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Abstract. Two problems related to the analysis of noun phrases in which demonstratives oc-
cur are discussed: (1) it is shown that there exists an infinite number of syntactically complex
demonstrative noun phrases and thus an infinite number of noun phrases which are neither
purely referential not purely quantificational, (2) some problems concerning the semantic
role of the common noun to which demonstrative apply can be treated within the generalised
quantifier theory. This can be done using the distinction between sortally inherent and sortally
not inherent quantifiers.
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1 Introduction

Usually when philosophers talk about ”complex demonstratives” they talk about noun phrases of
the form this/that CN, where CN stands for a common noun, possibly complex (Borg, 2000; Dever,
2001; King, 2001). There has been much debate recently on the semantic and pragmatic status of
such constructions and their relation to other noun phrases in NLs. Some theorists (Braun,1994)
claim that such expressions are directly referential in the sense of Kaplan. This means that strictly
speaking they are not quantificational and are similar to other referential noun phrases. Other
researchers take an opposite view: complex demonstratives are essentially quantificational and
thus belong to the larger class of quantificational noun phrases (King, 2001). Arguments of King
are criticised in (Altshuler, 2007). There are also views which although compatible with the
demonstrative and quantificational positions, present complex demonstratives in a different light.
Thus Roberts (2002) claims that they are just definites.

Of course the discussion of demonstratives is unavoidably related to other problems in natural
language semantics. One of the problems in the focus of the discussion concerning complex
demonstratives is the semantic status of the common noun CN. In particular most researchers
are concerned with the question of whether the sentence of the form This CN VP, completed
by speaker demonstration, expresses a proposition if the object demonstrated does not have the
property expressed by CN. Furthermore, is this situation similar to the more general situation of
non-expressibility of proposition due to presupposition failure?

I will leave aside many of the problems which the above debate brings up. The purpose of this
article is twofold. First, I want to point out that from the empirical point of view the way philoso-
phers talk about complex demonstratives is very restricted. I will show that natural languages use
the usual means they have at their disposal to form syntactically complex expressions in forming
syntactically complex demonstratives. It follows from this observation that the class of complex
demonstratives that one has to consider is much larger than the class considered by philosophers.

Secondly, I want to apply some results from the generalised quantifier theory to deal with the
problem of the semantic status of the common noun in the subject NP in which a demonstrative
occurs. In particular I will use the distinction between sortally inherent and not sortally inherent
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quantifiers to deal with this problem (cf. Keenan, 2000). The proposed analysis will apply to the
whole class of syntactically complex demonstratives.

In the next section I show why and how the class of complex demonstratives should be ex-
tended. Then, after presenting in the next section some formal tools from generalised quantifiers
theory I apply some results from this theory to the discussion of the semantic status of the common
noun.

2 Syntactically complex demonstratives

The way philosophers talk about complex demonstratives is very restrictive. One of the obvious
properties of natural languages is the possibility their syntax offers to form more and more complex
expressions from simpler ones and in a systematic way. One of the simplest means to do this
is to make use of Boolean connectors. It has been shown already some time ago (Keenan and
Faltz, 1985) that major grammatical categories are syntactically Boolean in the sense that it is
possible to produce an infinity of members of a given category just by using Boolean connectors
applied to members of the same category. Boolean machinery is not the only way to obtain similar
results. Another way to do this is by modification, that is by successive application of one or
many modifiers to a specific argument. Thus we can apply a simple adverb to a verb phrase,
possibly complex (e.g., resulting already from a Boolean operation) to obtain by modification a
more complex verb phrase. Similarly we can first apply a Boolean binary connective to obtain a
complex adverb (which is a verb phrase modifier) and then apply this complex verbal modifier to
a verb phrase.

It can be easily shown that the two ways to compose syntactically complex expressions of a
given category apply also to demonstratives. To illustrate this I will use basically the demon-
strative this ignoring for the moment the philosophers distinction between simple and complex
demonstratives.

One observes first that there are simple Boolean compounds of this demonstrative. Thus we
have this and this, this or this, this but not this. We also have not this alone even if this phrase
may sound not very grammatical. This ”light ungrammaticality” is similar to the one we have with
many functional expressions (in particular determiners) which not always can be easily negated
on the surface. Semantically, as we will see, there does not seem to be any particular problem with
such negated demonstratives.

We also notice that such Boolean compounds of ”pure demonstratives” can Booleanly combine
with non demonstrative NPs to hold syntactically complex (demonstrative) NPs . Thus we have
Leo and this, (as in I hate Leo and this), Lea but not this, some logicians but not this, most
philosophers but not this one, this but not this neither most dogs, this but no artichoke, between
six and ten Latin letters but not this, etc.

Finally one observes that the prototypical demonstrative this can be modified in various ways.
This is shown by the following examples: only this, not only this, even this, also this, at least this,
at most this, let alone this, in particular this, etc. Of course such modified demonstratives can
Booleanly combine with other demonstratives or with non demonstrative NPs. Thus we have not
only not this let alone this, some students and in particular this one, this and also this but not this,
this and even this, etc.

The final empirical observation concerning complex demonstratives is related to various com-
plex determiners in which demonstratives can occur as essential parts making them thus demon-
strative as well . Let me first quickly describe some complex determiners in a general way, without
insisting on the presence of demonstratives in them.

There exist in English various complex determiners which can be called exclusion and inclusion
determiners. They have the following form: Det... conn NP, where conn is a specific connector.
In the case of the exclusion determiners, the connector is except. There can be, however many

332     Regular Papers



other connectors of this type (Zuber, 1998). For instance the following connectors can be used
to form complex determiners: including, in addition to, besides, apart from, etc. Here are some
examples of complex NPs in which complex determiners with such other connectors are used:
some students, including Leo; most teachers, including Leo and Lea; all philosophers, in addition
to Fido; between five and ten dogs, in addition to four cats; five other logicians besides Leo, etc.
We observe now that the NP above, the second argument of the connector conn can be replaced by
a demonstrative this (one). This leads to the construction of the following syntactically complex
demonstratives determiners; Every... except this (one), most ..., including this, five... in addition to
this, etc. moreover, the NP above can also be replaced by a ”booleanly” complex demonstrative
leading to the complex demonstrative determiners like Most .... , including Leo and this(one),
every..., except Leo and this(one), etc.

Notice that inclusion and exclusion determiners are more than just Boolean complexes. For
instance every student except this one is not a Boolean combination of every student and this
student. Similarly five students, including Leo is not a conjunction of five students with Leo (the
student) (Zuber, 1998).

As the above examples show demonstrative determiners can occur as parts of other determiners
giving thus rise to a non-trivially infinite class of complex demonstrative determiners and thus
of complex demonstrative NPs. It follows from this in particular that, contrary to what some
philosophers have been claiming, there are many NPs which are quantificational and referential
at the same time. This means that no claim about demonstratives can be taken seriously if it
does not treat jointly syntactically complex demonstratives and (nominal) determiners. I want to
show that the semantics of determiners in general as constructed in generalised quantifier theory
in conjunction with the Boolean semantics offers better solutions to various problems concerning
demonstratives.

3 Formal preliminaries

Unary determiners, members of DET1, are expressions of category NP/CN that is they are
functional expressions which take one common noun as argument and give a NP as result. The
resulting NPs being of the form Det CN will be called DPs, or determiner phrases. We will limit
our discussion NP s which occur in subject position of sentences. Syntactically they are functional
expressions of category S/V P (functional expressions which take verb phrases as arguments and
form with them sentences). We can thus say that we will consider sentences of the form Det CN
VP.

Semantically sentences of the above form be interpreted by (logical) sentences D(S)(P ),
where D is the denotation of Det, S is the denotation of the CN and P is the denotation of the VP.
If we interprete verb phrases extensionally as denoting sets then NP s and thus determiners de-
note functions taking sets onto truth-values. This means that NP s denote sets of sets. Since such
functions take as possible argument one set they are sometimes called (generalised) quantifiers of
type 〈1〉. This is true even of denotations of proper nouns.

The determiner Det denotes the function D which takes two sets, S and P as arguments and
gives a truth value as result. In that sense determiners denote quantifiers of type 〈1, 1〉. Since
a determiner takes a common noun to give an NP we can also consider, equivalently, that a
determiner denotes a function which takes sets as arguments and gives sets of sets as results.

Type 〈1, 1〉 quantifiers form a Boolean algebra (Keenan and Stavi, 1986). What is interesting,
however, is the fact that in general they form proper sub-algebras of the algebra formed from the
set of all relevant functions. In other words various types of quantifiers can obey some common
general constraints which are of a non logical nature and which make them thus different from
logically possible quantifiers. Let us look at some of such properties and make at the same time a
classification of unary determiners.

PACLIC 24 Proceedings     333



An important class of unary determiners is the class of those determiners which denote the
conservative functions CONS. By definition F ∈ CONS iff for any set X, Y, Z if X ∩ Y =
X ∩ Z then F (X)(Y ) = F (X)(Z). Equivalently F is conservative iff for any set X, Y we
have F (X)(Y ) = F (X)(X ∩ Y ). Conservative functions form a Boolean algebra with Boolean
operations defined pointwise. A great majority of unary determiners are conservative in the sense
that they always denote conservative functions.

The algebra of CONS has two important sub-algebras: the algebra INT of intersective func-
tions and the algebra CO − INT of co-intersective functions (Keenan, 1993). By definition
F ∈ INT iff for any set X, Y,W, Z if X ∩ Y = W ∩ Z then F (X)(Y ) = F (W )(Z). Similarly
F ∈ CO − INT iff for any set X, Y,W,Z if X − Y = W − Z then F (X)(Y ) = F (W )(Z).
Intersectivity and co-intersectivity are strict sub-properties of conservativity. Roughly speaking if
the denotation D of a determiner is a conservative function then to decide whether D(A)(B) is
true one has to look only at the intersection of A with B or the intersection of A with B′ (and, in
contradistinction with other logically possible quantifiers it is not necessary to look at the comple-
ment of A). When D is intersective we have to look at the intersection of A with B in order to
evaluate the truth of D(A)(B). Similarly if D is co-intersective we need to look at the intersection
of A with B′.

One observes that intersective functions are symmetric, that is if F is intersective then
F (X)(Y ) = F (Y )(X) for any X, Y ⊂ E. Co-intersective functions are not symmetric but they
are contrapositional (Zuber 2005): if F is co-intersective then F (X)(Y ) = F (Y ′)(X ′) (where
X ′ is the Boolean complement of X).

Algebras INT and CO−INT have interest in their own. It can be shown that any conservative
determiner is a Boolean combination of elements of INT and elements of CO − INT (Keenan
1993). One can also show that the algebras INT and CO − INT are isomorphic to the algebra
DNP (that is the algebra of type 〈1〉 quantifiers). The isomorphism associates with the intersective
(or co-intersective) type 〈1, 1〉 quantifier F the type 〈1〉 quantifier Q in such a way that Q = F (E),
where E is the unit (one) element of the denotational algebra DCN , and can be expressed as ”being
an object”. So in particular the quantifier SOME is associated to SOMETHING and EV ERY
is associated to EV ERY THING.

Functions in INT and in CO − INT are important because of the following property
important for our analysis to come: they are the only conservative quantifiers sortally reducible.
To understand what this means consider first the following sentences:

(1a) Some philosophers are logicians.
(1b) Some individuals are such that they are philosophers and logicians
(2a) Every philosopher except Leo is a logician.
(2b) Every individual except Leo is such that if it is a philosopher then it is a logician

Sentences in (1a) and (1b) are logically equivalent. One can also check that this is true of (2a)
and (2b). These equivalences say that for some quantifiers of type 〈1, 1〉 (in this case for SOME
and for EV ERY...exceptLeo) one can eliminate the restriction on the domain of quantification
imposed by the first argument and compensate it by making the second argument Booleanly more
complex. Quantifiers for which such elimination is possible are sortally reducible. On the other
hand quantifiers for which such elimination is not possible (like MOST for instance) are inher-
ently sortal.

More precisely: A type 〈1, 1〉 quantifier F is sortally reducible iff there is a binary Boolean
function h (taking sets as arguments) such that F (X)(Y ) = F (E)(h(X, Y )). Otherwise F is
called inherently sortal. The important result we will need which concerns sortally reducible
quantifiers is the following (Keenan 1993): A conservative F is sortally reducible iff F is inter-
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sective or F is co-intersective. In general quantifiers in natural languages are not sortally reducible
(Keenan, 2000).

Crucially for our purposes sortal reducibility entails a more general property essential for
our analysis. Indeed it is easy to show that if D is intersective then D(S)(P ) is equivalent to
D(S1)(S ∩ P ) for any S1 such that S ⊆ S1. Similarly if D is co-intersective then D(S)(P ) is
equivalent to D(S1)(S′∪P ) for any S1 such that S ⊆ S1. So the crucial property roughly says that
in sentences with sortally reducible quantifiers we can always lessen (and moreover fully elimi-
nate) the restriction on the domain of quantification (imposed by the first, nominal, argument). We
will call this property FIDQ, or the property of freely increasable domain of quantification (cf.
Zuber, 2005).

We will apply this property to an analysis of complex demonstrative determiners of various
kinds indicated in the introduction. Such an application presupposes that we have a way of telling
which determiners are sortally reducible and which are not. Of course we can always make ”logi-
cal calculations” to classify them. We can also observe that for determiners of the form Det...conn
NP sortal reducibility depends on the sortal reducibility of det: in general if det is sortally re-
ducible so is the determiner det...conn NP. This claim although in need of being justified for
various connectors which may occur in complex demonstratives, will not play an essential role in
what follows.

4 Sortal inherency and demonstratives

In order to answer various questions concerning the semantics of complex demonstratives and
the role of the common noun to which demonstrative apply we need to systematise the empirical
observations made in the section 2. We have seen that ”simple” demonstrative this is categorially
ambiguous. First, it can be categorised as an NP and in this case it corresponds to the NP this
object/existent and can be used as the subject NP on its own with no restriction. Possibly, in such
cases speaker’s demonstration replaces the universal property OBJECT .

Second, this can also be categorised as a (unary) determiner, in which case it applies to a
common noun to form a noun phrase. There is a general agreement that in this case it denotes a
conservative function (cf. Keenan and Stavi, 1986). More can be said, however. We observe that
this as determiner denotes an intersective function, as can be checked either directly using the
definition of intersective functions or some of their properties (like symmetry for instance). For
instance we note that (3a) is logically equivalent to (3b) and to (3c), if the the speaker point the
same object in all cases:

(3a) This philosopher is bald.
(3b) This (human) being is (a) bald (and a) philosopher.
(3c) This bald person is a philosopher

In addition we notice that since the algebra of intersective functions is isomorphic to the algebra of
type 〈1〉 quantifiers, this considered as a determiner is mapped to this object, which may explain
that there is lexically one this even if it is categorially ambiguous.

Concerning syntactically complex noun phrase demonstratives we will consider only those
which are obtained from syntactically complex demonstrative determiners. Recall that a syntac-
tically complex determiner is a determiner of the form Det...conn this(one), where Det is a unary
determiner and conn is one of the connectives we discussed in section 2. It follows from this
restriction that we will not consider such complex noun phrase demonstratives as Leo and this
student or this teacher and this student. Obviously the latter example may present additional
problems given the fact that they involve two different common nouns. In opposition to this the
complex noun phrase demonstratives we consider have only one common noun as argument. Thus
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we observe that the Det and this in examples we consider must apply to the same common noun.
This is because examples like Most teachers, including this student or Every student, except this
teacher are ”internally inconsistent” (unless the person pointed at is a student and a teacher at the
same time).

Let us start our analysis of the semantic contribution of the common noun argument by
looking at syntactically simple noun phrase demonstratives. So suppose that I point intentionally
at something that I believe to be a young wild cat and I utter (4a). Ignoring various scopal
possibilities of intelligent and ambiguity of young we can consider, given the property of freely
increasable domain of quantification indicated above, that (4a) is logically equivalent to (4b),
(4c), (4d) and (4e);

(4a) This young wild cat is intelligent.
(4b) This wild cat is young and intelligent.
(4c) This cat is young, wild and intelligent.
(4d) This animal is a young and intelligent wild cat.
(4e) This (object) is a young and intelligent wild cat.

Furthermore, we observe that (4a), and as a matter of fact all sentences in (4), entail (5), which
we consider for purposes of illustration, as grammatical:

(5) This is intelligent

This series of equivalences allows me to be mistaken as to the property by which I (partially)
describe the object pointed at when using the specific noun phrase demonstrative. Thus it can
happen that I am pointing at something which is a wild cat but not a young wild cat. Similarly
I can be pointing at something which in fact is a cat but neither wild nor young. Finally it is
possible that I am pointing at something which is not a cat but obviously is ”something”, that is an
object. In fact the basic supposition is that I am pointing ”at least” at an object or a being. If this
being is intelligent then I can still express a true proposition, namely the one in (5), even if I am
partially mistaken with the descriptions I attribute to the demonstrated being by using a particular
demonstrative NP in subject position.. In other words the truth of the proposition expressed by
my utterance of (4a) does not depend solely on properties used in the subject NP . Properties
expressed by the predicate should also be taken into account.

Important point is now that the situation needs not be the same when I use a syntactically
complex NP demonstrative in subject position. We know that such a demonstrative can be formed
either from a sortally reducible determiner (that is a determiner denoting a sortally reducible
quantifier) or from a determiner which is not sortally reducible. The first case occurs for instance
with the syntactically complex demonstrative NP Some young wild cats, including this one
which is formed from the sortally reducible determiner Some..., including this (one). This means
that sentence (6a) is equivalent to (6b):

(6a) Some wild young cats, including this one, are intelligent
(6b) Some beings, including this one, are wild, young and intelligent cats

This equivalence allows us to proceed in this case in the way similar to the one illustrated above
with examples in (4) (with additional necessity of taking into account the semantics proper to the
”non-demonstrative” part of the complex determiner).

The second case, that is the case of sortally irreducible quantifiers. For instance the determiner
most and consequently the complex demonstrative determiner like most..., including this(one) is
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sortally irreducible. This means that we cannot in this case extend freely its domain of quan-
tification (the denotation of the first argument, the common noun) as in the case of intersective
or co-intersective quantifiers. Thus we cannot in general find a property P such that (7a) is
equivalent to (7b):

(7a) Most wild young cats, including this one, are intelligent.
(7b) Most beings, including this one, are intelligent and P.

Consequently my mistakes in the description of demonstrated objects are different when I
use (syntactically complex) demonstratives denoting sortally reducible quantifiers than when I
use demonstratives denoting sortally irreducible quantifiers(in subject position) . In the first case
my mistake is ”partial” and can be corrected by the use of a specific predicte. Although this
observation concerns some aspects of language use it is a consequence of a purely logical result
from the GQ theory.

5 Concluding remarks
The are various problems related to the semantics of demonstratives and their use that I did not
touch upon in this paper. As far as I can see my proposal concerning the possible role of the
subject common noun argument does not preclude more fine grained analysis. For instance I
suppose that the meaning of the demonstrative this is such that sentences in (8) can be considered
as logically equivalent:

(8a) This teacher is bald.
(8b) This bald person is a teacher

The problem here is not only that the notion of logical equivalence in the context of demonstratives
may be dubious but also that the above sentences may differ in presuppositions, as it has often
been claimed. My proposal is not incompatible with such an analysis since we can suppose that
presuppositions contribute also to the semantics and their presence necessitates a stronger notion
of semantic equivalence.

I wanted to justify the following claim: demonstratives, even though usually analysed at the
purely pragmatic level, cannot be analysed in isolation, without taking into account many other
linguistic phenomena. I show in particular that there is an infinite number of syntactically complex
demonstrative determiners and noun phrases which clearly are quantificational and referential ”at
the same time” contradicting thus various claims that noun phrases are either (purely) referential
or (purely) quantificational (cf. Larson and Segal, 1995)1.

Notice that there are also syntactically complex interrogative demonstratives. They can occur
in so-called inclusive questions (Zuber, 2000):

(9a) Which student, in addition to this one, is bald?
(9b) Apart from Leo and this student which other student will dance?

Such examples show that the question of the semantic status of demonstratives should be asked
not only in the context of proposition expressing expressions.

Finally, I have tried to show that some simple tools from the formal semantics, in particular
from generalised quantifier theory, may be useful in the analysis of demonstratives as well. If
my proposal is sound then the distinction between semantics and pragmatics needs additional
explanation.

1 In fact such a dichotomy has been criticised on other grounds as well, cf. Carlson and Pelletier, 2002
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