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Abstract. We introduce a method for learning to assign word senses to translation pairs. In 

our approach, this sense assignment or disambiguation problem is transformed into one on 

how to navigate through a sense network like WordNet aimed at distinguishing the more 

adequate senses from others. The method involves automatically constructing classification 

models for branching nodes in the network, and automatically learning to reject less 

probable senses, based on the translation characteristics of word senses and semantically-

related word groups (e.g., lexicographer files) respectively. At run-time, translation pairs are 

expanded with their synonyms and sense ambiguity is resolved using a greedy algorithm 

choosing the most likely branches based on the trained classification models. Evaluation 

shows that our method significantly outperforms the strong baseline of assigning most 

frequent sense to the translation pairs and effectively determines suitable word senses for 

given translation pairs, suggesting the possibility of employing our method as a computer-

assisted tool for speeding up the process of lexicography or of using our method to assist 

machine translation systems in word selection. 

Keywords: Word sense disambiguation, word translation classification, WordNet, 

machine-learning technique, maximum entropy model. 
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1 Introduction 

Many words (e.g., plant) have different senses in different contexts (e.g., green plant and 

nuclear plant), usually leading to different translations in another language (e.g., 植物 and工廠 

respectively). On the other hand, different words (e.g., plant and factory) may express very 

similar meanings (e.g., the working place for industrial labors). Therefore, WordNet (Miller et 

al., 1990), a sense inventory encoding with semantic relatedness of words, has been a valuable 

resource in the field of natural language processing since its introduction. In WordNet, nominal, 

verbal, adjective, and adverbial words are grouped into synonym sets, or so-called synsets and 

synsets are interlinked with various semantic relations (e.g., hypernym, hyponym and etc). Its 

rich and well-defined lexical semantic relations have made WordNet an important knowledge 

source for various research areas: word sense disambiguation; computer-assisted language 

learning; information retrieval. 

The well-established lexical hierarchy residing in English WordNet has prompted 

researchers to construct WordNet-like sense inventory for other languages. Take the Chinese 

language for example. Efforts have been made on automatic construction and on manual 
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translation from English WordNet into Chinese. Chinese translations in the latter case, however, 

may not sufficiently cover the scope. It would be more efficient and cost-effective if 

translations of various word senses could be automatically integrated from bilingual sources 

(e.g., dictionaries and phrase tables in machine translation systems). 

Consider the word “plant” with the sense of “buildings for carrying on industrial labor” and 

the sense of “a living organism lacking the power of locomotion”, and  廠房 (manufactory), 

one of its Chinese translations. Assume that “廠房” is unseen in a bilingual WordNet (e.g., 

English WordNet with Chinese translations). The best way to incorporate such a new 

translation is probably not blindly assigning it to all the senses of “plant”. A good way might be 

to identify the most appropriate sense for the translation, in this case, “plant#1” (i.e., buildings 

for carrying on industrial labor). Intuitively, by leveraging sense-to-translation relations, such 

sense ambiguity could be resolved. 

 

Figure 1: An example classifying diagram for (plant, 廠房). The correct sense for this translation pair is 

“plant#1”. Note that our classification models are applied on three branching
1
 synsets (i.e., “entity”, 

“unit”, and “organism”) and that the WordNet hierarchy shown here is simplified: non-branching synsets 

are hidden and represented by dashed lines. 

We present a hierarchical word translation classification (WTC) model that automatically 

learns to attach translations of English words to the adequate word senses. An example 

classification diagram for (plant, 廠房) is shown in Figure 1. Paths from the root, “entity”, to 

the four nominal senses of “plant” are highlighted and our goal is to find the suitable sense for 

the <word, translation> pair. Our model learns to navigate through the lexical hierarchy in 

WordNet (to determine the sense for the given translation) during training by analyzing a 

collection of translation pairs in bilingual WordNet. We describe the training process of 

hierarchical WTC Model in more detail in Section 3. 

At run-time, our model starts with a <word, translation> pair (e.g., (plant, 廠房)) from a 

bilingual knowledge resource and then transforms the disambiguation problem to a hierarchical 

classification problem. In our prototype, features extracted from the translation are exploited to 

find its adequate sense. Additional translations of word senses provided by our model can be 

used to broaden the scope of an existing bilingual WordNet. Alternatively, our model can be 

embedded into machine translation (MT) systems in order to help choose more appropriate 

word translations. 

2 Related Work 

Word Sense Disambiguation (WSD) has been an area of active research. WSD is to determine 

the meaning of a word in current context, which is an important component in language 

understanding or MT systems. 

WSD models have been developed using machine learning techniques. They may train on 

sets of sense-annotated data for predefined words (Hearst, 1991; Leacock et al., 1993; Bruce 

and Wiebe, 1994). To avoid the labor-intensive and time-consuming process of sense-tagging, 

Yarowsky (1995) propose a semi-supervised model to bootstrap from raw data based on some 

confident and unambiguous seeds. 
                         
1 With respect to the sense disambiguation task. 
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Another direction is to base WSD models on dictionaries or lexical semantic knowledge 

resources. Lesk (1986) is the first to leverage the definitions of words in machine readable 

dictionaries to predict word senses. On the other hand, WordNet, a valuable knowledge source 

encoded with hyponym, hypernym, and synonym semantic relations, is used to measure 

semantic distances among word senses to help sense disambiguation (Agirre and Rigau, 1996; 

Galley and McKeown, 2003). An interesting approach presented by Mihalcea (2005) describes 

how to apply a graph-based algorithm (i.e., random walk algorithm) and WordNet semantic 

relations to solve all-word WSD task. 

Recently, WSD not only has been approached from bilingual perspective, but has been 

applied to bilingual applications. Li and Li (2002) introduce “bilingual bootstrapping” making 

use of a small number of sense-annotated data to further bootstrap two languages’ discerning or 

effective context words in disambiguation. Gale et al. (1992) and Diab and Resnik (2002) also 

leverage bilingual information in WSD. WSD or word translation disambiguation (WTD), 

aimed at improving word selection in MT, has been proved to have positive influence on 

bilingual application like statistical MT systems (Chan et al., 2007; Carpuat and Wu, 2007). 

In our work, word senses are assigned to given translations, which is the opposite of WTD, 

choosing translations for senses, in view of extending the translation coverage of an existing 

bilingual WordNet such as Sinica Bilingual Ontological WordNet (Huang et al., 2004), Sinica 

BOW for short. Such bilingual WordNet may be constructed manually by translation (Huang et 

al., 2004) or automatically (Chang et al., 2003). Our work can be thought of as (Chang et al., 

2003)’s follow-up research which enriches the translations in bilingual WordNet. 

3 Hierarchical Word Translation Classification 

3.1 Problem Statement 

We focus on the essential step of extending bilingual WordNet: determining the appropriate 

word senses for unseen translation pairs from bilingual knowledge resources (e.g., dictionaries 

or phrase tables). Using bilingual WordNet which provides a hierarchical structure on tree 

nodes (i.e., synsets) and translations, we train a classifier at each branching node that estimates 

associations between given translations and branching node’s children (i.e., inherited 

hyponyms). Then, the problem of sense disambiguation is transformed to a hierarchical 

classification problem. We now formally state the problem we are addressing. 

Problem Statement: We are given a bilingual WordNet (e.g., Sinica BOW) and a word-

translation pair (e, f). Our goal is to assign the most adequate and relevant sense si to f where si 

∈ S = {s1, ..., sn}, a set of word senses e has. For this, we traverse the WordNet from top 

abstract synsets to the bottom word senses (i.e., s1, …, sn) and identify all related branching 

nodes such that the probabilities of the branching paths associated with the translation f can be 

estimated and the most likely sense, si, can therefore be pinpointed. 

3.2 Learning to Classify Translations 

 
Figure 2: Outline of the training process. 

We attempt to resolve the sense ambiguity by learning lexical characteristics from a collection 

of translation pairs in a bilingual WordNet. Our learning process is shown in Figure 2. 

Propagating Translations. In the first stage of the learning process (Step (1) in Figure 2), we 

propagate translations of each word sense (i.e., synsets) to its inherited hypernyms (i.e., 

ancestors) in WordNet. Then, the word translation classification (WTC) models described in 

the following stage (Step (2) in Figure 2) can exploit this information to learn to classify 

(1) Propagate Translations to Generate the Training Data 

(2) Train Hierarchical Word Translation Classification Models 

(3) Train Filtering Model 
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translations into appropriate senses. Here, propagating means incorporating translations of 

synsets into translation lists (TL’s) of their hypernyms. The rationale behind propagating 

translations to their hypernyms is to establish additional associations between translations and 

hypernyms. For instance, higher-level concept “artifact” (a man-made object taken as a whole) 

will be related to some common translation features (e.g., unigram character of “廠”, “房” and 

“器”) shared among the translations of its hyponyms, after translation propagation. 

The input to this stage is a bilingual WordNet, a collection of <word, translation> pairs with 

word senses. These pairs constitute our training data along with lexical hierarchy (i.e., 

hypernym/hyponym relations). We also take into account the frequency, i.e. tag_count, of word 

senses provided in WordNet. Higher tag_count value implies more frequently occurring sense. 

The output of this stage is a collection of TL’s associated with WordNet synsets. 

 
Figure 3: Algorithm of translation propagation. 

Figure 3 shows the algorithm for propagating a translation in the WordNet hierarchy. This 

procedure applies to each translation pair in the bilingual WordNet. 

In Step (1) of the algorithm we identify the synset of the English word e and its word sense 

Sense in that synsets are the basic units for any available semantic relations in WordNet. Then, 

we look up the frequency count, Cnt, of e and Sense (Step (2)). In Step (3) we identify the 

hypernyms of the synset Synset for translation propagation. The hypernyms, Hypernyms, 

express more abstract or more general concepts than Synset does. 

Finally, we integrate the translation f into TL’s of Synset and Hypernyms (Step (4) and (5)). 

Note that we also populate sense frequency (Cnt) to TL’s such that WTC models described in 

following stage can leverage the frequency information. 

Training Hierarchical Word Translation Classification Models. In the second stage of the 

learning algorithm (Step (2) in Figure 2), we train translation classification models for 

branching synsets with more than one direct hyponym in WordNet. To navigate from the top, 

general concepts, to the bottom, specific word senses, and to find the right class for a 

translation in WordNet hierarchy, we utilize machine learning technique to construct 

hierarchical word translation classification models. See Figure 1 for the example of branching 

synsets. 

The input of this stage is the propagated translation data obtained from the previous stage, a 

collection of <WordNet synset, TranslationList> pairs. The output of this stage is a set of WTC 

models which estimate associations between given translation and one of the direct hyponyms 

of the branching synset in question. 

In this paper, we employ Maximum Entropy (ME) as our machine learning model. As a 

statistical model, ME offers a neat way to incorporate any potential features for outcome 

prediction. 

During the training of our ME-based WTC model, all direct hyponyms of a synset constitute 

the outcome space of the classification model, and features, as we will describe in detail later, 

are derived from instances in TL’s. Specifically, the association between a direct hyponym (an 

outcome) of a synset and the translation f is governed by the conditional probability as 

( )
( )( )

( )( )

exp ,

exp ,

i ii

i io outcomes i

feature outcome f
p outcome f

feature o f

λ

λ
∈

×
=

×

∑
∑ ∑

 (1) 

procedure PropagateTranslation(e, Sense, f) 

(1) Synset = GetSynset(e, Sense) 

(2) Cnt = GetTagCount(e, Sense) 

(3) Hypernyms = GetHypernyms(Synset) 

(4) AddToList(Synset, f, Cnt) 

   for each hi in Hypernyms 

(5)   AddToList(hi, f, Cnt) 
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where outcomes is a set of all direct hyponyms of the synset, featurei is a binary-valued function, 

and λi is the weight of the feature function featurei. Note that λi’s are tuned to reflect the 

significance of the features in determining the hyponym-translation association and that, during 

training, sense frequency (tag_count) is used to indicate the importance of the translation being 

associated with the word sense. In our implementation, we perform add-one smoothing 

technique to deal with zero tag_count. 

Now, we describe the features (i.e., featurei) used in our model. Inspired by the observation 

that translations of a semantic synset (e.g., “artifact#1”) are likely to share some common words 

or characters (e.g., “器”, “廠” and “房”), n-gram features, referred to as literal features, of 

translations are leveraged. Following describes three types of literal features for Chinese 

translations: 

� Unigram Feature: Chinese characters tend to carry some sort of semantic meanings. 

Therefore, we split Chinese translations into characters and collect their corresponding 

features. For instance, “核”, “能”, “發”, “電”, and “廠” are the literal unigram features of 

the translation “核能發電廠” (nuclear plant). 

� Bigram Feature: Since consecutive two Chinese characters, which we refer to as bigrams, 

might convey more specific meaning than unigrams, bigrams are also used as features. For 

the above instance, there are four bigram features, “核能”, “能發”, “發電”, and “電廠”. 

� Head Word Feature: The head word of a Chinese translation may occur at the beginning 

or in the end and the length of a head is uncertain. As a result, both ends of the translation 

and a preset character limit on head word are used to generate our head word features. For 

instance, “核", "廠", "核能", and "電廠” are selected as the head word features of “核能

發電廠” if character limit is set to two. 

Notice that although alternative machine learning approaches can be exploited to train the 

WTC models, using ME has a number of advantages. Firstly, ME provides an easy way to 

incorporate potential feature functions so that research efforts can be focused on selecting 

representative features to characterize the problems. In addition, features in ME models are 

assigned with highly-tuned weights and ME models are trained without the assumption of 

feature independence, one of the issues facing Naïve Bayesian model. 

Training Filtering Model. In the third and final stage of the learning process, we train a 

filtering model at the so-called lexicographer file level of WordNet to prune unlikely starting 

synsets, leading to the word senses, for the given translation. More specifically, instead of 

dealing with very general and abstract concepts at the top level, the model classifies the given 

translation to some more specific and concrete semantic categories. This filtering aims to 

accelerate the process of word translation classification and to boost the performance by 

reducing the probability that the hierarchical WTC models set out on the wrong foot. 

In principle, hierarchical WTC models described in the previous section alone could resolve 

the sense ambiguity if implemented with a greedy path-finding algorithm. Nonetheless, it is 

likely that during the classification process, WTC models fail to make the correct branch 

prediction for the first few branching synsets at the higher level of WordNet hierarchy because 

their immediate hyponyms convey too general concepts. 

The <WordNet synset, TranslationList> pairs from Step (1) in Figure 2 are utilized to train 

the filtering model. The filtering model, a ME-based classification model, estimates 

associations between features of a given translation and some predefined outcome, in this case, 

the lexicographer files. Lexicographer files are semantic categories organized during the 

development of WordNet. In total, there are forty-five lexicographer files: twenty-six for nouns, 

fifteen for verbs, three for adjectives, and one for adverbs. As for features, we use the same 

feature sets previously described. 

While we construct a WTC model for each branching synset, we only train a single filtering 

model at the level of the lexicographer files in WordNet to filter out synsets whose associations 

with the given translations are smaller than θ (a threshold to be determined). Moreover, we also 
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use the smoothed sense frequency to reflect the importance of the translations of the frequent 

sense. 

3.3 Run-Time Translation Classification 

Once the WTC and filtering models are constructed, we are ready to classify translations to 

corresponding word senses in WordNet. We associate adequate senses with given translations 

using the procedure in Figure 4.  

 
Figure 4: Run-time classification algorithm. 

In Step (1) we retrieve the senses of the given English word e in WordNet as the candidate 

senses for disambiguation. Then, we expand translation f with its synonyms (at most N 

synonyms) by looking up a synonym thesaurus (Step (2)). The motivation of synonym 

expansion is to reduce the impact of rare translations (e.g., “寒玉” a translation of “moon”) on 

system performance. The features of the more frequently used translations (e.g., “月亮” and 

“月” for “moon”) usually are more effective and useful in classification because of their 

commonness and lexical characteristics. All of the translation synonyms will be considered in 

filtering (Step (4b)) and branch prediction (Step (7b)). 

In Step (3) and (4), we prune less likely senses via filtering model using the lexicographer 

files, or semantic categories, associated with them. The filtering model predicts the relatedness 

between features of the given translation (as well as each of its synonyms) and the semantic 

categories (Step (4b)). Since the given translation and its synonyms basically express similar 

concept, their predicted scores are weighted equally. The senses with averaged score less than a 

threshold θ are removed from the sense set in Step (4c). 

The remaining sense ambiguity is resolved using hierarchical WTC models (from Step (5) to 

(8)). In Step (5) branching synset, BS , whose immediate hyponyms each cover a subset of the 

remained candidate senses, is identified by examining the network of WordNet. As the 

algorithm proceeds, BS’s move downwards in the WordNet hierarchy as the ambiguity at upper 

levels is being resolved. The WTC model associated with BS is loaded in Step (6) to estimate 

the hyponym-translation association and predict the most likely branch ChosenBranch, 

satisfying { }arg max
ih i

score  for BS (Step (7b) and (7c)). In Step (8), we discard the sense 

whose inherited hypernyms do not include ChosenBranch in a greedy manner. The algorithm 

procedure ClassifyTranslation(e, f) 

(1) Senses = GetSenses(e) 

(2) TranslationSynonyms = GetSynonyms(f, N) ∪ {f} 

//Remove unlikely senses via filtering model 
   for each sense s in Senses 

(3)   c = GetCategory(s) 

(4a)  score = 0 

for each t in TranslationSynonyms 

(4b)     score += FilteringModel(c, GetFeatures(t)) 

     if score/#TranslationSynonyms < θ 

(4c)     Remove sense s from Senses 

//Greedily select the most probable branch at each branching node via hierarchical WTC models 
while #Senses > 1 

(5)   BS = GetBranchingSynset(Senses) 

(6)   WTCModel = Load WTC model associated with BS 

     for each hi in hyponyms of BS 

(7a)    scorei = 0 

       for each t in TranslationSynonyms 

(7b)      scorei += WTCModel(hi, GetFeatures(t))  

(7c)  ChosenBranch = hi with max score 

     for each sense s in Senses 

       if ChosenBranch is not an inherited hypernym of s 

(8)       Remove sense s from Senses 

(9) Return the only sense in Senses 
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continues until only one sense remains, then assigned to the given translation pair as the most 

relevant sense (Step (9)). 

4 Experimental Setting 

4.1 Data Sets 

We used the latest version of WordNet (i.e., WordNet 3.0) as our lexical hierarchy and trained 

our classification models on Sinica BOW, a English-Chinese WordNet. In our experiments, we 

focused on nominal synsets and hyponym/hypernym semantic relation defined in WordNet. On 

the other hand, we looked up 同義詞詞林 , a Chinese thesaurus for run-time synonym 

expansion. 

We randomly selected 500 nouns from SEMCOR, a subset of Brown Corpus, and manually 

translated them into Chinese via Longman English-Chinese Dictionary of Contemporary 

English. After removing the <word, translation> pairs already existing in the bilingual WordNet, 

300 translation pairs were randomly selected as our evaluation data, and 100 of them made up 

of our development data set for tuning system parameters and the rest our (outside) testing data. 

4.2 Models Compared 

In view of extending the existing bilingual WordNet, we propose a classification framework for 

categorizing the given translations from bilingual knowledge resources into suitable word 

senses, in which we deploy a filtering model (FM) and hierarchical WTC models (HM) 

obtained using the learning process in Section 3. In addition, translation synonym expansion 

(TS) is applied to reduce the impact of rare translations on system performance. To inspect the 

effectiveness of these modules, a baseline model and the models using our three main modules, 

HM, FM, and TS, are evaluated. Models compared are described as follows: 

� Baseline: For any given translation pair, the most frequent sense is returned. 

� HM: The translation is classified using only hierarchical WTC models. That is, the 

filtering threshold θ and the number of allowed translation synonyms N are both set to 

zero. 

� HM+FM: Unlikely word senses are pruned by FM prior to HM. θ is set according to the 

tuning process described in Section 4.4 and N is set to zero. 

� HM+TS: N additional translation synonyms are used in HM. No prior sense filtering is 

applied (θ is set to zero). 

� HM+FM+TS: The complete version of the proposed system, using all three components. 

4.3 Evaluation Metrics 

In this subsection, we introduce the metrics, Hit Rate and Mean Reciprocal Rank (MRR), for 

evaluating the performance of our system. 

Definition: The Top-n Hit Rate of a system S for a set of query translation pairs Q is the 

percentage of the pairs for which S returned at least one accurate sense (hit) among the top n 

returned senses. 

Example: Consider an example where, among the 10 sets of the returned senses (i.e., 10 

query translation pairs), 6 top-ranked and 2 second-place senses are confirmed accurate. The 

Top-2 Hit Rate of this system is then (6+2)/10 = 80%. 

Besides, to measure the effort needed for a user to locate a correct sense in the returned 

sense lists, systems are evaluated using MRR. MRR is a real number lying between 0 and 1, in 

which 1 denotes the accurate senses always occur at the first places. We report the MRR results 

to examine the possibility of our system being used to help lexicographers bridge new 

translations to word senses. 

Definition: The Reciprocal Rank of a system, for a translation pair p is defined as Rp
-1

, 

where Rp is the smallest rank of the correct sense assigned to p. The Mean Reciprocal Rank of 

the system is the average of the Reciprocal Rank values over all evaluated translation pairs. 
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4.4 Tuning Parameters 

We carried out pilot experiments on the development data set to tune the two parameters in our 

system: the filtering threshold, θ, and the number of allowed translation synonyms, N. 

The filtering threshold in our model influences the degree of pruning. To select a suitable θ, 

the performance, in this case, the accuracy of senses being rejected by the filtering model (P), 

the coverage of our rejected senses (R), and the combination of the two (F-measure
2
), of our 

filtering model was evaluated at different thresholds. 

Figure 5 summarizes the results. Based on the statistics in Figure 5, we set our filtering 

threshold to 0.04, at which the filtering model achieved highest F-measure, that is, most 

balanced performance between P (0.86) and R (0.59). 

 
Figure 5: Precision (P), recall (R), and F-measure at different filtering thresholds. 

To select an appropriate number for synonym expansion, we examined MRR of our model 

with respect to the number of translation synonyms expanded. Figure 6 shows that our model 

performed the best when at most two translation synonyms are allowed and that more 

synonyms did not lead to better results probably due to the noise introduced. In sum, we set the 

filtering threshold, θ, to 0.04, and the maximal number of allowed translation synonyms, N, to 2 

in our experiments. 

 
Figure 6: MRR of different N’s on developing data set. 

5 Evaluation Results and Discussion 

5.1 Experimental Results 

In experiments, 200 testing translation pairs were classified using the models described in 

Section 4.2. Table 1 summarizes the performance of different combinations of the three main 

system modules (i.e., HM, FM, and TS). 

Table 1: The evaluation results of different systems. 

System Top-1 Hit Rate (%) MRR 

Baseline 65 0.79 

HM 74 0.84 

HM+FM 75 0.83 

HM+TS 75 0.84 

HM+FM+TS 77 0.84 

                         
2 2*P*R/(P+R) 
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As suggested in Table 1, our proposed systems significantly outperformed the baseline in 

terms of Top-1 Hit Rate, which indicates that our classification strategy effectively and 

correctly assigned suitable word senses to given translation pairs. Among the four combinations 

of our system components, HM+FM+TS, a system with hierarchical WTC models, a filtering 

model, and synonym expansion, achieved the highest Top-1 Hit Rate, 77%, suggesting the 

WTC models benefited from sense pre-pruning and synonym expanding. On the other hand, the 

high MRR (0.84) pointed out that users (e.g., lexicographers) could often find the suitable word 

sense for the translation by looking at the first two senses in the ranked sense list generated by 

our model. 

We further examine the Top-1 Hit Rates for words with different numbers of senses (See 

Figure 7). As we can see, Top-1 Hit Rate declines against the number of sense per word, and 

our model outperformed the baseline at all sense counts and remained at 70% accuracy. Also, 

excluding the 30 monosemous words in the test set enlarged the difference between our system 

and the baseline (72% vs. 58%). 

 
Figure 7: Top-1 Hit Rates of words with different numbers of word senses. 

5.2 Error Analysis 

In the experiment of HM+FM+TS, 47 translation pairs out of 200 were wrongly classified. 

And errors can be mainly grouped into three types: one related to high word sense ambiguity, 

one descriptive translations, and one transliterations. 

Over 50% of the mislabeled translation pairs have more than 4 English word senses (the 

average number of senses per word was 4.4 in our test set), indicating that it is more difficult to 

assign correct senses to translation pairs with high degree of sense ambiguity. Nonetheless, our 

system still achieved much higher Top-1 Hit Rate (64%) in classifying the 73 translation pairs 

with more than 4 senses than the baseline (45%). 

Another major type of errors results from descriptive translations, referring to the cases 

where words are not translated but, to some extent, defined in another language. Take “factory” 

for example. Its common Chinese translation is “工廠”. However, “從事工業生產的場所” (a 

place for manufacturing) may be another, a descriptive one actually. Tokens of descriptive 

translations are likely to introduce noise (e.g., “的” in “從事工業生產的場所”), subsequently 

degrading the performance of our classification model. These descriptive translations might be 

correctly sense-labeled if more concise expression or translation is provided. For example, 

(recovery, “恢復健康”) originally mislabeled will be correctly assigned to the sense “gradual 

healing (through rest) after sickness or injury” if provided with “康復”, parts of “恢復健康”. 

Other errors are related to the fact that the given translations are transliterations. Our 

classification model aims to build relations between WordNet senses and translations, not 

transliterations. Transliterations usually reflecting the sound not the meanings of the words 

therefore hinder the model from functioning properly and accurately. An example 

transliteration in our test data is (trust, 托拉斯), and its adequate sense is “a consortium of 

independent organizations formed to limit competition by controlling the production and 

distribution of a product or service”. 
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6 Future Work and Summary 

Many avenues exist for future research and improvement of our system. For example, other 

potential features can be integrated into the classification framework, such as the translations of 

the glosses or the definitions of the word senses. Also, a simple procedure, which extracts 

content words or essential terms, our classifiers better at, from the explanatory or descriptive 

translations, can be employed prior to sense disambiguation or branch finding. Another 

interesting direction to explore is to further consider the context information of the given 

translations. For instance, the contexts of “植物” (green “plant”), e.g. “植物標本” and “有機植

物”, and “工廠” (manufacturing “plant”), e.g. “模型工廠” and “機械工廠”, are very different 

and they may be informative for sense determination. 

In summary, we have introduced a method for classifying a <word, translation> pair into an 

appropriate word sense in WordNet. Our goal is to automatically extend the scope of an 

existing bilingual WordNet by incorporating new translation pairs probably from dictionaries or 

parallel corpora. The method involves sense pre-filtering, hierarchical classification using ME-

based models, and translation synonym expansion. We have implemented and thoroughly 

evaluated the method as applied to word sense assignment. In our evaluation, we have shown 

that the method outperforms the baseline in terms of Top-1 Hit Rate and MRR, an indicator of a 

system’s potential in accelerating the process of lexicography. 
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