
Discovery of Dependency Tree Patterns for Relation Extraction

Hongzhi Xu, Changjian Hu, and Guoyang Shen

NEC Laboratories China
Beijing, 100084, China,

{xuhongzhi, huchangjian, shenguoyang}@research.nec.com.cn

Abstract. Relation extraction is to identify the relations between pairs of named entities.
In this paper, we try to solve the problem of relation extraction by discovering dependency
tree patterns (a pattern is an embedded sub dependency tree indicating a relation instance).
Our approach is to find an optimal rule (pattern) set automatically based on the proposed
dependency tree pattern mining algorithm. The experimental results show that the extracted
patterns can achieve a high precision and a reasonable recall rate when used as rules to extract
relation instances. Furthermore, an additional experiment shows that other machine learning
based relation extraction methods can also benefit from the extracted patterns by using them
as features.

1 Introduction

Relation extraction is the task that aims to identify relations between pairs of named entities from
free text. From the perspective of methodologies employed to conduct relation extraction, current
existing methods can be classified into three categories. The first category is rule-based methods,
which identifies relations by utilizing inference rules. The rules could be extended regular expres-
sions incorporating with pre-defined constraints. The second is to treat relation extraction as a
classification problem with a kernel machine such as SVM. The problem is then how to define a
kernel function between two relation instances. The third category of relation extraction method
is regarding relation extraction as sequence labeling problem. Then the existing methods for se-
quence labeling, such as Maximum Entropy (ME) and Conditional Random Fields (CRFs), could
be used to solve the relation extraction problem directly.

Our algorithm proposed in this paper belongs to the rules learning framework. The reason
we choose the rule-based method is that the rules could contain more semantic information than
features used in statistical methods. A pattern is a sub dependency tree that indicates a relation
instance. In other words, a pattern corresponds to a trimmed sentence, e.g. a sentence with all
unrelated components removed. This is certainly an advantage to the flat patterns which will face
significant problems if the sentences are very complex. Experiments show that our patterns are
more effective used for relation extraction.

The rest of the paper is organized as follows. Section 2 gives a brief introduction to the related
work. Section 3 describes our new framework for relation extraction. In Section 4, we present our
algorithm for automatic extraction of the dependency tree patterns. In Section 5, experiments are
conducted to evaluate our new algorithm. Section 6 is the concluding remarks and future work.

2 Related Work

Generally, the current methods could be classified into three categories based on the methodologies
they took, namely 1) rule-based methods, 2) kernel methods, 3) sequence labeling methods.

For rule-based methods, Brin (1999) proposed an algorithm DIPRE. Given several relation in-
stances as the seeds, DIPRE can learn rules (regular expressions) to extract ‘author-book’ relations

Copyright 2009 by Hongzhi Xu, Changjian Hu, and Guoyang Shen

851

23rd Pacific Asia Conference on Language, Information and Computation, pages 851–858



from the web pages. Agichtein (2000) proposed Snowball which improved DIPRE by introduc-
ing the notion of match degree, where only sentences, whose match degrees are higher than a
pre-defined threshold, are used to generate new rules. Lin (2001) proposed DIRT which learns
inference rules from the paths connecting pairs of arguments of the relations in dependency trees
for question answering systems.

For kernel methods, Zelenko (2002) propose the continuous and sparse tree kernels based on
the syntactic parse tree for relation extraction. Culotta (2004) used this kernel on dependency
trees to train a SVM(Cortes and Vapnik, 1995) classifier for relation extraction. Similar works
include the shortest path dependency tree kernel(Bunescu and Mooney, 2005) and subsequence
kernel(Bunescu and Mooney, 2006).

For the sequence labeling methods, Kambhatla (2004) proposed an algorithm that makes use of
features extracted from the dependency trees and syntactic parse trees, including the path from the
first argument to the second argument, the parents of the first and second arguments of a relation
in a dependency tree, the context words with their POS tags. All the features are used to train
a ME model, which is then used to extract new relation instances. Culotta (2006) used a data
mining algorithm to find implicit relations between different relation types. For example, afather-
of relation and ahusband-wiferelation may imply amother-ofrelation. These global information,
used in a CRFs framework, can effectively improve the performance of the relation extraction task.
Bundschus (2008) adopted rich features except syntactic features to train a CRFs model for two
different biological relations extraction:gene-diseaseanddisease-treatment.

The most related work is proposed by Dat in (2007). However, there are several differences
between his algorithm and ours. First, Dat only considers subtrees whose leaf nodes are either
arguments or the keyword that determines the relation type i.e., the subtrees are heuristically se-
lected. But our algorithm treats the dependency trees as general subtrees with some extra con-
straints. Second, the subtrees in Dat’s method are only used as features to train SVM models.
Our algorithm uses the subtrees as patterns to directly extract new relation instances. The pat-
terns themselves could perform well, although they are also able to be used as features. Third, the
tree nodes are represented by original words in Dat’s work, but our tree nodes are represented by
several attributes including POS tags, high-level POS tags and dependency types. With our node
representation, we can define any match function between two nodes. For example, we could
define that if the POS tags of two nodes are same, then the two nodes are same.

3 A New Framework For Relation Extraction

3.1 Dependency Tree Pattern Definition

Tree Nodes Representation. We use different features/attributes to represent the tree nodes,
including Tokens, POS tags, high-level POS tags, dependency types and roles. The roles including
ARG-1,ARG-2,KEY and OTHR denote the identifications of tree nodes in relation instances.
ARG-1andARG-2are the arguments of a relation instance,KEY is the keyword that determines
the relation type andOTHRstands forother. Based on these attributes, we could define any match
functions in{0, 1}between two nodes.

Embedded Subtrees. To make the dependency tree patterns to have higher matching abilities,
we use embedded subtrees that allow to skip nodes when matching a target tree. This is useful to
skip some useless nodes when we use patterns to extract relation instances.

Closed Subtrees Actually, for the relation extraction task, we only need the closed patterns,
because in a given tree collection, any tree that satisfies an unclosed patternp′ must satisfies a
certain closed patternp that containsp′ and has the same support asp′. In other words,p contains
all useful information thatp′ contains.

852



Proof. Suppose there is a treet that satisfies an unclosed patternp′ but doesn’t satisfy any
closed pattern. Then there is no other pattern could contain patternp′ and have the same support
asp′, so based on the definition of closed pattern,p′ is closed which is contradictory to the known
condition thatp′ is not closed.

Preserve the Cross Nodes Based on a linguistic consideration that two nodes in a dependency
tree build their relationship through their cross node, we constrain that the subtrees should preserve
all cross nodes when matching dependency trees. The cross node of two nodesv1 andv2, denoted
by crn(v1, v2), is the first common ancestor ofv1 andv2. A cross-node-preserving subtreep of T
is a subtree that the cross nodecrn(v1, v2) of each pair of nodesv1 andv2 in p is also the cross
node ofv1 andv2 in T . For example, in Figure 1, (2) is a cross-node-preserving subtree of (1),
while (3) is not because the cross node ofF andG isC in (1), but the cross node ofF andG isA
in (3).

A

B C

D E F G

A

B G

A

F G

(1) (2) (3)

Figure 1: An example to show a cross node preserved subtree. (2) is a cross-node-preserving subtree of
(1), while (3) is not.

Based on all the above analysis, we finally define dependency tree pattern as in Definition 1. In
all, A pattern contains at least three nodes with rolesARG-1,ARG-2andKEY. The relation type
of a pattern is the same as that ofKEY.

Definition 1. A Dependency Tree Pattern is a rooted, ordered, embedded and cross-node-
preserving subtree that contains at least three nodes with roles:ARG-1,ARG-2andKEY, whose
support is at leastmin supp.

It is true that there may be more than one relation instances in one dependency tree. In this
situation, we only assign one relation instance with its arguments and keyword the rolesARG-1,
ARG-2andKEY, and assign all other nodes as roleOTHRat one time. In other words, a single
sentence may generate several dependency trees with different roles assigning.

4 Mining Dependency Tree Patterns

4.1 Pattern Matching

Pattern matching is the basic problem for counting the support of a subtree in frequent subtree
mining that should be solved efficiently. Actually, the only difference of our defined pattern is that
we preserve the cross nodes. So, we design a new matching algorithm that could directly judge
whether a subtree is a cross-node-preserving one. We modify a dynamic programming algorithm
proposed in (Kilpelainen, 1992), and the modified algorithm is shown in Figure 2.

Here all the nodesq are represented by their post traversal order number,label(q) is the label
of nodeq. The algorithm maintains a tablee(v, c, w), wherev is a node in a patternp; c, w are
nodes in a treet; e(v, c, w) records the minimal post traversal order number of the node in tree
t, that matches nodev in patternp with the cross nodec in rr(w) of treet, rr(w) represents the
right relatives of the nodew; lr(w) represents the left relatives of the nodew, including the nodes
1, ...,min(desc(w))− 1. If a nodex is the right relative ofy, theny is the left relative ofx. There
is also a virtual node0 is the left relative of all nodes.desc(w) denotes the descendants of the node

853



Input: A Patternp, a Treet.
Output: Tablee(v, c, w).

1. For eachv in p; c, w in t.
2. e(v, c, w) = n+ 1;
3. Forv = 1, 2, ...,m.
4. q = 0;
5. Letv1, ..., vk be the children of v;
6. Forw = 1, 2, ..., n.
7. If label(v) == label(w)
8. p = min(desc(w) ∪ {n+ 1})− 1;
9. i = 0;
10. Whilei < k and p < w.
11. p = e(vi+1, w, p);
12. If p ∈ desc(w).
13. i = i+ 1;
14. If i == k.
15. While q ∈ lr(w).
16. Get cross nodec = crn(q, w);
17. e(v, c, q) = w;
18. q = q + 1;

Figure 2: A matching algorithm of our defined dependency tree patterns.

w. Specially, the cross node of the virtual node0 and a nodew, crn(0, w) = −1 which is also a
virtual node. Suppose the root of patternp is r, and if the value of e(r, -1, 0) is less thann+1, then
there must be a cross node preserved matching ofp in t at the node e(r, -1, 0) oft. Kilpelainen
(1992) has proved that the matching algorithm requiresO(mn) time and space complexity, where
m is the pattern size andn is the tree size.

4.2 Pattern Mining Algorithm

We modify a traditional subtree mining algorithm TRIP(Tatikonda and Parthasarathy, 2006) for
our dependency tree patterns extraction. A parametermin prec is used to select only those accu-
rate patterns, i.e. only those patterns whose precisions are larger than or equal tomin prec will
be used. Here, precision is defined as#t rel/(#t rel +#f rel), where#t rel and#f rel are
the number of true and false relation instances a pattern identifies respectively.

4.3 Pruning

Traditional subtree mining algorithms try to extract all possible subtrees. Due to the combinational
explosion problem, the number of subtrees grows exponentially with the size of the patterns. If
min supp is set to a small value, there will be a large number of patterns, which will cause the
failure of the mining process.

Considering that we only need closed patterns, we adopt a pruning process from an existing al-
gorithm CMTreeMiner which is designed specially for mining closed patterns(Chi and Xia, 2005).

5 Experimental Evaluation

In this section, we use our algorithm to extract business relations between companies, including
Cooperation (COOP ), Competition (COMP ) andAcquisition (ACQU ).

We first test the performance of the extracted patterns when directly used to extraction new
relation instances, then we use the patterns as features in a CRFs framework.

5.1 Data Set

To construct a data set, we first build a company list. Then we use company pairs as queries
to submit them to a search engine and find the news articles that contain the company pairs,
where some pairs have actual relations and others don’t. The sentences are labeled manually with
all relation instances. Figure 3 is the statistical information organized by the number of entities

854



and number of relations contained in sentences. Figure 3(Left) shows the distribution of relation
instances in sentences regardless of the relation type. Most sentences contain only one relation.
We also add 1,165 sentences that contain no relations. Figure 3(Middle) shows the distribution of
the entities in sentences. In this data set, all the entities are companies. Figure 3(Right) shows the
distribution of different types of relations.

52
216

592

1969

1165

4 3 2 1 0
Number of Relations

Nu
m
be
r o

f S
en
ten

ce
s

207

407

776

1239
1361

6 5 4 3 2
Number of Entities

Nu
m
be
r o

f S
en
ten

ce
s

12
105

200

662

27 44

207

696

9 10
126

832

4 3 2 1
Number of Relations

Nu
mb
er 
of 
Se
nte
nce
s

COOP COMP ACQU

Figure 3: Statistical information of the corpus.

5.2 Experimental Setting

First, we use Stanford parser(Klein and Manning, 2003) to parse our sentences into dependency
trees. For the tree node representation, i.e. matching function between two nodes, we compare four
different representations: POS, High-POS, POS+DEP, High-POS+DEP. For example, POS+DEP
means two nodes are same if their POS tags and the dependency types to their parents are both
same. High-POS stands for the generalized POS tags, e.g. noun, verb, etc.

We split the corpus by 1:1, i.e. 50% is used to extract dependency tree patterns, the other 50%
to test the extracted patterns. Since our work is not to deal with the NER problem, we assume that
all the companies are known. In the experiment, we setmin supp = 5 and use different values
for the parametermin prec to filter the poor patterns. Note that all results are the average value
of ten times of running.

5.3 Mining Result

Figure 4 shows F1 measure with the change ofmin prec. We can see that High-POS gives the
best performance in terms of F-Measure. We have found that the more special the nodes, the
precision tends to become higher, while recall and F-Measure tend to become lower; recall and
F-Measure also become worse with the increasing of the parametermin prec.

�

���

���

���

���

���

���

��	

��


� ��� ��� ��� ��
 �

���������������

�
�
�
�
�
�
�
�
�

��� �������� ���� !� ��������� !�

�

���

���

���

���

���

���

��	

��


� ��� ��� ��� ��
 �

���������������

�
�
�
�
�
�
�
�
�

��� �������� ���� !� ��������� !�

�

���

���

���

���

���

���

� ��� ��� ��� ��	 �


���������������

�
�


�
�
�
�
�
�

��� �������� ����� � ���������� �

Figure 4: Performance(F-measure) of the extracted patterns with change of parametermin prec(minimal
precision). (COOP(left), COMP(middle), ACQU(right))

Figure 5 shows three typical dependency tree patterns, which show the tokens that correspond
to the nodes in patterns are really key subcomponents of the sentences that contain relation in-
stances. Take the first pattern(COOP) for example, in the sentence, the unrelated constituents
“us-based”, “CDMA Intellectual property rights framework” that modifies “agreement” could be
filtered. The case is similar for the second pattern(COMP). For the third pattern(ACQU), it is
interesting that it identifies only a part of a sentence that contains a relation instance, e.g. “of/IN
...” and “before/IN ...”.

855



VBD

Ent/ARG-1 NN/KEY

CC Ent/ARG-2 DT

[China/NNP Unicom/NNP]/ARG-1[and/CC]us-based/JJ[Qualcomm/NNP
Incorporated/NNP]/ARG-2 [signed/VBD] [a/DT] CDMA/JJ Intellec-
tual/NNP property/NN rights/NNS framework/NN[agreement/NN]/KEY
...
(Trimmed Sentence: ARG-1 and ARG-2 signed a agreement.)

VBZ

Ent/ARG-1 VB/KEY

TO IN

Ent/ARG-2

[Marvell/NNP Technology/NNP Group/NNP]/ARG-1[plans/VBZ] to/TO
launch/VB a/DT new/JJ version/NN of/IN its/PRP$ “/” monahans/JJ
“/” processor/NN by/IN December/NNP[to/TO] [compete/VB]/KEY
better/JJR [against/IN] [Texas/NNP Instruments/NNPS]/ARG-2 and/CC
[Freescale/NNP Semiconductor/NNP]/ARG-2 in/IN ...
(Trimmed Sentence: ARG-1 plans to compete against ARG-2.)

IN

NN/KEY

Ent/ARG-1 IN

POS Ent/ARG-2

1. Customers/NNS will/MD also/RB see/VB the/DT fruits/NNS[of/IN]
[Intel/NNP]/ARG-1 [’s/POS] [acquisition/NN]/KEY[of/IN] [Dayna/NNP
Communications/NNPS]/ARG-2 ,/, part/NN of/IN ...
(Trimmed Sentence: .. of ARG-1’s acquisition of ARG-2.)
2. Sears/NNP Holdings/NNPS ,/, which/WDT was/VBD
formed/VBN [through/IN] [Kmart/NNP Holding/NNP]/ARG-1[’s/POS]
[purchase/NN]/KEY[of/IN] [Sears/NNP]/ARG-2 ,/,[Roebuck/NNP]/ARG-2
on/IN march/NN 24/CD ,/, ...
(Trimmed Sentence: .. through ARG-1’s purchase of ARG-2.)

Figure 5: Selected Patterns of COOP(top), COMP(middle), ACQU(bottom) and some corresponding ex-
amples from the corpus.

5.4 Relation Extraction with CRFs

In this subsection, we design experiments to show that the extracted patterns could be used as
features in other machine learning algorithms to improve the overall performance of relation ex-
traction. Specially, we use High-POS to represent the nodes and use the dependency tree patterns
as binary features, denoted byf(pi). If a dependency tree of a relation instance satisfies pattern
pi, thenf(pi) = 1, otherwise,f(pi) = 0. We use CRFs to train our relation extraction model.

5.4.1 Problem Formalization We fixed one entity as the first argumentARG-1, and guess the
labels of other tokens asOTHRor ARG-2. The labelKEY is given through a dictionary containing
a list of keywords with their relation types. For example, in the sentence “A could compete with
B and C.”, ‘A’ is fixed as the first argument, i.e. the label of ‘A’ is known asARG-1. Then the
algorithm will guess the labels of other tokens in the sentence. The correct labeling is “A/ARG-1
could/OTHRcompete/KEYwith/OTHRB/ARG-2and/OTHRC/ARG-2.”

5.4.2 Experiment We conduct experiments with the CRFs framework on the same data set.
Here, we split the data set into three parts by 5:3:2. The 50% is used to extract dependency tree
patterns, the 30% is used to train a CRFs model and the 20% is used for testing. Note that we use
different data for pattern extraction and CRFs training in order to avoid over fitting problem. We
use CRFPP1 as the CRFs toolkit.

In this experiment, we try several types of features that have been used in the current systems as
follows: (1) Context words with their POS tags, and bag of words between two arguments and the
path features extract from dependency trees and parse trees used in a ME framework(Kambhatla,
2004), denoted byBaseline(B); (2) Window features judging whether two entities are located
in a same window as used in (Bundschus and Dejori, 2008). We extend the window feature by
observing whether a keyword is also contained in the window. For example, we useA to denote
the first argument,K as the keywords andB as the current entity. Then a window feature value

1 http://crfpp.sourceforge.net/

856



Table 1: Experimental result of relation extraction with CRFs. Pat1 stands for patterns with Token Tree
Nodes, Pat2 for POS, Pat3 for High-POS.

Baseline B+Win B+Pat1 B+Pat2 B+Pat3 B+W+Pat1 B+W+Pat3
P 0.7630 0.7355 0.7746 0.7452 0.7745 0.7909 0.7554

COOP R 0.5593 0.7542 0.5678 0.6568 0.6695 0.7373 0.7458
F1 0.6455 0.7448 0.6553 0.6982 0.7182 0.7632 0.7505
P 0.6928 0.6931 0.7396 0.7233 0.7341 0.7083 0.7114

COMP R 0.4291 0.5668 0.2874 0.4656 0.5142 0.5506 0.5789
F1 0.5300 0.6236 0.4140 0.5665 0.6048 0.6196 0.6384
P 0.7597 0.7679 0.7895 0.7310 0.7396 0.7799 0.7579

ACQU R 0.5087 0.6043 0.3913 0.5435 0.6174 0.5391 0.6261
F1 0.6094 0.6763 0.5233 0.6235 0.6730 0.6375 0.6857

MacroAvg F1 0.5950 0.6816 0.5309 0.6294 0.6653 0.6734 0.6915

could beAKB, A compete B, KAB, etc. The extended window features are denoted byWin.
We set window size to 10 forWin features. We usePat to denote our dependency tree pattern
features. Specially, we compare three different tree node representations: tokens/words (Pat1) as
used in (Dat and Matsuo, 2007), POS (Pat2) and High-POS (Pat3).

Table 1 is the experimental result. We can see that, when the featuresWin are added, the
performance are significantly improved. This is because most relation instances are located in
same windows. For the pattern features, the patterns whose tree nodes are represented with tokens
(Pat1) will harm the performance because of the data sparseness problem which will make the
model over fit the training data and thus give wrong weights to the pattern features. The patterns
with POS (Pat2) tree node representation perform better than tokens, and High-POS (Pat3) perform
the best among all kinds of pattern features. The performance ofPat3 is similar to theWin
features, this is because both of them try to estimate whether two arguments are related although
in different ways.

It is worthy to note that, in our data set, most sentences contain real relations, which has made
theWin features especially effective. This is why the deep syntactic analysis of the sentence
structure is not better than the simpleWin features. However, the window features don’t work
well when the sentences are relatively complex, e.g. with a lot of modifications and parentheses.
This is wherePat features could work better. So, when the two features are both added, the
performance could be further improved. Furthermore, in real application, the real relations will be
more rare than in our data set, we can hope thatPat features will perform better then.

6 Conclusion and Future Work

In this paper, we proposed a new algorithm to automatically discover dependency tree patterns
for entity relation extraction. Our algorithm can be considered as a more general version of (Dat
and Matsuo, 2007) as we have discussed above. The experiments with CRFs show that the gen-
eralization of the tree nodes from tokens to POS and High-POS is very important which could
significantly relieve the data sparseness problem since sparse features will do harm to the relation
extraction model as shown in Table 1.

In this work, we only represent tree nodes with fixed POS levels and their roles. There are
cases when words have more discriminative ability than POS tags, or some other nodes could
be further generalized into higher level to get a pattern with more generalization ability without
decreasing the precision. In sum, by assigning each node attribute with different levels (e.g. words,
POS, high-level-POS, etc.), we could generate patterns with more discriminative ability. How to
construct adaptive match functions between two nodes will be our future research topic.

857



References

Agichtein, E. and L. Gravano. 2000. Snowball: Extracting relations from large plain-text col-
lections. InProceedings of the fifth ACM conference on Digital libraries, pages 85–94, New
York, NY, USA.

Brin, S. 1999. Extracting patterns and relations from the world wide web. InThe World Wide
Web and Databases, Lecture Notes in Computer Science, pages 172–183. Springer Berlin /
Heidelberg.

Bundschus, M., M. Dejori, M. Stetter, V. Tresp, and H.-P. Kriegel. 2008. Extraction of semantic
biomedical relations from text using conditional random fields.BMC Bioinformatics, 9(207).

Bunescu, R. and R. Mooney. 2005. A shortest path dependency kernel for relation extraction.
In Proceedings of Human Language Technology Conference and Conference on Empirical
Methods in Natural Language Processing (HLT/EMNLP), pages 724–731, Vancouver, October.

Bunescu, R. and R. Mooney. 2006. Subsequence kernels for relation extraction. In Y. Weiss,
B. Scḧolkopf, and J. Platt, editors,Advances in Neural Information Processing Systems 18,
pages 171–178. MIT Press, Cambridge, MA.

Chi, Y., S. Nijssen, R. R. Muntz, and J. N. Kok. 2005. Frequent subtree mining - an overview.
Fundamenta Informaticae Special Issue on Graph and Tree Mining, 66(1-2/2005):161–198.

Chi, Y., Y. Xia, Y. Yang, and R. R. Muntz. 2005. Mining closed and maximal frequent subtrees
from databases of labeled rooted trees.IEEE Transactions on Knowledge and Data Engineer-
ing, 17(2):190–202.

Cortes, C. and V. Vapnik. 1995. Support vector networks.Machine Learning, 20(3):273–297.

Culotta, A., A. McCallum, and J. Betz. 2006. Integrating probabilistic extraction models and
data mining to discover relations and patterns in text. InProceedings of the Human Language
Technology Conference of the North American Chapter of the ACL, pages 296–303, June.

Culotta, A. and J. Sorensen. 2004. Dependency tree kernels for relation extraction. In21th
International Conference on Computational Linguistics.

Dat, N., Y. Matsuo, and M. Ishizuka. 2007. Relation extraction from wikipedia using subtree
mining. In Proceedings of 22nd Conference on Artificial Intelligence (AAAI), pages 1414–
1420.

Kambhatla, N. 2004. Combining lexical, syntactic and semantic features with maximum entropy
models for extracting relations. In21th International Conference on Computational Linguis-
tics.

Kilpelainen, P. 1992.Tree Matching Problems with Applications to Structured Text Databases.
PhD thesis, Department of Computer Science, University of Helsinki, Helsinki, Finland.

Klein, D. and C. D. Manning. 2003. Accurate unlexicalized parsing. InProceedings of the 41st
Meeting of the Association for Computational Linguistics, pages 423–430.

Lin, D. and P. Pantel. 2001. Discovery of inference rules for question answering. InNatural
Language Engineering, volume 7, pages 343–360. Cambridge University Press.

Tatikonda, S., S. Parthasarathy, and T. Kurc. 2006. Trips and tides: New algorithms for tree min-
ing. In Proceedings of the Conference on Information and Knowledge Management(CIKM),
volume 5, pages 455–464, Arlington, Virginia, USA.

Zelenko, D., C. Aone, and A. Richardella. 2002. Kernel methods for relation extraction. InPro-
ceedings of the Conference on Empirical Methods on Natural Language Processing(EMNLP),
pages 71–78, Philadelphia.

858


