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Abstract

Word segmentation is helpful in Chinese nat-
ural language processing in many aspects.
However it is showed that different word seg-
mentation strategies do not affect the per-
formance of Statistical Machine Translation
(SMT) from English to Chinese significant-
ly. In addition, it will cause some confu-
sions in the evaluation of English to Chinese
SMT. So we make an empirical attempt to
translation English to Chinese in the charac-
ter level, in both the alignment model and lan-
guage model. A series of empirical compari-
son experiments have been conducted to show
how different factors affect the performance of
character-level English to Chinese SMT. We
also apply the recent popular continuous s-
pace language model into English to Chinese
SMT. The best performance is obtained with
the BLEU score 41.56, which improve base-
line system (40.31) by around 1.2 BLEU s-
core.
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1 Introduction

Word segmentation is necessary in most Chinese
language processing doubtlessly, because there are
no natural spaces between characters in Chinese tex-
t (Xi et al.,, 2012). It is defined in this paper as
character-based segmentation if Chinese sentence is
segmented into characters, otherwise as word seg-
mentation.

In Statistical Machine Translation (SMT) in
which Chinese is target language, few work have
shown that better word segmentation will lead to
better result in SMT (Zhao et al., 2013; Chang et al.,
2008; Zhang et al., 2008). Recently Xi et al. (2012)
demonstrate that Chinese character alignment can
improve both of alignment quality and translation
performance, which also motivates us the hypothe-
sis whether word segmentation is not even necessary
for SMT where Chinese as target language.

From the view of evaluation, the difference be-
tween the word-based segmentation methods will al-
so makes the evaluation of SMT where Chinese as
target language confusing. The automatic evalua-
tion methods (such as BLEU and NIST BLEU s-
core) in SMT are mostly based on n-gram preci-
sion. If the segmentation of test sets are differen-
t, the elements of the n-gram of test sets will al-
so be different, which means that the evaluation is
made on different test sets. To evaluate the qual-
ity of Chinese translation output, the International
Workshop on Spoken Language Translation in 2005
(IWSLT’2005) used the word-level BLEU metric
(Papineni et al.,2002). However, IWSLT 08 and
NIST 08 adopted character-level evaluation metrics
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to rank the submitted systems. Although there are
also a lot of other works on automatic evaluation of
SMT, such as METEOR (Lavie and Agarwal, 2007),
GTM (Melamed et al., 2003) and TER (Snover et
al., 2006), whether word or character is more suit-
able for automatic evaluation of Chinese translation
output has not been systematically investigated (Li
et al., 2011). Recently, different kinds of character-
level SMT evaluation metrics are proposed, which
also support that character-level SMT may have its
own advantage accordingly (Li et al., 2011; Liu and
Ng, 2012).

Traditionally, Back-off N-gram Language Mod-
els (BNLM) (Chen and Goodman, 1996; Chen and
Goodman, 1998; Stolcke, 2002) are being widely
used for probability estimation. For a better prob-
ability estimation method, recently, Continuous-
Space Language Models (CSLM), especially Neu-
ral Network Language Models (NNLM) (Bengio et
al., 2003; Schwenk, 2007; Le et al., 2011) are be-
ing used in SMT (Schwenk et al., 2006; Son et al.,
2010; Schwenk et al., 2012; Son et al., 2012; Wang
et al., 2013). These works have shown that CSLMs
can improve the BLEU scores of SMT when com-
pared with BNLMs, on the condition that the train-
ing data for language modeling are in the same size.
However, in practice, CSLMs have not been wide-
ly used in SMT mainly due to high computational
costs of training and using CSLMs. Since the using
costs of CSLMs are very high, it is difficult to use C-
SLMs in decoding directly. A common approach in
SMT using CSLMs is the two pass approach, or n-
best reranking. In this approach, the first pass uses a
BNLM in decoding to produce an n-best list. Then,
a CSLM is used to rerank those n-best translations
in the second pass (Schwenk et al., 2006; Son et al.,
2010; Schwenk et al., 2012; Son et al., 2012). Near-
ly all of the previous works only conduct CSLMs on
English, we conduct CSLM on Chinese in this pa-
per. Vaswani et al. propose a method for reducing
the training cost of CSLM and apply it into SMT
decoder (Vaswani et al., 2013). Some other stud-
ies try to implement neural network LM or transla-
tion model for SMT (Gao et al., 2014; Devlin et al.,
2014; Zhang et al., 2014; Auli et al., 2013; Liu et al.,
2013; Sundermeyer et al., 2014; Cho et al., 2014;
Zou et al., 2013; Lauly et al., 2014; Kalchbrenner
and Blunsom, 2013).
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The remainder is organized as follows: In Section
2, we will review the background of English to Chi-
nese SMT. The character based SMT will be pro-
posed in Section 3. In Section 4, the experiments
will be conducted and the results will be analyzed .
We will conclude our work in the Section 5.

2 Background

The ancient Chinese (or Classical Chinese, L& )
can be conveniently split into characters, for most
characters in ancient Chinese still keep understood
by one who only knows modern Chinese (or Written
Vernacular Chinese, & & L) words. For example,
“Z AT, MK &IFEH. 7 is one of the popular
sentences in the Analects (i %), and its correspond-
ing modern Chinese words and English meaning are
shown in TABLE 1. From the table, we can see
that the characters in ancient Chinese have indepen-
dent meaning, but most of the characters in modern
Chinese do not, and they must combine together in-
to words to make sense. If we split modern Chinese
sentences into characters, the semantic meaning in
the words will partially lose. Whether or not this
semantic function of Chinese word can be partly re-
placed by the alignment model and Language Model
(LM) of character-based SMT will be shown in this

paper.

Ancient | Modern English
Chinese | Chinese Meaning
= =A three
A A people
7 373 walk
) AR 24 )
VA — % must
H B be
K A9 my
I # Jf teacher/tutor
% peam Ay there

Table 1: Ancient Chinese and Modern Chinese

SMT as a research domain started in the late
1980s at IBM (Brown et al., 1993), which maps
individual words to words and allows for deletion
and insertion of words. Lately, various research-
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es have shown better translation quality with phrase
translation. Phrase-based SMT can be traced back
to Och’s alignment template model (Och and Ney,
2004), which can be re-framed as a phrase trans-
lation system. Other researchers augmented their
systems with phrase translation, such as Yamada
and Knight (Yamada and Knight, 2001), who used
phrase translation in a syntax-based model.

The phrase translation model is based on the noisy
channel model. Bayes rule is mostly used to refor-
mulate the translation probability for translating a
foreign sentence f into target e as:

argmaxep(e|f) = argmax.p(fle)p(e) (1)

This allows for the probabilities of an LM p(e)
and a separated translation model p(f|e). During
decoding, the foreign input sentence f is segmented
into a sequence of phrases f*. It is assumed a unifor-
m probability distribution over all possible segmen-
tations. Each foreign phrase f; in fi is translated
into an target phrase e;. The target phrases may be
reordered. Phrase translation is modeled by a prob-
ability distribution Q(f;|e;) . Recall that due to the
Bayes rule, the translation direction is inverted.

Reordering of the output phrases is modeled
by a relative distortion probability distribution
d(start;,end;_1), where start; denotes the start
position of the foreign phrase that is translated in-
to the ith target phrase, and end;_; denotes the end
position of the foreign phrase that was translated in-
to the (¢ — 1) — th target phrase. A simple distortion
model d(start;,end;_y) = alsterti—endii—1| with
an appropriate value for the parameter « is set.

In order to calibrate the output length, a factor w
(called word cost) for each generated English word
in addition to the tri-gram LM py s is proposed.
This is a simple means to optimize performance.
Usually, this factor is larger than 1, biasing toward
longer output. In summary, the best output sentence
given a foreign input sentence f according to the
model is:

argmaz.p(elf) = argmaz.p(fle)pr (€)', )

where p(f|e) is decomposed into:

p(filel) = $iQ(file:)d(start;, end;i—1).  (3)
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In this paper, the f stands for English and the e
stands for Chinese. In short, there are three main
parts both in the English to Chinese and Chinese
to English SMT: the alignment p( f|e), the LM p(e)
and the parameters training (tuning). When Chinese
is the foreign language, there is only the alignment
model p(f|e) containing Chinese language process-
ing. Contrarily, when Chinese is the target language,
both the the alignment part p(f|e) and the LM p(e)
will help retrieve the sematic meaning in the charac-
ters which is originally represented by words. So it
is possible that we can process the English to Chi-
nese in character level without word segmentation,
which may also avoid the confusion in the evalua-
tion part as proposed above.

3 Character-based versus Word-based
SMT

The standards of segmentation between word-based
and character-based English to Chinese translation
are different, as well as the standard of the evalua-
tion of them. That is, the test data contains words as
the smallest unit for word-based SMT, and charac-
ters for character-based SMT. So the translated sen-
tences of word-based translation will be converted
into character-based sentence, and evaluated togeth-
er with character-based translation BLEU score for
fair comparison. We select two popular segmenta-
tion segmenters, one of which is based on Forward
Maximum Matching (FMM) algorithm with the lex-
icon of (Low et al., 2005), and the other is based
on Conditional Random Fields (CRF) with the same
implementation of (Zhao et al., 2006). Because most
Chinese words contains 1 to 4 characters, so we set
the word-based LM as default trigram in SRILM,
and character-based LM for 5-gram. All the differ-
ent methods share the same other default parameters
in the toolkits which will be further introduced in
Section 4.

There seems to be no ambiguity in different char-
acter segmentations, however English characters,
numbers and other symbols are also contained in the
corpus. If they are split into “characters” like “F
¥ K @ » X 2 0 07(200 % incre-
mentperyear)or“J o r d a n &£ 1%
X & ¥ 3} & # R{” (Jordan is a great
basketball player), they will cause a lot of misun-
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derstanding. So the segmentation is only used for
Chinese characters, and the foreign letters, numbers
and other symbols in Chinese text are still kept con-
sequent.

Shown in Table 2, the BLEU score of SMT sys-
tem with character-based segmenter is much higher
than both FMM and CRF segmenters. The word-
based English to Chinese SMT system is trained and
tuned in word level and evaluated in character lev-
el, so we use the character-based LM to re-score the
nbest-list of the results of the FMM and CRF seg-
menters. Firstly we convert the translated 1000-best
candidates for each sentence into characters. Then
calculate their LM scores by the character-based
LM, and replace the word-based LM score with
character-based LM score. At last we re-calculate
the global score to get the new 1-best candidate with
the same tuning weight as before. The BLEU s-
core of re-ranked method is slightly higher than be-
fore, but still much less than the result of charac-
ter segmenter. Although we can not conclude the
character-based segmenter is better simply accord-
ing to this experiment, this result gives us the con-
fidence that our approach is reasonable and feasible
at least.

4 Comparison Experiment

We use the patent data for the Chinese to English
patent translation subtask from the NTCIR-9 paten-
t translation task (Goto et al., 2011). The parallel
training, development, and test data consists of 1

million (M), 2,000, and 2,000 sentences, respective-

Iy'.

The basic settings of the NTCIR-9 English to Chi-
nese translation baseline system (Goto et al., 2011)
was followed?. The Moses phrase-based SMT sys-
tem was applied (Koehn et al., 2007), together with
GIZA++ (Och and Ney, 2003) for alignment and
MERT (Och, 2003) for tuning on the developmen-
t data. 14 standard SMT features were used: five
translation model scores, one word penalty score,
seven distortion scores and one LM score. The

'Since we are the participants of NTCIR-9, so we have the
bilingual sides of the evaluation data.

>We are aware that the original NTCIR patentMT baseline
is designed for Chinese-English translation. In this paper, we
follow the same setting of the baseline system, only convert the
source language and the target language.
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translation performance was measured by the case-
insensitive BLEU on the tokenized test data’.

4.1 The Alignment

In this subsection we investigate two factors in the
phrase alignment. Four different kinds of methods
for heuristics and three kinds of maximum length of
phrases in phrase table are used for word alignmen-
t, with other default parameters in the toolkits. The
results are shown in Table 3. The grow — diag —
final — and, which will be set as default without
special statement in the following sections, is shown
better than other settings, and the BLEU score do
not increase as the maximum length of phrases in-
creases.

Alignment BLEU | BLEU
Parameters (dev) (test)
union 42.24 39.33
intersect 40.64 38.08
grow-diag-final 42.70 39.78
grow-diag-final-and | 42.80 40.31
Maximum BLEU | BLEU
Length (dev) (test)
7 42.80 40.31
10 42.78 40.04
13 42.85 40.30

Table 3: Different Heuristics Used for Word Alignment

4.2 The N-gram Language Model

In this part, we will investigate how the factors in the
n-gram LM influence the whole system.

The scale of the training corpus is one of the most
important factors to LM. And “more data is better
data” (Brants and Xu, 2009) has been proved to be
one of the most important rules for constructing a
LMs. First we randomly divide the whole training
sets into 4 parts equally. We build the LM with 1,
2 and 4 parts (i.e. for 1/4, 1/2 and the whole corpus
respectively), with other setting as default. Then, we
add the dictionary information to the LM. The pr s-
tands for the size of the dictionary and the pf stands
for the characters’ frequency in the dictionary. The
results in Table 4 show that using the whole corpus

31t is available at http://www.itl.nist.gov/iad/
mig/tests/mt/2009/
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Segmentation Methods BLEU
FMM Segmenter 34.56
FMM Segmenter + Character-based LM Re-rank | 35.08
CRF Segmenter 38.28
CRF Segmenter + Character-based LM Re-rank 38.78
Character Segmenter 40.31

Table 2: Comparison Between Word-based Translation and Character-based Translation

for language training is necessary and using the dic-
tionary information does not improve the translation
performance.

Size of BLEU | BLEU
The Corpus (dev) (test)
1/4 Corpus 42.30 39.76
1/2 Corpus 42.51 40.19
the whole Corpus | 42.80 40.31
Dictionaries

pr=10k pf=5 42.63 40.01
pr=10k pf=10 42.60 40.17
pr=20k pf=10 42.73 40.02
No Dictionary 42.80 40.31

Table 4: Scale of Corpus for LM

We select the three most popular smoothing al-
gorithms, Witten-Bell, Kneser-Ney (KN), and im-
proved Kneser-Ney (improved KN), and compare
their performance in the character-level English to
Chinese SMT task. As shown in Table 5, when
n is too small , the result is less satisfactory, and
the BLEU score continues increase as n increases.
However, the BLEU score begins to decrease when
the LM becomes too long. The best 9-gram LM with
Witten-Bell smoothing, corresponding to 5-gram to
7-gram in word-based LM, which is the widestly
used in word-bases English to Chinese SMT.

4.3 The Tuning

We have shown that the different lengths of n-gram
LMs make a significant influence in the English to
Chinese translation. The 4-gram BLEU score is
broadly accepted as the evaluate standard when we
tune the other parameters using the minimum error
rate training, which means that the MERT stage will
not stop until it reaches the highest 4-gram BLEU
on the development set. However, the same sentence
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Smoothing n-gram | BLEU | BLEU
Method LM (dev) (test)
Kneser-Ney 9 42.55 39.91
Improved KN | 7 42.95 40.30
Improved KN | 9 42.84 40.55
Improved KN | 11 42.44 40.07
Witten-Bell 7 42.72 40.10
Witten-Bell 9 42.71 40.62
Witten-Bell 11 42.44 39.67

Table 5: Different Smoothing Methods for LM

becomes longer if the character based segmentation
is applied. That is, four words may be segmented
into around 10 characters. Will the system gain a
better performance if the n-gram of BLEU score in
the MERT convergence standard increases as the n-
gram in the LM increases?

To evaluate this hypothesis, the alignment model
is set the same as the best performance in Table 3,
and 5-gram LM with improved KN smoothing is set
for LM. The results in Table 6 show that singly in-
creasing the n-gram of MERT can not improve the
performance of SMT.

n-gram | n-gram BLEU | 4-gram BLEU
MERT | (dev) (test)
4 42.80 40.31
7 25.45 40.30
10 15.02 40.17

Table 6: Different Setting on MERT

4.4 Parameter Combinations

We have investigated how different factors affect the
performance of English to Chinese SMT. However,
most of the other factors are fixed when we discuss
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one single factor. So in this subsection, we analyze
how the combined factors perform in the whole sys-
tem.

Firstly, we combine the parameters of the smooth-
ing methods and the maximum length of phrases to-
gether. The LM is set to 9-gram and grow — diag —
final — and is set for alignment, which has the best
BLEU score in n-gram LM experiments. Other fac-
tors is set as default in the toolkits. The results are
shown in Table 7.

Smoothing Maximum BLEU | BLEU
Method (LM) | Length (align) | (dev) (test)
KN 7 42.55 39.91
KN 10 42.80 40.49
KN 13 42.89 39.93
Improved KN | 7 42.84 40.55
Improved KN | 10 43.00 40.24
Improved KN | 13 40.07 40.56
Witten-Bell 7 42.71 40.62
Witten-Bell 10 42.85 40.06
Witten-Bell 13 42.85 40.09

Table 7: Parameter Combinations of Smoothing Methods
and Maximum Length of Phrase Alignment

Then, the length of n-gram MERT and the differ-
ent order n-gram LM are tuned together. We set the
Improved KN as the smoothing method, and others
as default in the toolkits. The results are shown in
Table 8.

n-gram | n-gram | BLEU | 4-gram BLEU
LM MERT | (dev) (test)
7 4 42.95 40.30
7 7 25.54 39.91
9 4 42.84 40.55
9 7 25.93 40.75
9 10 15.82 40.37
13 7 2541 40.47

Table 8: Parameter Combinations of n-gram LM and n-
gram MERT

At last, the length of n-gram MERT and the s-
moothing methods are tuned together. The LM is
set as 9-gram, the best BLEU score in n-gram LM
experiments, and other factors set as default in the
toolkits. The results are shown in Table 9.

Among different parameters-combined setting,
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Smoothing n-gram | BLEU | BLEU
Method MERT | (dev) (test)
KN 4 42.55 39.91
KN 7 25.33 40.65
Improved KN | 4 42.84 40.55
Improved KN | 7 25.93 40.75
Improved KN | 10 15.82 40.37
Witten-Bell 4 42.71 40.62
Witten-Bell 7 25.45 40.30

Table 9: Parameter Combinations of n-gram MERT and
Smoothing Methods

BLEU score is from 38.08 to 40.75, and the best per-
formance is not gained when all the factors which
singly perform best are put together. The highest
BLEU score occurs when the 9-gram LM, the 7-
gram MERT method and the improved KN smooth-
ing algorithm. This BLEU score is about one per-
cent higher than our baseline. At last, we show three
parameter combinations with their NIST scores that
bring the best performance up to now in Table 10.

4.5 Continues Space Language Model

Traditional Backoff N-gram LMs (BNLMs) have
been widely used in many NLP tasks (Jia and Zhao,
2014; Zhang et al., 2012; Xu and Zhao, 2012).

Recently, Continuous-Space Language Model-
s (CSLMs), especially Neural Network Language
Models (NNLMs) (Bengio et al., 2003; Schwenk,
2007; Mikolov et al., 2010; Le et al., 2011), are ac-
tively used in SMT (Schwenk et al., 2006; Schwenk
et al., 2006; Schwenk et al., 2012; Son et al., 2012;
Niehues and Waibel, 2012). These models have
demonstrated that CSLMs can improve BLEU s-
cores of SMT over n-gram LMs with the same sized
corpus for LM training. An attractive feature of C-
SLMs is that they can predict the probabilities of n-
grams outside the training corpus more accurately.

A CSLM implemented in a multi-layer neural net-
work contains four layers: the input layer projects
all words in the context h; onto the projection layer
(the first hidden layer); the second hidden layer and
the output layer achieve the non-liner probability es-
timation and calculate the LM probability P(w;|h;)
for the given context (Schwenk, 2007).

The CSLM calculates the probabilities of al-
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Factors vs BLEU (1) 40.75 (2) 40.65 (3) 40.62
Maximum Length of Phrases | 7 10 10
Heuristic for Alignment grow-diag-final-and | grow-diag-final-and | grow-diag-final-and
Scales of LM whole whole whole
Dictionary of LM none none none
n-gram of LM 9 9 9
Smoothing of LM Improved KN Kneser-Ney Witten-Bell
n-gram MERT 7 7 4
NIST Score 9.32 9.40 9.23

Table 10: Parameters for TOP Performance

Methods vs BLEU | (1) 40.75 | (2) 40.65 | (3) 40.62
CSLM Re-rank 41.15 41.27 41.18
CSLM Decoding 41.34 41.34 41.57

Table 11: CSLM Re-rank and decoding for TOP Performance

I words in the vocabulary of the corpus given the
context at once. However, due to too high computa-
tional complexity, the CSLM is only used to calcu-
late the probabilities of a subset of the whole vocab-
ulary. This subset is called a short-list, which con-
sists of the most frequent words in the vocabulary.
The CSLM also calculates the sum of the probabil-
ities of all words not in the short-list by assigning a
neuron. The probabilities of other words not in the
short-list are obtained from an Backoff N-gram LM
(BNLM) (Schwenk, 2007; Schwenk, 2010; Wang et
al., 2013; Wang et al., 2015).

Let w;, h; be the current word and history, respec-
tively. The CSLM with a BNLM calculates the prob-
ability of w; given h;, P(w;|h;), as follows:

Pe(wilhi)

weVy Pc(’wlhl)PS(hl) lf w; S ‘/0
P(w;lh;) =
Py(wilhs) otherwise
4)

where V) is the short-list, P,(-) is the probability cal-
culated by the CSLM, > v Pe(w|h;) is the sum-
mary of probabilities of the neuron for all the words
in the short-list, P,(+) is the probability calculated
by the BNLM, and

Pu(hi) = > Py(v|hi). (5)

veVp

We may regard that the CSLM redistributes the
probability mass of all words in the short-list, which
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is calculated by using the n-gram LM.

Due to too high computational cost, it is diffi-
cult to use CSLMs in decoding directly. As men-
tioned in the introduction, a common approach in
SMT using CSLMs is a two-pass procedure, or n-
best re-ranking. In this approach, the first pass uses
a BNLM in decoding to produce an n-best list. Then,
a CSLM is used to re-rank those n-best translations
in the second pass (Schwenk et al., 2006; Son et al.,
2010; Schwenk et al., 2012; Son et al., 2012).

Because CSLM outperforms BNLM in probabili-
ty estimation accuracy and BNLM outperforms C-
SLM in computational time. To integrate CSLM
more efficiently into decoding, some existing ap-
proaches calculate the probabilities of the n-grams
before decoding and store them (Wang et al., 2013;
Wang et al., 2014; Arsoy et al., 2013; Arsoy et
al., 2014) in n-gram format. That is, n-grams from
BNLM are used as the input of CSLM, and the out-
put probabilities of CSLM together with the corre-
sponding n-grams of BNLM constitute converted C-
SLM. The converted CSLM is directly used in SMT,
and its decoding speed is as fast as the n-gram LM.

From the above tables, we find the most impor-
tant parameter for character-based English to Chi-
nese translation is the LM, and other parameters just
have a minor influence. To verify this observation,
we use 9-gram character based CSLM (Schwenk et
al., 2006), with 4096 characters in the short list, the
projection layer of dimension 256 and the hidden
layer of dimension 192 are set in the CSLM exper-
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iments. (1) We add the CSLM score as the addi-
tional feature to re-rank the 1000-best candidates in
the top three performance In Table 10. The weight
parameters were tuned by using Z-MERT (Zaidan,
2009). This method is called CSLM Re-rank. (2)
We follow (Wang et al., 2013)’s method and con-
vert CSLM into n-gram LM. This converted CSLM
can be directly applied to SMT decoding and called
CSLM-decoding.

It is shown in Table 11 that the BLEU score nearly
improve by 0.4 point to 0.6 point (CSLM Re-rank)
and 0.6 point to 0.9 point (CSLM-decoding). This
indicates that the CSLMs affect the performance of
character based SMT in a significant way. This may
indicate that the LM can take part place of the seg-
mentation for character based English to Chinese
SMT. A better character-based English to Chinese
translation can be obtained by building a better LM.

5 Conclusion

Because the role of word segmentation in En-
glish to Chinese translation is arguable, an attemp-
t of character-based English to Chinese translation
seems to be necessary. In this paper, we have shown
why character-based English to Chinese translation
is necessary and feasible, and investigated how dif-
ferent factors perform in the system from the align-
ment, LM and the tuning aspects. Several empirical
studies, including recent popular CSLM, have been
done to show how to determine a optimal param-
eters for better SMT performance, and the results
show that the LM is the most important factor for
character-based English to Chinese translation.
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