to keep the
dependency tree structure unmodified (Section 5.2).
In HQ-LQ (input-side has high-quality parser) MT
task, for each training parallel sentence, creating a
combined tree for LQ side is enough. However in
the LQ-HQ (the input-side has Low-Quality parser)
MT task, transferring training data is not enough.
For the input LQ side sentence, it makes no sense
to use the original monolingual LQ parse tree. Thus,
for the third step, we re-train a new LQ side parser
using the combined data (Section 6).

4.2 Transfer Dependencies

Intuitively, mapping a high accuracy syntax parser to
a low accuracy syntax parser will lead to better per-
formance and the success of this approach depends
on the quality of word alignment on a parallel cor-
pus. This Direct Mapping (DM) can be formalized
as below:

Given a sentence pair (S, T ) where S = s1s2...sn
is a sentence of HQ parse side and T = t1t2...tn is
a sentence of LQ parse side, a dependency tree for
S denoted as TreeS = {(si, sj)...} which has been
mentioned before. The new LQ parse tree TreenewT

is transferred from HQ parse tree TreeS as follows.

• one to one case: If si aligns to a unique tj ,
sx aligns to a unique ty, and (si, sx) ∈ treeS ,
push (tj , ty) into treenewT .

• one to many case : If si aligns to tx..ty, then
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take one of them as representative, a tree based
alignment should let tx..ty be a treelet. We take
the root of tx..ty as representative and then per-
form the same steps as in the one-to-one case.
For the node tz other than representative tr, we
simply push (tz, tr).

• many to one case : If si..sj aligns to tx, like
the one to many case, take one of them as a
representative. A tree based alignment should
let si..sj be a treelet, take the root of si..sj as
the representative and then perform the same
steps as in the one-to-one case.

• many to many case: Reduce this to one-to-
many and many-to-one cases, i.e. both side se-
lect a representative and then perform the same
steps as in the one-to-one case.

• unaligned case (HQ side): If si is an unaligned
word, just treat it as non-existent and link two
sides of si. More specifically, if si is not
aligned, (si, sj) ∈ TreeS . and (sk, si) ∈
TreeS , push (sk, sj) into TreeS .

• unaligned case (LQ side): If ti is an unaligned
word, just push (ti, ti + 1) or (ti, ti − 1) into
TreenewT .

Direct Mapping (DM) gives us a simple way of
obtaining dependency tree parsing and there are
many works that investigate these kinds of mapping
and show that they work well. We, however, still
want to test the efficacy of direct mapping. We train
a new parser based on transferred data and show that
it leads to lower parsing score (Section 7.1). 1 This
shows that the DM approach won’t directly improve
the parsing accuracy.

5 Post Transfer Transformations

5.1 Error Analysis

We check the difference between the correct ano-
tation and transferred trees. There are three differ-
ences.

• different annotation criterion on both sides
(false error): Because the labels were designed

1The transferred tree which has been tested in Section 7.1 is
the combined tree after the method in Section 5.2 is applied
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Figure 4: This is an example of alignment error where the
solid line is the correct alignment and the dashed line is
the wrong alignment. It shows that incorrect alignments
lead to parsing error by DM

for a monolingual scenario, there is always a
difference in the annotation criteria. For ex-
ample: Shanghai Industrial Technology school
on Ja and Zh. The gold standard data looks
like: TreeS = {(0, 1)(1, 2)(2, 3)(3,−1)}
TreeoldT = {(0, 3)(1, 3)(2, 3)(3,−1)}, as-
sume alignment is a = {0-0, 1-1, 2-2, 3-
3}. By Direct Mapping, TreenewT =
{(0, 1)(1, 2)(2, 3)(3,−1)} is the same as the
one on the Ja side but completely wrong when
comparing it to the gold standard tree. The
reason is Ja side tends to let words of com-
pound nouns be child-parent pair and Zh tends
to let words of compound nouns be sibling.
We call it false error, though the dependency
score will decrease by comparing it with gold
standard data, it actually helps tree-based trans-
lation system retrieve this Chinese compound
noun better than before because its structure
now is much more similar to the Japanese side.

• alignment error (true error): The direct map-
ping method is highly dependent on alignment.
If alignment is incorrect, direct mapping which
uses this erroneous alignment gives a wrong
dependency result. See Fig.4 for an example.
This is quite critical; originally a tree-to-tree
MT system might reject this wrong alignment
by the distance on tree with feature or criterion
like a child-parent pair in source side should
translate to a child-parent pair in target side.
We now force a child-parent pair to align to a
child-parent pair using DM which will prevent
the tree distance criterion from influencing the
translation accuracy.

• different expression (true error): Sometimes
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Figure 5: This is an example of a different expression where again the solid line is the correct parse and the dashed
line is the wrong parse caused by DM.

the translation is not a direct translation, for ex-
ample a Ja sentence with the meaning ‘ladies
wearing red hats walk around’ will sometimes
be translated to Zh with meaning ‘ladies who
walk around are taking red hats ’. Even though
the alignment is perfect, the direct mapping
method makes the Zh words for ‘ladies’, ‘red’
and ‘hat’ take on child-parent relations which,
ofcourse, is a parsing error as shown in Fig.5.

5.2 Keep the Tree Projective

Error analysis for true and false errors allowed us to
revise our approach to incorporate a criterion projec-
tivity that can distinguish a good mapping between
the true and false errors discussed above. projec-
tivity is a property of parse tree which means there
shouldn’t be any crosses in the tree structure. For
example: TreenewT = {(0, 2)(1, 3)(2, 3)(3,−1)} is
not projective. To be more precise, for two child-
parent pairs (a, b), (c, d), we denote the interval
[a, b](if(a > b), swap(a, b)) as span(a, b). Here
statement (span(a, b) cross span(c, d)) equal(c ∈
[a, b]) and (d /∈ [a, b]). Notice that the root node
is denoted as (c,−1), (d /∈ [a, b]) is always true.
Many alignment errors cases can be detected by the
property of projectivity. For example, in Fig.4, a
parent-child pair (19, 2) created by erroneous align-
ment looks very strange and has a high probability
of having crosses with other dependencies like the
green dependency in the figure.

Many different expression cases can also be de-
tected by the property of projectivity. Review the
example Fig.5 in the previous section. Here child-
parent pair (7,0)hat,ladies is a long distance depen-
dency relation which crosses with other dependency
pairs like (5,-1)talking root.

Although annotation criterion are different, both
of them are reasonable for showing dependency
relations. Thus a mapping one to another still

keeps the tree projective. Consider the exam-
ple mentioned above, Shanghai Industrial Tech-
nology school on JP and ZH. Original mono-
lingual Chinese dependency tree TreeoldT =
{(0, 3), (1, 3), (2, 3)(3,−1)} and transferred tree
TreenewT = {(0, 1), (1, 2), (2, 3), (3,−1)} are
BOTH projective.

Thus keeping the tree projective prevents many
projection errors. Notice that TreeoldT is always pro-
jective. We introduce a back search method which
makes some words relations in TreenewT back to re-
lations in TreeoldT . The pseudo-code shown below:

Algorithm 1 Back Searching
1: len← TreenewT .length
2: for i = 1..len do
3: for j = 1..len do
4: find x s.t. (ti, tx) ∈ TreenewT

5: find y s.t. (tj , ty) ∈ TreenewT

6: if span(i, x) cross with span(j, y) then
7: find z s.t.(ti, tz) ∈ TreeoldT

8: (ti, tx)← (ti, tz)
9: find z s.t.(tj , tz) ∈ TreeoldT

10: (tj , ty)← (tj , tz)

11: if a loop is created then undo

For a non-projective part, which means it creates
cross in the dependency tree, We trust the original
monolingual dependency tree and for projective part
we retain the direct mapping result. More precisely,
with span(i, x) cross with span(j, y), we find z
that (ti, tz) ∈ TreeoldT and substitute (ti, tx) with
(ti, vz). This operation actually moves ti’s parent
back to the state before mapping. Doing the same
thing to tj , we find z that (tj , tz) ∈ TreeoldT and
substitute (tj , ty) with (tj , tz).

For non-aligned word ti, our strategy is a little dif-
ferent. In the direct mapping process, we did not
change the non-aligned word’s dependency because
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we didn’t have any information to decide its parent.
When we encounter non-projecivity on ti, we sim-
ply change ti’s parent to tj which ensures projectiv-
ity. Changing ti’s parent to tj solves the cross be-
tween span(i, x) and span(j, y). In any case we try
to retain its original parent as much as possible.

Sometimes back searching like above leads to
loops in the tree. This happens when other non-
projective parts should be solved before this part.
We check whether a loop exists in the tree after each
back operation to ti,tj and undo the modification
if so. We run several iterations of the procedure
mentioned above till it reaches the worst case which
means reverse TreenewT is the same as TreeoldT .

It is not so simple to test the effectiveness of pro-
jectivity on tasks other than MT. We manually check
the percentage of errors our method has solved by
manually evaluating 50 sentences (Section 7.2).

6 Re-train a New LQ Side Parser

Using the word alignments and original monolin-
gual dependency trees, we successfully create com-
bined trees using the parallel training corpus. As
we have mentioned before, this is enough for the
HQ-LQ MT task but still a bit not enough for LQ-
HQ MT task. For a LQ side sentence as an input,
it makes no sense to use the original monolingual
LQ side parser which now has a different annotation
criterion since it uses the combined trees in training
corpus. Considering we have abandoned the original
dependency tree, we now regard the combined trees
as ‘golden data’ and train a new model with these
‘golden data’ using a LQ side parser. After that, for
an input sentence, we utilize the new parser rather
than the original one.

7 Experiment

7.1 Parsing Accuracy

We conducted a Chinese parsing experiment on sci-
entific domain. The Chinese parser used in our ex-
periment is the SKP parser (Shen et al., 2012).2 As
the baseline parser, we trained SKP with the Penn
Chinese treebank version 5 (CTB5) containing 18k
sentences on news domain, and a in-house tree-
bank which contains about 10k sentences in scien-

2https://bitbucket.org/msmoshen/skp-beta

tific domain, with default parameters. The new com-
bined parser that we proposed used the training data
obtained from the ASPEC Ja-Zh parallel corpus,3

containing 670k sentences. We used a Japanese
parser KNP (Kawahara and Kurohashi, 2006)4 and
the baseline SKP to automatically parse these sen-
tences. We then created combined Chinese depen-
dency trees.5 Finally, we trained a new parser using
these combined Chinese dependency trees with the
same parameters.

As test data we used an additional 1k sentences
from our in-house treebank. Table 1 shows the re-
sults of these two parsers.

Parser UAS Root-Accuracy
Baseline 0.7433 0.6950
Combined 0.5890 0.6140

Table 1: Parsing accuracy

Because we deliberately ignored the annotation
criterion problem and labelled the dependencies of
non-aligned words quite freely, the decrease of ac-
curacy is not surprising (according to us).

7.2 Projectivity for Solving True Errors

In addition, we evaluated our new parse trees in an-
other way. There are two true errors for the DM ap-
proach which have been discussed in Section 5.1,
some of them should be rejected by the property of
projectivity, some of them could not. We randomly
selected 50 sentences to check how many errors of
these two error types have been solved.

Case Solve rate
Alignment error 90%
Different expression 55%

Table 2: The percentage of alignment error and different
expression which has been solved by projectivity

The results are shown in Table 2. We can see
that projectivity is an effective way of addressing the
alignment error problem, but the different expression

3http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
4http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KNP
5We only obtained 419k combined trees, as the rest were

unchanged sentences.
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Figure 6: An example of different expression can’t be detected by projectivity, solid line is the correct parse and the
dashed line is the wrong parse caused by DM.

problem is much harder to detect. Fig 6 shows an ex-
ample of the different expression problem. A possi-
ble solution is make some language based rules like
the word before possessive’s parent is the word after
it.

7.3 Translation

We conducted experiments for Japanese-to-Chinese
(Ja-Zh) and Chinese-to-Japanese (Zh-Ja) translation.
For both tasks, we used the ASPEC Ja-Zh parallel
corpus as training data. We used 2,090 and 2,107
additional sentence pairs for tuning and testing, re-
spectively. In our experiments, we compared the
MT performance of our proposed projection method
with the baseline parser. We used a tree-to-tree sys-
tem KyotoEBMT for our experiments (Richardson
et al., 2014).6 To parse the Chinese and Japanese
sentences, we again used SKP and KNP, respec-
tively.

In order to test our combined tree approach, we
substituted the original SKP parsing results to com-
bined parse trees. We also tested the direct mapping
method which simply transfers the Japanese parse
trees to the Chinese side. In Ja-Zh task, we trained a
new Zh parser by using the combined parse trees.

System Ja-Zh Zh-Ja
Moses 27.25 33.94
KyotoEBMT 29.08 35.10
Direct map 27.28 33.23
combined map 29.89* 35.59*

Table 3: BLEU scores for ASPEC JA-ZH and ZH-JA.
(* denotes that the result is significantly better than ‘Ky-
otoEBMT’ at p < 0.05)

Table 3 shows the results. For reference, we
also show the MT performance of the phrase based

6http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KyotoEBMT)

system Moses, which is based on the open-source
GIZA++/Moses pipeline (Koehn et al., 2007). We
also conduct significance tests which were per-
formed using the bootstrap resampling method pro-
posed by Koehn (2004). The Direct mapping
method which does not use the Chinese parser de-
creases the MT performance. The combined tree
method works pretty well. In the Ja-Zh direction,
it gets a 0.8 BLEU score improvement and 0.5 in
the Zh-Ja direction. The biggest problem for the Zh-
Ja direction is that we have to feed automatic data
to SKP for training a new parser. SKP is designed
to work with manually annotated training data (gold
data set) but not automatically generated training
data. The best evidence is that, if we parse a train-
ing sentence with this parser, the result is quite dif-
ferent with the original training data. For Ja-Zh di-
rection, it is quite straightforward, we just combine
SKP and KNP parsing results to create a Ja like Zh
dependency tree for each training sentence. Com-
bined tree increased the BLEU score but decreased
parsing accuracy since parsing accuracy is tested on
monolingual test data. Lingusitic parse tree struc-
tures are not the most appropriate for a tree-to-tree
MT system.

8 Conclusion and Future Work

In this paper, we have proposed a method to use
both source side and target side parse trees to cre-
ate a combined parse tree which improves the BLEU
score on a tree-to-tree MT system. Transferring
parsing information from a relatively high accuracy
parser on the source language side to the target lan-
guage side with a relatively low accuracy parser con-
strained by projectivity performs well. It not only
fixes the parsing error of the low accuracy side, but
also addresses the problem of different annotation
criteria on both sides.
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We used automatically created, combined parse
tree to train a new parser by using an existing parser.
It is not very appropriate because parsers are de-
signed to train on gold standard data and not auto-
matic data. Though it leads to some positive results,
we think that the quality could be further improved.
Instead of re-parsing the parser, we could also save
the different parts in the combined parse trees, and
apply them to the input sentences. This could be
much more efficient and logical than re-parsing but
a bit difficult when considering issues such as how
to save and how to apply them to the input sentences.
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