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Abstract. Negation and contrast transition are two kinds of linguistic phenomena which are 

popularly used to reverse the sentiment polarity of some words and sentences. In this paper, 

we propose an approach to incorporate their classification information into our sentiment 

classification system: First, we classify sentences into sentiment reversed and non-reversed 

parts. Then, represent them as two different bags-of-words. Third, present three general 

strategies to do classification with two-bag-of-words modeling. We collect a large-scale 

product reviews involving five domains and conduct our experiments on them. The 

experimental results show that incorporating both negation and contrast transition 

information is effective and performs robustly better than traditional machine learning 

approach (based on one-bag-of-words modeling) across five different domains. 
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1 Introduction 

Sentiment classification is a task to classify text according to sentimental polarities of opinions 

they contain (e.g., favorable or unfavorable). This task has received considerable interests in 

computational linguistic community due to its wide applications.  

In the latest studies of this task, machine learning techniques become the state-of-the-art 

approach and have achieved much better results than some rule-based approaches (Kennedy 

and Inkpen, 2006; Pang et al., 2002) . In machine learning approach, a document (text) is 

usually modeled as a bag-of-words, a set of words without any word order or syntactic relation 

information. Therefore, the whole sentimental orientation is highly influenced by the sentiment 

polarity of each word. Notice that although each word takes a fixed sentiment polarity itself, its 

polarity contributed to the whole sentence or document might be completely the opposite. 

Negation and contrast transition are exactly the two kinds of linguistic phenomena which are 

able to reverse the sentiment polarity. For example, see a sentence containing negation "this 

movie is not good" and another sentence containing contrast transition "this mouse is good 

looking, but it works terribly". The sentiment polarity of the word good in these two sentences 

is positive but the whole sentences are negative. Therefore, we can see that the whole sentiment 

is not necessarily the sum of the parts (Turney, 2002). This phenomenon is one main reason 

why machine learning often fails to classify some testing samples (Dredze et al., 2008).  

Fortunately, a language usually has some special words which indicate the possible polarity 

shift of a word or even a sentence. These words are called contextual valence shifters (CVSs) 

which can cause the valence of a lexical item to shift from one pole to the other or, less 

forcefully, even to modify the valence towards a more neutral position (Polanyi and Zaenen, 

2006). Generally speaking, CVSs are classified into two categories: sentence-based and 
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discourse-based (Polanyi and Zaenen, 2006). Sentence-based CVSs are responsible for shifting 

valence of some words in a sentence. The most obvious shifters are negatives, such as not, none, 

never, nothing, and hardly. These shifts usually reverse the sentiment polarity of some words. 

Other sentence-based shifters can be intensifiers (e.g., rather, very), modal operators (e.g., if), 

etc. Discourse-based CVSs often indicate the valence shifting in the context. Some connectives, 

such as however, but, and notwithstanding, belong to this type. 

In this paper, we mainly focus on sentiment shifting including negation and contrast 

transition because this kind of shifting often fully reverses the sentiment polarity and thus 

mostly reflects the weakness of those machine learning approaches based on one-bag-of-words 

modeling. Other types of shifting, for instance, intensification with intensifiers (e.g., rather, 

very) is capable of changing the intension of some words but would not reverse their polarities.  

Note that contrast transition is one special type of transition and is used to express 

contradiction or contrast when connecting one paragraph, sentence, clause or word with the 

other. It is distinguished from other types of transitions by different connectives. For contrast 

transitions, the connectives are some CVSs like however, but, and notwithstanding while others 

use some different connectives, e.g., conclusion transition takes the connectives like therefore, 

in a word, in summary, and in brief. 

To incorporate sentiment reversing information into a machine learning approach, we first 

segment the whole document into sub-sentences. We then partition them into two groups: one 

includes those called sentiment-reversed sentences and the other includes those called 

sentiment-non-reversed sentences. As a result, each document is represented as two-bags-of-

words rather than traditional one-bag-of-words. Finally, we propose the classification algorithm 

to do the classification on the text with two-bags-of-words modeling. 

The remainder of this paper is organized as follows. Section 2 introduces the related work 

on CVS applications in sentiment classification. Section 3 presents our approach in detail. 

Experimental results are presented and analyzed in Section 4. Finally, Section 5 draws our 

conclusions and outlines the future work. 

2 Related Work 

During recent several years, various of issues have been studied for sentiment classification, 

such as feature extraction (Riloff et al., 2006), domain adaptation (Blitzer et al., 2007) and 

multi-domain learning (Li and Zong, 2008). For a detailed survey of this research field, see 

Pang and Lee (2008). However, most studies directly borrow machine learning approach from 

traditional topic-based text classification and very few work are focus on incorporating 

linguistic knowledge that sentiment text particularly contains, e.g., valence shifting phenomena 

and comparative sentences (Jindal and Liu, 2006). 

Pang et al. (2002) first employ machine learning approach to sentiment classification and 

find that machine learning methods definitely outperform human-produced baselines. In their 

approach, they consider negation by adding the tag NOT to every word between a negation 

word (not, isn’t, didn’t, etc.) and the first punctuation mark following the negation word. But 

their results show that adding negation has a very negligible and on average slightly harmful 

effect on the performance.  

Kennedy and Inkpen (2006) check three types of CVSs: negatives, intensifiers, and 

diminishers and add their valence shifting bigrams as additional features. Their results show 

that considering CVSs greatly improve the performances of term-counting approach. But as far 

as machine learning approach is concerned, the improvement is very slight (less than 1%).  

Na et al. (2004) attempt to model negation more accurately and achieve a satisfactory 

improvement. However, they need to do part-of-speech to get negation phrases and their 

baseline performance itself is very low (less than 80%). 

Different from all the above work, our approach is easy to implement and need no additional 

features (e.g., bi-gram, part-of-speech tag). Furthermore, our approach is capable of considering 
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both negation and contrast transition. In our view, only considering negation is not enough 

since there are some negation sentences appear in a contrast transition structure. For example, 

this mouse is not good looking, but it works perfect and I like it. Apparently, only considering 

negation is still difficult to give an correct sentiment classification in this case. 

3 Our Approach 

3.1 Classification Algorithm 

In a standard machine learning classification problem, we seek a predictor f (also called a 

classifier) that maps an input vector x to the corresponding class label y. The predictor is 

trained on a finite set of labeled examples (X, Y) which are drawn from an unknown distribution 

D. The learning objective is to minimize the expected error, i.e., 

,

argmin  ( ( ), )
f X Y

f L f X Y
∈

= ∑
Η

                                                   (1) 

where L is a prescribed loss function and H is a set of functions called the hypothesis space, 

which consists of functions from x to y. 

As a linear classifier, the predictor takes the form ( ) T

i if X w X= . Then a regularized form of 

formula (1) is often used as below, which always has a unique and numerically stable solution 

2

2
,

ˆ argmin  ( , )
2

T

w X Y

w L w X Y w
λ

= +∑                                            (2) 

where 
2

2
w = Tw w  and λ is a non-negative regularization parameter. If 0λ = , the problem is un-

regularized.  

 

 

Figure 1: Standard online SGD algorithm 

 

Solving (2) with stochastic gradient descent (SGD), we get the standard SGD online 

updating strategy as following (Zhang, 2004) 
1

1 1 1 1
ˆ ˆ ˆ ˆ( ( , ) )T

t t t t t t t tw w S w L w X Y Xη λ−
− − −′= − +                                       (3) 

where 1( , ) ( , )L p y L p y
p

∂′ =
∂

 and ( , )t tX Y is the instance we are observing at the t-th step. The 

matrix S can be regarded as a pre-conditioner. For simplicity, we assume it to be a constant 

matrix. 0tη > is a appropriately chosen learning rate parameter. The whole algorithm is 

described in Figure 1 (Zhang, 2004). 

 

 

Algorithm (standard SGD) 

Initialize 
0ŵ  

for t=1,2, ... 

    Draw ( ,t tX Y ) randomly from D. 

    Update 
1

ˆ
tw −  as 

    1

1 1 1 1
ˆ ˆ ˆ ˆ( ( , ) )T

t t t t t t t tw w S w L w X Y Xη λ−
− − −′= − +  

end 
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3.2 Text Modeling 

In traditional text classification tasks, a text T (e.g., document, sentence) are modeled as one 

bag-of-words and the input vector of the text is constructed from weights of the words (also 

called terms) 1( ,..., )Nt t . In this paper, we focus on document-based sentiment classification. 

Specifically, the terms are possibly words, word n-grams, or even phrases extracted from the 

training data, with N being the number of terms. The weights are statistic information of these 

terms, e.g., tf, tf idf⋅ . Then the text T is represented as a vector ( )X T , i.e., 

1 2( ) ( ),  ( ),  ... ,  ( )NX T sta t sta t sta t=< >                                            (4) 
The output label y has a value of 1 or -1 representing a positive or negative sentiment 

polarity. 

As a special case of text classification, sentiment classification applies bag-of-words model 

directly for a long time. Although machine learning with this text modeling approach has 

shown to perform much better than some rule-based approaches, e.g., term-counting approach, 

the achieved performance is much worse than traditional topic-based text classification. 

Compared to topic-based classification, one big challenge in sentiment classification is that 

sentiment polarity of one word is not always consistent with the whole orientation of the text. 

Consider the following two sentences: 

a1. This is not a good movie and I hate it.  

a2. This is such a good movie and I do not hate it at all. 

Because they are represented as almost the same bag-of-words, their classification results 

would be the same when applying machine learning with one-bag-of-words modeling. But their 

sentiment polarities are obviously different from each other. Therefore, traditional bag-of-

words modeling is not appropriate for sentiment classification to some extent. 

Instead of considering a text as a bag-of-words, we propose a new text modeling approach 

which considers a text as two bags-of-words. Specifically, a text T, either for training or testing, 

is partitioned into two sub-texts: sentiment-reversed part reT and sentiment-non-reversed part 

nonT . Sentiment-reversed part ideally contains those sentences which holds words with the 

opposite sentiment polarity compared to the whole document’s. 

Formally, a text T consists of multiple sentences, i.e., 1 2( , ,..., )mT s s s= . Suppose each 

sentence takes a sentiment-reversed tagging V which represents whether it is a sentiment-

reversed sentence ( ( ) 1V s = ) or not ( ( ) 1V s = − ). Originally, every sentence is assigned the same 

tagging value of -1, i.e., ( ) 1o iV s = − , 1,2,...,i m= . 

3.3 Sentence Segmentation 

We assume the sentences as the basic text unit and each one would be assigned a tag. Actually, 

the ideal basic text unit should be something like clauses rather than sentences (we call them 

sub-sentences). For example,  

b1. This is not a good movie and I hate it. 

b2. I like it because I didn’t want to transfer video. 

Although these two sentences contain negation, it is unsuitable to put the whole sentence 

into the sentiment-reversed part. A better way is to first segment the sentences into sub-

sentences and assign each one the sentiment-reversed tagging. 

We implement a simple approach to segment a document into sub-sentences. First, we do 

segmentation merely with the punctuations, such as period, comma, and interrogation mark. 

Then, we use some manually-collected key words, such as and, because and since for further 

segmentation. These key words are used to introduce various complex sentences with clauses. 
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3.4 Sentiment-reversed Sentence Detection 

A language usually has some special words called CWSs to indicate possible sentiment shifting 

of a word or a sentence. As mentioned in the introduction, two kinds of CWSs are commonly 

used to indicate valence switching: negatives and contrast transition connectives. We would use 

these CWSs to tag sentence to be a sentiment-reversed sentence or not. 

If the sentence 
is  contains k negatives, we update the tagging value as following: 

( ) ( ) ( 1)kNeg i o iV s V s= × −                                                      (5) 

As for transition connectives, we first need to recognize which related sentences are possible 

to be sentiment-reversed. Different from negatives, each transition connective has its own rule 

to pick sentiment-reversed sentences around it. Here, we only focus on two transition 

connectives: but and however because they appear most frequently and more likely to really 

reverse the sentiment polarity. If the connective is but, the sentence before it might be sentiment 

reversing. If the connective is however, there might be not only one sentiment-reversed 

sentence before it. We only pick the nearest one as the sentiment-reversed sentence to avoid 

introducing too many noises. Overall, if the sentence is  appears before but or however, we 

update its tagging value as following: 

 ( ) ( ) ( 1)Tran i Neg iV s V s= × −                                                      (6) 

Then, we get the sentiment-reversed part 
reT and sentiment-non-reversed part nonT  as follows. 

1 2{ ( ) 1, ( , ,..., )}re Tran mT V s s s s s= = ∈                                           (7) 

and, 

1 2{ ( ) 1, ( , ,..., )}non Tran mT V s s s s s= = − ∈                                        (8) 

It is worth pointing out that the sentiment-reversed sentences obtained by our approach 

sometimes are not really sentiment reversed. This is due to some mistakes in sentence 

segmentation and reversed-sentiment detection. Meanwhile, some real sentiment-reversed 

sentences are not able to be recognized. Consider the following sentence:  

c1. It could have been a great product. I dislike it, however. 

The sub-sentence (I dislike it) before however is actually not sentiment-reversed but the 

previous sentence (It could have been a great product) is. In fact, recognizing those sentiment-

reversed sentences can hardly perform perfectly and it might be as difficult as sentiment 

classification itself. Nevertheless, our main objective here is to build an approach which is able 

to incorporate the sentiment reversing information. As a preliminary step, we try to recognize 

most sentiment-reversed sentences and decrease their influence to the whole sentiment. 

3.5 Sentiment Classification 

In this section, we propose three general strategies for classifying the text with two-bags-of-

words modeling: (1) remove the sentiment-reversed part; (2) tune the parameters of the 

sentiment-reversed part according to those learned from the sentiment-non-reversed part; (3) 

simultaneity learn both sentiment-reversed and sentiment-non-reversed parts.  

The first naive strategy, called remove strategy, is to directly remove the sentiment-reversed 

part considering that they might badly influence the whole sentiment. Accordingly, the text is 

represented as a bag-of-words which only contains the words in all sentiment-non-reversed text, 

i.e., nonT . Then, the words in nonT  are used to generate input vectors NX for each document. The 

learning objective is to minimize the following expected error 

2

2
,

ˆ argmin  ( , )
2n

T n
n n N n

w X Y

w L w X Y w
λ

= +∑                                                (9) 

In the testing phase, the label Y ′  of one sample NX ′  is estimated as 

ˆ( )T

n NY Sgn w X′ ′=                                                                (10) 
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Where ( )Sgn x is defined as 

1  0

( ) 0  0

-1  0

if x

Sgn x if x

if x

>


= =
 <

                                                            (11) 

The second strategy, called shift strategy, takes the same learning process as the first 

strategy in the training phase but perform different estimation in the testing phase. Since the 

sentences in the sentiment-reversed part are possibly expressing the reversed polarities, we 

would like to shift the parameters ˆnw when they are applied to the sentiment-reversed text. Thus 

the label Y ′  of one sample ( NX ′ , N reX −′ ) is estimated as 

ˆ ˆ( ( 1) )T T

n N n N reY Sgn w X w X −′ ′ ′= + − ⋅                                              (12) 

where N reX −′ represents the input vector of the sentiment-reversed text. Here, NX ′  and N reX −′ are 

generated from the same term set as the first strategy, i.e., the words in nonT . 

The third strategy, called joint strategy, simultaneity learning both sentiment-reversed and 

sentiment-non-reversed parts. In the training phase, the learning objective is to minimize the 

following expected error 

2 2

2 2
, ,

ˆ ˆ, argmin  ( , )
2 2n r

T T n r
n r n N r R re n r

w w X Y

w w L w X w X Y w w
λ λ

−= + + +∑                       (13) 

where R reX − represents the input vector of the sentiment-reversed text. Here, NX  and R reX − are 

generated from different term sets: the words in nonT  and in reT respectively.  

In the testing phase, the label Y ′  of one sample ( NX ′ , R reX −′ ) is estimated as 

ˆ ˆ( )T T

n N r R reY Sgn w X w X −′ ′ ′= +                                                (14) 

Although all strategies are expressed in terms of linear classifiers, the corresponding ideas 

for the first and third strategies are general for any other classification algorithms. Overall 

speaking, only the third one really utilizes both the reversed-sentiment and non-reversed 

sentiment information for learning. Also, it shares the similar computational complexity as 

traditional machine learning approaches based on one-bag-of-words modeling. 

4 Experimental Studies 

4.1 Experimental Setup 

Data Set:  There are some famous public data sets available for sentiment classification studies. 

Among them, Cornell movie-review dataset
1
 (Pang and Lee, 2004) and product reviews

2
 

(Blitzer et al., 2007) are most popularly used. Both of them are 2-category (positive and 

negative) tasks and each consists of 2,000 reviews in a domain. The results in some previous 

work are sometimes not consistent due to the application of different domains of reviews when 

negation is considered (Pang et al., 2002 and Na et al., 2004). Thus we follow the way of 

Blitzer et al. (2007) to collect more data involving data in our experiments. Specifically, we 

totally collect 5 domains of reviews from Amazon.cn, namely Book, Camera, HD (Hard Disk), 

Health and Kitchen. Each domain consists of 2,400 reviews and each category (negative or 

positive) contains 1,200 reviews. 

Experiment Implementation: We perform 5-fold cross validation in all experiments. That 

is to say, the dataset in each domain is randomly and evenly split into 5 folds. Then we use each 

                                                      

1
 http://www.cs.cornell.edu/People/pabo/movie-review-data/  
2
 http://www.seas.upenn.edu/~mdredze/datasets/sentiment/ 
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4 folds for training and the remaining 1 fold for testing. We use accuracy to measure the 

classification performances. 

Features: The features are single words with a BOOL weight (0 or 1), representing the 

presence or absence of a feature. 

Classification Algorithm: We use SGD linear predictors with Huber function as the loss 

function (Zhang, 2004). Compared to support vector machine (SVM), SGD linear classifier not 

only performs online learning but also gives comparable or even better results.  We compare 

the two classification algorithms with the Cornell movie-review data set (Pang and Lee, 2004). 

The 5-fold cross validation average results are 0.843 by SVM and 0.859 by SGD, from which 

we can see that SGD outperforms SVM (implemented with LIBSVM
3
 with linear kernel). 

Actually, similar conclusion can be found in Dredze et al. (2008). 

4.2 Distribution of Negation and Contrast Transition Sentences 

Before classification, each document is necessarily partitioned into two sub-texts: sentiment-

reversed part and sentiment-non-reversed part. To achieve that, we use some CVSs to classify 

those segmented sub-sentences into two categories: sentiment-reversed and sentiment-non-

reversed. Specifically, negatives are used to recognize the negation sentences and the 

connectives of ‘but’ and ‘however’ are used to recognize contrast transition sentences. First of 

all, let us see the distribution of these negation sentences and contrast transition sentences in 

our review corpus. 
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Figure 2: The proportion of negation (left) and transition (right) sentences in negative and positive 

reviews 

 

Figure 2 (left) shows the proportions of negation sentences to all sentences in negative and 

positive reviews respectively. The proportion is computed in each domain. From Figure 2, we 

can see that negation sentences occur frequently in reviews and are more likely expressed in 

negative reviews. The proportion of negation sentences in negative reviews is about 8%, which 

is about twice as the one in positive reviews. This result agrees with our general knowledge that 

people are more likely to use negation sentences when expressing their negative opinions. 

Figure 2 (right) shows the proportions of contrast transition sentences to all sentences in 

negative and positive reviews respectively. From this figure, we can also see that contrast 

sentences are more likely expressed in negative reviews than in positive reviews. Compared to 

negation sentences, contrast transition sentences are much fewer. 

 

                                                      

3 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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4.3 Classification Results with Different Strategies 

Table 1: The classification results of different strategies when only considering negation 

Negation Domain Baseline 

Remove Switch Joint 

Book 0.849 0.845 0.834 0.860 

Camera 0.920 0.912 0.907 0.924 

HD 0.934 0.929 0.917 0.946 

Health 0.841 0.830 0.819 0.854 

Kitchen 0.860 0.861 0.858 0.872 

 

Table 2: The classification results of different strategies when only considering contrast transition 

Transition Domain Baseline 

Remove Switch Joint 

Book 0.849 0.850 0.843 0.848 

Camera 0.920 0.924 0.917 0.930 

HD 0.934 0.934 0.930 0.939 

Health 0.841 0.848 0.845 0.854 

Kitchen 0.860 0.865 0.855 0.864 

 

Table 1 shows the classification results of different strategies when only negation is considered 

for sentiment-reversed sentence detection. Baseline shows the results of using all unigrams with 

one-bag-of-words modeling. Let us compare the results between the baseline and each strategy. 

First, comparing baseline and remove strategy, we find that simply removing all negation 

sentences is not helpful. Sometimes, the performances even decrease more than one percent 

(see the domain of health).  

Second, comparing baseline and switch strategy, we find that switch strategy is worse and 

always harmful for sentiment classification. This is different from our first thought of this 

strategy. But after close thinking of it, we would notice that assigning all the words a negative 

parameter, i.e., ˆ( 1)* Nw− in a sentiment-reversed sentence is not reasonable. In fact, it is only 

necessary to assign a positive parameter to those words which express sentiment. Moreover, 

some words are commonly used in both negation and non-negation sentences for expressing the 

same sentiment polarity. For example, see the word waste in the following two sentences. 

d1. It is a waste of your money. 

d2. Do not waste your money. 

Third, comparing to baseline, we find that joint strategy is successful and consistently 

improves the performance. But the improved performances in some domains are insignificant 

(less than 0.5% in camera). Therefore, it is not strange that the conclusions in Pang et al. (2002) 

and Na et al. (2004) is a little different from each other. Whether inducing negation is effective 

or not is influenced by the application domains.  
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Table 2 shows the classification results of different strategies when only contrast transition 

is considered for sentiment-reversed sentence detection. Let us compare the results between the 

baseline and each strategy respectively. 

First, quite different from the case of negation, simply removing the contrast transition 

sentences can always improve classification performances. We think this is mainly because the 

amount of transition sentences is much less than negation sentences. Removing them is 

beneficial for deleting classification noise without losing too much useful classification 

information. 

Second, switch strategy generally fails to improve the performance. It can only make very 

small improvement in the domain of health 

Third, joint strategy is still effective in dealing with contrast transition. However, some 

results are no better than remove strategy. 

Overall speaking, contrast transition is also helpful for classification. But the improved 

performances are a little lower than the ones by using negation. This is mainly because negation 

appears more often than contrast transition, which makes the sentences’ sentiment reversed 

more frequently. 

Table 3: The classification results of different strategies when considering both negation and 

contrast transition 

Negation + Transition Domain Baseline 

Remove Switch Joint 

Book 0.849 0.847 0.821 0.863 

Camera 0.920 0.919 0.900 0.930 

HD 0.934 0.923 0.913 0.946 

Health 0.841 0.848 0.812 0.864 

Kitchen 0.860 0.861 0.852 0.873 

 

Table 3 shows the classification results of different strategies when both negation and 

contrast transition are considered for sentiment-reversed sentence detection. Apparently, joint 

strategy is more powerful than the other two strategies and consistently achieves much better 

classification results than the baseline (The improved accuracy is no less than 1% in all 

domains). 

Comparing the results in Table 3 to the results in Table 1 or Table 2, we can conclude that 

considering both negation and contrast transition is generally a better choice than considering 

only one of them. 

5 Conclusion 

In this paper, we propose an approach for incorporating sentiment reversing information into 

machine learning based sentiment classification system. Specifically, we consider two kinds of 

linguistic phenomena: negation and contrast transition, which are popularly used to reverse the 

sentiment polarity. Experimental results on a newly collected corpus show that simply 

removing the contrast transition sentences is helpful but it is not effective for negation.  

Furthermore, we see that our approach with joint strategy is able to robustly improve the 

performances across all five domains. 

In our approach, we only use negation and contrast transition keywords to detect sentiment 

reversed sentences. In addition, there certainly exist some other structures which can reverse 

the sentiment polarity of a word or sentence. In our future work, we hope to find some more 
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effective detection approaches and consider more structures to recognize sentiment-reversed 

sentences. 
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