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Abstract

In this work, we present a novel way of using
neural network for graph-based dependency
parsing, which fits the neural network into a
simple probabilistic model and can be further-
more generalized to high-order parsing. In-
stead of the sparse features used in traditional
methods, we utilize distributed dense feature
representations for neural network, which give
better feature representations. The proposed
parsers are evaluated on English and Chinese
Penn Treebanks. Compared to existing work,
our parsers give competitive performance with
much more efficient inference.

1 Introduction

There have been two classes of typical approaches
for dependency parsing: transition-based parsing
and graph-based parsing. The former parses sen-
tences by making a series of shift-reduce decisions
(Yamada and Matsumoto, 2003; Nivre, 2003), while
the latter searches for a tree through graph algo-
rithms by decomposing trees into factors. This paper
will focus on graph-based methods, which are based
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on dynamic programming strategies (Eisner, 1996;
McDonald et al., 2005; McDonald and Pereira,
2006). In this recent decade, extensions have been
made to use high-order factors (Carreras, 2007; Koo
and Collins, 2010) in graph models and the high-
est one considers fourth-order (Ma and Zhao, 2012).
However, all those methods usually use sparse indi-
cator features as inputs and linear models to get the
scores for later inference process. They are easy to
suffer from the problem of sparsity, and linear mod-
els can be insufficient to effectively integrate all the
sparse features in spite of various rich context that
can be potentially exploited.

Distributed representations and neural network
provide a way to alleviate such a drawback (Bengio
et al., 2003; Collobert et al., 2011). Instead of high-
dimensional sparse indicator feature vectors, dis-
tributed representations use low-dimensional dense
vectors (also known as embeddings) to represent the
features, and then they are usually used in a neu-
ral network. For example, in the traditional meth-
ods, a word is usually expressed by a one-hot vector;
while distributed representations use a dense vector.
By appropriate representation learning (usually by
back-propagations in neural network), these embed-
dings can replace traditional sparse features and per-
form quite well together with neural network.

In recent years, using distributed representations
and neural network has gradually gained popularity
in natural language processing (NLP) since the pio-
neer work of (Bengio et al., 2003). Several neural
network language models have reported exciting re-
sults for the tasks of machine translation and speech
recognition (Schwenk, 2007; Mikolov et al., 2010;
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Wang et al., 2013; Wang et al., 2014; Wang et al.,
2015). Many other tasks of NLP have also been re-
considered using neural network, the SENNA sys-
tem1 (Collobert et al., 2011) solved the tasks of part-
of-speech (POS) tagging, chunking, named entity
recognition and semantic role labeling.

In this work, we utilize neural network for first-
order, second-order and third-order graph-based de-
pendency parsing, with the help of the existing
graph-based parsing algorithms. For high-order
parsing, it is performed after the first-order parser
prunes unlikely parts of the parsing tree. We use
neural network to learn dense representations for
word, POS and distance information, and predict
how likely the dependency relationships are for a
sub-tree factor in the dependency tree. For unlabeled
projective dependency parsing, we have put a free
distribution of our implementation on the Internet2.

The remainder of the paper is organized as fol-
lows: Section 2 discusses related work, Section 3
gives the background for graph-based dependency
parsing, Section 4 describes our neural network
model and how we utilize it with graph-based pars-
ing and Section 5 presents our experiments, results
and some discussions. We summarize this paper in
Section 6.

2 Related Work

There has been a few of attempts to parse with
neural network. For dependency parsing, (Chen
and Manning, 2014) uses neural network for greedy
transition-based dependency parsing. We explore
graph-based methods in this work, which might be
difficultly utilized with neural network. (Le and
Zuidema, 2014) implements a generative depen-
dency model with a recursive neural network, but
the model is used for re-ranking which needs k-best
candidates.

For constituency parsing, (Collobert, 2011) uses
a convolutional neural network and solves the prob-
lem with a hierarchical tagging process. (Socher
et al., 2010) and (Socher et al., 2013) use recur-
sive neural network to model phrase-based parse
trees, but their methods might be unlikely general-
ized to dependency parsing because a dependency

1http://ronan.collobert.com/senna/
2https://github.com/zzsfornlp/nngdparser

Figure 1: An example dependency tree.

parse tree has no non-terminal nodes while con-
stituency parse trees are derived from the phrases
structure.

Semi-supervised methods usually incorporate
word representations as the embeddings for words in
the projection layer in neural network; they usually
make use of lots of unlabeled data to find the pat-
terns in natural languages. If we utilize pre-trained
word vectors (see in Section 5.1), our models can be
regarded as semi-supervised to some extent. (Koo
et al., 2008) uses Brown clustering algorithm to ob-
tain word representations, but then transforms them
into sparse features as additional features and again
uses the traditional methods; while in neural net-
work models including this work, the embeddings
directly replace sparse features for inputs.

3 Graph-based Dependency Parsing

3.1 Background of Dependency Parsing

Syntax information is important for many other
tasks (Zhang and Zhao, 2013; Chen et al., 2015).
As a classic syntactic problem, dependency pars-
ing aims to predict a dependency tree, which di-
rectly represents head-modifier relationships be-
tween words in a sentence. Figure 1 shows a de-
pendency tree, in which all the links connect head-
modifier pairs. By enforcing that all the nodes
must have one and only one parent and the result-
ing graphs should be acyclic and connected, we can
get a directed dependency tree for a sentence (we
usually add a dummy node 〈root〉 for the sentence
as the highest level node).

Labels or dependency category can also be de-
fined for the links in the dependency tree, however,
this work will focus on unlabeled dependency pars-
ing, because once the parsing tree has been built, la-
beling can be very effectively performed. Most de-
pendency trees for most treebanks follow a useful
constrain that is called projectiveness, i.e., no cross
links exist in the tree. In treebanks for major lan-
guages such as English, nearly all sentences are pro-
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Figure 2: The decompositions of factors.

jective. Therefore this work also considers projec-
tive dependency parsing only.

3.2 Graph-based Methods and their
Decompositions

In graph-based methods, dependency trees are de-
composed into specific factors that do not influence
with each other. Each factor, usually represented by
a sub-tree, is given a score individually based on its
features. The score for a whole dependency tree T
is the summation of the scores of all the factors:

Scoretree(T ) =
∑

p∈factors(T )

Scorefactor(p)

According to the sub-tree size of the factors, we
can define the order of the graph model, some of
the decomposition methods are shown in Figure 2.
As the simplest case, the first-order model just con-
siders sub-tree factor of single edge and its score
is obtained by adding all the scores of the edges.
For second-order models, another node is added into
the factor, which can be either sibling or grandpar-
ent. For third-order models, the simplest form is
the grand-sibling decomposition, which adds both
sibling and grandparent nodes. Existing work also
applied various decompositions, such as third-order
tri-sibling (Koo and Collins, 2010) which considers
two siblings of the modifier and fourth-order grand-
tri-sibling (Ma and Zhao, 2012) which adds a grand-
parent node on tri-siblings.

For the sake of simplicity and the convenient use
of neural network, we only consider four models dis-
cussed above (the sub-tree patterns of their factors
are also shown in Figure 2). The notations for the
four models are defined as follows:

• o1, first-order model
• o2sib, second-order model with sibling nodes
• o2g, second-order model with grandparent nodes
• o3g, third-order model with both sibling and grand-

parent nodes

3.3 Parsing Algorithms

Graph-based methods usually need to use dynamic
programming based parsing algorithms, which make
use of the scores of sub-trees for larger sub-trees
in a bottom-up way. These algorithms solve the
inference problem, that is, how to get an optimal
tree given the scores for the parts. Our proposed
parsers also take these algorithms as backbones and
use them for inference.

In the traditional methods, scores are usually ob-
tained directly from a linear model. In the learn-
ing phase, parameter estimation methods for struc-
tured linear models may adopt averaged perceptron
(Collins, 2002; Collins and Roark, 2004) and max-
margin methods (Taskar et al., 2004).

Still using all the existing parsing algorithms, this
work focuses on improving scoring for the factors.
In detail, our work uses neural network to deter-
mine the scores. Nevertheless the traditional meth-
ods might be difficultly extended to neural network
because of the non-linearity. Therefore, we do not
directly obtain scores from neural network. Instead
we utilize a probabilistic model and obtain scores
by some transformations, and then use these exist-
ing parsing algorithms for inference.

4 Neural Network Parsers

4.1 The Probabilistic Model

For graph-based dependency parsing, it is not
straightforward to extend the linear models to the
more powerful nonlinear neural network, because
we need to figure out the scores for the factors of
the tree, which are not specified in the original tree-
bank. That is, we only know which factors are in the
correct parsing tree, but there are no natural ways to
indicate how they are scored; the only intuition is to
give high scores to the right factors and low scores
to the wrong ones.

In this work, a simple probabilistic model is
adopted for the neural network parsers. It is one of
Eisner’s models (Eisner, 1996). Precisely, Eisner’s
model A is chosen and slightly modified for scor-
ing. The model describes bi-gram lexical affinities,
and it gives each possible link an affinity probability.
The final probability of drawing a parsing tree for a
sentence is the product of all the affinity probabili-
ties. The original model also considers probabilities
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of words and tags and its formula is given as follows:

Pr(words, tags, links)

=Pr(words, tags)·Pr(links present or not|words, tags)

≈Pr(words, tags)·
∏

1≤h,m≤n

Pr(Lhm|tword(h), tword(m))

Unlike the original model, we determine only the
probability for the parsing tree (the existence of the
links):

Pr(T |S) =
∏

0≤h≤length(S)
0<m≤length(S)

Pr(Lhm|context(h,m))

Here Lhm is a binary variable with Bernoulli distri-
bution which means whether node h is the head of
node m and context(h,m) means the context of the
two nodes which includes words, POS tags and dis-
tance.

When looking for the best tree, we simply find
the tree with highest probability (we use logarithmic
form for more convenient computations). Consider-
ing the single-headed constrain for dependency tree
construction, if we assign 1 toLHm, which makesH
the parent of m, we must assign 0 to all other Lhm,
h means all the nodes that are not equal to H . The
logarithmic probability can be rewritten as follows:

log(Pr(T |S)) =
∑

0<m≤length(S)

(
log
(
Pr(LHm = 1)

)
+

∑
0≤h≤length(S)

h 6=H,h6=m

log
(
Pr(Lhm = 0)

))

Here H represents the real parent node of node m.
The formula is in the form of summation of the fac-
tor scores, which are defined as:

Score(H,m) = log
(
Pr(LHm = 1)

)
+

∑
0≤h≤length(S)

h6=H,h 6=m

log
(
Pr(Lhm = 0)

)
After defining the score of each dependency fac-

tor, we can apply the scores to the existing parsing
algorithms (Eisner, 1996; McDonald et al., 2005).

4.2 High-Order Parsing
We now generalize the model to high-order parsing.
In the first-order model, we define probabilities for

the head-modifier pair, which is the factor for first-
order parsing. Naturally, we can define probabilities
for high-order factors. The probability of a parse
tree is the product of all its factors (either existing
ones or wrong ones), the probability for one factor is
again a binary value which means whether the factor
exists in the dependency tree.

Using single-headed constraint again, for all the
factors with the same node as the children, only one
can exist in a legal parsing tree. The similar trans-
formations can be performed and then again we will
take the transformed scores as inputs to the corre-
sponding parsing algorithms.

We describe the high-order extension by taking
the o2g model as an example and other models can
be handled in a similar way. We will use the simi-
lar notations: Lghm is the binary variable that indi-
cates the factor with node g as grandparent, node h
as head and node m as modifier exists in the parse
tree. We continuously use H as the parent of m and
G as its grandparent so that LGHm is 1 (representing
an existing factor) in the parser tree. The logarithmic
probability can be given by the following equation:

log(Pr(T |S)) =
∑
g,h,m

Pr(Lghm|context(g, h,m))

=
∑

0<m≤length(S)

(
log
(
Pr(LGHm = 1)

)
+

∑
h,g

h6=H,g 6=G
h6=m,g 6=m

log
(
Pr(Lghm = 0)

))

4.3 Neural Network Model

Now we adopt feed-forward neural network to learn
and compute the probability for a factor. The inputs
for the network are features for a factor such as word
forms, POS tags and distance, and the output will be
the probability that the factor exists in the parse tree.
Figure 3 shows the structure of our neural network
for the o2g model, the networks for other models
will be similar.

For the architecture of the neural network, as
usual, the first layer is the projection layer or the em-
bedding layer, which performs the concatenation for
the embeddings. All features are treated equally and
mapped to embeddings of the same dimension. So,
the embedding or projection matrix E ∈ Rd×N in-
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Figure 3: The structure of neural network for o2g model for an example input factor “cake→ on→ table”. Here we
only demonstrate the case of a three-word window.

cludes the embeddings for features, where d is the
dimension for the embedding, N is total number of
possible features.

For the rest of the network, it can be viewed as
a fully-connected feed-forward neural network with
two hidden layers and a probabilistic output layer
(we use a two-way softmax output unit to compute
the probability). For the hidden layers, we use hy-
perbolic tangent as activation function.

The training objective is to maximize the log-
arithmic probability of parse trees with an L2-
regularization term to avoid over-fitting, which
equals to minimizing the cross-entropy loss with L2-
regularization:

L(θ) = −
∑
S

log
(
Pr(T |S)

)
+
λ

2
· ‖θ‖2

Here θ means parameters of the neural network and
λ is the hyper-parameter for weight decay. We ini-
tialize all the weights with random values and use
mini-batch stochastic gradient descent for training.

4.4 Feature Sets

We utilize three kinds of features:

• Word forms (inside a specified sized window)

• POS tags (for each word)

• Distance (to the node’s parent in the factor)

Using embeddings and neural network, we only
need to provide unigram features, which will be
mapped to embeddings in the neural network. The
connections between features will be exploited by
the non-linear computations of the neural network.
Those three kinds of features are treated in the

Features for the head node:
wh−1, wh, wh+1; th−1, th, th+1; dg,h
Features for the modifier node:
wm−1, wm, wm+1; tm−1, tm, tm+1; dh,m
Features for the grandparent node:
wg−1, wg , wg+1; tg−1, tg , tg+1

Table 1: Features for the o2g model (with three-word
windows). w: words, t: POS tags, d: distance. +1 and -1
means neighboring indexes.

same way as strings in the vocabulary, and special
prefix strings are added to POS and distance fea-
tures to differ them from word features (“POS ” and
“ distance ” respectively).

Again, take the situation for o2g model as an ex-
ample, there are three nodes in a factor: g for grand-
parent, h for head and m for modifier. We show
the features in Table 1 when considering three-word
window, there will be three word forms and three
tags for each node, h and m both have one distance
feature while g does not have one because its parent
is unknown at this time. In fact, larger-sized context
can be included and a seven-word window is actu-
ally considered for later experiments.

4.5 Integrating Lower-order Models for
Higher-order Parsing

Following standard practice for high-order models
(McDonald and Pereira, 2006; Carreras, 2007; Koo
and Collins, 2010), we integrate the lower-order
scores into the higher order parsing for better perfor-
mance. For o2sib and o2g models in this work, we
integrate the scores computed from the first-order
model into second order factors. And for o3g model,
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two lower-order scores are integrated. Specifically,
the score for the factor (g, h, s,m) will include the
lower-order scores of o1 and o2sib in addition to
the third-order score o3gScore(g, h, s,m) from o3g
model. The integration of the scores can be shown
by the following equation:

Score(g, h, s,m) = o1Score(h,m)

+ o2sibScore(h, s,m)

+ o3gScore(g, h, s,m)

More importantly, we may let the first-order
model to serve as an edge-filter for high-order pars-
ing. This type of pruning has been used by many
graph-based models (Koo and Collins, 2010; Rush
and Petrov, 2012) to avoid too expensive operations
in high-order parsing. For our model, we utilize
our own first-order neural network model which will
produce the probabilities for all the edges in the
graph. We simply set a pruning threshold so that
all edges whose probabilities are under the thresh-
old will be discarded for high-order parsing.

4.6 Efficient Neural Network Computation
This subsection introduces two techniques to speed
up neural network computation.

Efficient computation strategies have been ex-
plored extensively for neural network language
models (Morin and Bengio, 2005; Mnih and Hinton,
2008; Vaswani et al., 2013). These models consider
speeding up the output softmax layer which contains
thousands of neurons. However, it is not the case for
our neural network as the output layer of our net-
work only has two neurons. Main computation cost
in our network is from the first hidden layer, which
needs matrix multiplications and the hyperbolic tan-
gent activation calculations for the hidden neurons.

Similar to some previous work (Devlin et al.,
2014; Chen and Manning, 2014), we apply the pre-
calculation strategy to speed up the most concerned
computation. This can be implemented as calculat-
ing a lookup table for the first hidden layer (val-
ues before computing activation function), which
can replace the operations of the looking-up for em-
bedding layer and the matrix multiplication for sec-
ond layer (first hidden layer after). With the pre-
calculation table, we only need to look up the corre-

#Number of sentences
Corpus Train Dev Test

PTB 39832 1700 2416
CTB 16091 803 1910

#Number of tokens
Corpus Train Dev Test

PTB 950348 40121 56702
CTB 437990 20454 50315

Table 2: Statistics for the data sets for dependency pars-
ing.

sponding matrix multiplication results for each posi-
tion’s input and add them together to get the values
for the first hidden layer.

Another technique is to pre-calculate a hyperbolic
tangent table, which will replace the computation for
the activation function with a table looking-up pro-
cess.

5 Experiments and Discussions

The proposed parsers are evaluated on English
Penn Treebank (PTB3.0) and Chinese Penn Tree-
bank(CTB7.0). For all the results, we report unla-
beled attachment scores (UAS) excluding punctua-
tions3 as in previous work (Koo and Collins, 2010;
Zhang and Clark, 2008). In Table 2, we show statis-
tics of both treebanks.

For English, we follow the splitting conventions,
using sections 2-21 for training, 22 for developing
and 23 for test. We patch the Treebank using Vadas’
NP bracketing4 (Vadas and Curran, 2007) and use
the LTH Converter5 (Johansson and Nugues, 2007)
to get the dependency treebank. We use Stanford
POS tagger (Toutanova et al., 2003) to get predicted
POS tags for development and test sets, and the ac-
curacies for their tags are 97.2% and 97.4%, respec-
tively.

For Chinese, we follow the convention described
in (Zhang and Clark, 2008). The dependencies are
converted with Penn2Malt tool6. As in previous
work, we use gold segmentation and POS tags.

For both treebanks, all the graph-based parsers

3Punctuations are the tokens whose gold POS tag is one of
{“ ” : , .} for PTB and PU for CTB.

4http://sydney.edu.au/engineering/it/∼dvadas1
5http://nlp.cs.lth.se/software/treebank converter
6http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html

PACLIC 29

119



Initialize Source UAS
random – 91.79
SENNA7 Collobert et al. (2011) 91.75
GloVe8 Pennington et al. (2014) 91.73
word2vec9 Mikolov et al. (2013) 91.81

Table 3: Accuracies for different initializations, with
first-order models on dev set.

run on the same machine with Intel Xeon 3.47GHz
CPU using single core.

5.1 Different Embedding Initializations

We initialize the embedding matrix (only the parts
for the embeddings of words) with some trained
word embeddings or word vectors as shown in Table
3. Compared to the random initialization method,
using pre-trained embeddings does not bring too sig-
nificant improvements. We contribute this mostly to
already large enough training set. In fact, the num-
ber of the training samples fed to the network is over
20 million. Another possible reason is that the em-
bedding initialization only works for word form fea-
tures and other features such as POS tags and dis-
tance will have to be initialized with random val-
ues. Those two types of initializations existing in
the same space may cause possible inconsistence.
Based on the above empirical results and compari-
son, we will only use random initialization for our
parsers.

5.2 Pruning

For high-order models, their full training can be
computationally expensive or even impossible, so
we must prune unlikely dependencies as we stated
before in Section 4.5. We use a simple strategy by
setting a fixed probability threshold and the results
of different thresholds are shown in Table 4. In this
table, the notations are defined as the following:

• Wt = %edges wrongly pruned in training set

• Wd = %edges wrongly pruned in dev set

• #inst = number of instances for one iteration

• Time = time for one iteration

• Acc. = UAS on dev set

With a large threshold, we might prune some cor-
rect dependencies, but if the threshold is set smaller,
more incorrect dependencies will remain and the

Threshold Wt Wd #inst(M) Time(min.)Acc.
0.01 0.47 1.41 315 29 92.41

0.001 0.13 0.58 764 65 92.47
0.0001 0.02 0.13 2591 220 92.43

Table 4: Effects of pruning methods with different thresh-
olds (on English dev set with the o2sib model).

training will be more expensive. Even though those
wrongly pruned dependencies are allowed, their
scores are also too low to influence the inference.
A threshold of 0.001 is finally chosen for other ex-
periments in this work.

5.3 Main Results

As for detailed neural network setting, we use em-
beddings of 50 dimensions, and the size of the two
hidden layers are 200 and 40, respectively. We ini-
tialize the learning rate as 0.1. After each iteration,
the parser is tested on the development set and if the
accuracy decreases, the learning rate will be halved.
We train the models for 10 iterations and select the
ones that perform best on the development set.

For the inputs, we consider a seven-word win-
dow. Notice that only with distributed represen-
tations, can we incorporate such very-long-context
features. We ignore the words that occur less than 3
times in the training treebank and use a default token
to represent unknown words.

Our evaluations will follow the setting in (Chen
and Manning, 2014), which reported results of the
transition-based neural network parser. For graph-
based parsers, in order to get exact comparisons be-
tween traditional methods and neural network meth-
ods, we run the traditional graph-based parsers un-
der the same executing environment as our parsers.
In detail, MSTParser10 for o1 and o2sib models and
MaxParser11 (Ma and Zhao, 2012) for o2g and o3g
models are respectively used for comparison. Notice
that in recent years, there have been plenty of graph-
based parsers which utilize various techniques and
obtain state-of-art results (Rush and Petrov, 2012;
Zhang and McDonald, 2012), however, they will not
be included in the comparisons for the reason that
we only concern about basic graph-based parsing al-

10http://sourceforge.net/projects/mstparser/
11http://sourceforge.net/projects/maxparser/, this is a C++

implementation for several high-order graph-based parsers
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Parser UAS Root CM Speed
o1-nn 91.77 96.61 35.89 150
o2sib-nn 92.35 96.40 39.86 109
o2g-nn 92.18 96.85 38.45 89
o3g-nn 92.52 96.81 41.10 38
o1-Mst 91.31 95.12 36.67 18
o2sib-Mst 91.99 95.90 39.74 14
o2g-Max 92.12 96.03 40.11 2
o3g-Max 92.60 96.31 42.63 0.3
transition 92.0 – – 1013

Table 5: Results on PTB, the English treebank.

Parser UAS Root CM Speed
o1-nn 83.59 76.86 26.60 112
o2sib-nn 86.00 77.59 31.94 70
o2g-nn 84.13 77.75 27.59 49
o3g-nn 86.01 78.06 31.88 11
o1-Mst 83.31 71.57 27.49 9
o2sib-Mst 85.34 75.60 32.98 8
o2g-Max 84.96 76.32 31.94 1
o3g-Max 86.41 78.22 34.82 0.1
transition 83.9 – – 936

Table 6: Results on CTB, the Chinese treebank.

gorithms.

We report three accuracy metrics, UAS, Root
(percentage of the root words correctly identified),
CM (complete rate, percentage of sentences for
which the whole tree is correct) and Speed (num-
ber of sentences per second). For Chinese, the UAS
and CM both consider root words.

Tables 5 and 6 show the results for PTB and CTB.
As for name suffix in the tables, nn means our neu-
ral network graph-based parsers, Mst means Mst-
Parser, Max means MaxParser, transition means
the transition-based neural network parser (Chen
and Manning, 2014).

From the results, we can see that our parsers can
get similar or even better results compared to the
traditional graph-based models of the correspond-
ing orders. In addition, our speed is faster (notice
that even our o3g parser is faster than the tradi-
tional first-order graph-based parser). Compared to
the transition-based neural network parser, although
our parsers are not that fast (transition-based parsers
usually have O(n) time complexity), they give better
performance in accuracies.

5.4 Discussions
We find that integrating lower-order models into
high-order parsing leads to better results. Although
the high-order factors already include the lower-
order parts, it might be hard for the neural network
to decide whether the whole factor is correct. Dur-
ing training, we specify a factor as a positive sample
only if all the dependencies in it are correct because
we only do a binary classification. This might be the
limitation for our high-order model and might ex-
plain the reason why some of our high-order parsers
do not surpass traditional ones in accuracy, we might
need more appropriate object functions to improve
its learning.

Compared to the features of traditional methods,
the only information beyond the proposed feature set
is the words that fall out of the windows between
the nodes in the factor (previously called in-between
features) because so far we only use fixed-size inputs
for the feed-forward neural network. Extra opera-
tions for embedding vectors (like adding embedding
vectors) and other forms of neural networks (such
as convolutional neural network which can consider
the context of a whole sentence) might be explored
in the future.

6 Conclusions

In this paper, we show a way to use neural network
for graph-based dependency parsing and the method
is also suitable for high-order parsing. We show
that using distributed representations for neural net-
work to replace traditional sparse features in tradi-
tional graph models can be suitable for dependency
parsing, even though only using a feed-forward net-
work. From the evaluation results and comparison
with existing models, we show that the proposed
parsers get good results with quite efficient infer-
ence even though graph-based models usually need
at least cubic-time for inference.
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