
Layer-Based Dependency Parsing*

Ping Jian and Chengqing Zong

Institute of Automation, Chinese Academy of Sciences

No. 95 Zhongguancun East Road, Beijing, 100190, China

{pjian, cqzong}@nlpr.ia.ac.cn

Abstract. In this paper, a layer-based projective dependency parsing approach is presented.

This novel approach works layer by layer from the bottom up. Inside the layer the

dependency graphs are searched exhaustively while between the layers the parser state

transfers deterministically. Taking the dependency layer as the parsing unit, the proposed

parser has a lower computational complexity than graph-based models which search for a

whole dependency graph and alleviates the error propagation that transition-based models

suffer from to some extent. Furthermore, our parser adopts the sequence labeling models to

find the optimal sub-graph of the layer which demonstrates that the sequence labeling

techniques are also competent for hierarchical structure analysis tasks. Experimental results

indicate that the proposed approach offers desirable accuracies and especially a fast parsing

speed.

Keywords: dependency parsing, dependency layer, sequence labeling

* The research work has been partially funded by the Natural Science Foundation of China under grant

No.60736014, 60723005 and 90820303, the National Key Technology R&D Program under grant No.

2006BAH03B02, the Hi-Tech Research and Development Program (863 Program) of China under grant No.

2006AA010108-4, and also supported by the China-Singapore Institute of Digital Media as well.

 Copyright 2009 by Ping Jian and Chengqing Zong

1 Introduction

Graph-based models (McDonald et al., 2005; McDonald and Pereira, 2006) and transition-

based models (Yamada and Matsumoto, 2003; Nivre and Scholz, 2004) are two dominant

paradigms in the dependency parsing community. McDonald and Nivre (2007) have made

elaborate analyses about the very different theoretical properties of these two kinds of models

and the corresponding experimental behaviors.

Generally, graph-based approaches learn a model for scoring possible dependency graphs of

an input sentence and apply exhaustive search algorithms to find the one that maximizes the

score. The unit graph-based models calculate is the whole sentence (the whole dependency

graph) both in training and inference procedures, which results in a cubic computational

complexity (in projective case). By contrast, transition-based approaches train a classifier to

greedily choose the best parsing action under the current parser state. They make decisions at a

configuration which is usually composed by a couple of focus tokens and the parsing contexts.

Therefore, these two kinds of dependency parsing methods represent the two extremes when

they seek the best dependency structure of the input sentence. In this paper, we adopt a

moderate structural granularity to calculate the parser: a dependency layer.

The dependency layer we mean here is a set of tokens whose dependency depth (the depth

of the dependency tree) is at most one. Inside the layer the dependency graphs can be searched

exhaustively while between the layers the parser state transfers deterministically. On one hand,

this design will decrease the computational cost for searching the whole tree like graph-based

models do; on the other hand, it may alleviate the error propagation resulting from the complete

no “search” outside the parsing configuration in transition-based models.

230

23rd Pacific Asia Conference on Language, Information and Computation, pages 230–239

It is well known that chunking, which is deemed to be a useful and tractable precursor to full

parsing, has been successfully handled by sequence labeling techniques (Kudo and Matsumoto,

2001; Sha and Pereira, 2003). Inspired by this scheme, we adopt the globally optimal sequence

labeling to search the best depth-one sub-graph in the dependency layer. We believe that the

line-typed sequential models are potent complementarities to the tree-typed hierarchical ones or

even the latent substitutes.

The experiments show that our layer-based parser yields comparable dependency attachment

accuracies to the state-of-the-art dependency parsers on both English and Chinese datasets.

Especially, it is quite efficient due to the layer-based search and sequence typed analysis. The

remainder of the paper is organized as follows: Section 2 describes the details of the algorithm

and feature set. Section 3 presents the experimental results. The related work is discussed in

Section 4. Conclusion and future work comprise Section 5.

2 Layer-based Parsing Approach

2.1 Algorithms

Wu et al. (2007) designed a neighbor parser to identify the neighboring parent-child relations

between two consecutive tokens in the input sentence. Following their framework we label the

dependency relations in our parsing layer. An example is shown in Figure 1(a). The first and

second columns represent the words and part-of-speech (POS) tags respectively. The third

column implies whether the token modifies its left neighbor (LH, left-headed) or right neighbor

(RH, right-headed) or neither (O). The string behind the character “_” indicates the dependency

type of the neighboring link.

Wu et al. (2007) employed linear chain conditional random fields (CRFs) as the labeling

algorithm to capture the higher order features and avoid the greedy search when labeling with

sequential classifiers (Cheng et al., 2006). To prevent the error propagation, they regarded the

labeling results as features of the subsequent parsing stage instead of reducing the child words.

However, this weakens the strength that neighboring parsing can provide. In our approach,

besides the CRF-based relation labeler, an additional tagger is introduced to examine whether a

dependent child can be reduced, i.e., whether it has found its head and has already been a

complete sub-tree. The reduce tagger tries to guarantee safe reductions and ensures the parsed

structures can be formed into a tree after several passes of analysis. In Figure 1(b), the letter “r”

in the rightmost column implies that the corresponding token will be reduced while others are

reserved for the next stage.

The reduce tagger is also trained by linear chain CRFs to fulfill the globally optimal

property of the layer-based labeling. Specially, when continuous attachments happen in the

same direction, only the lowest child token is reduced although other tokens in this chain are

complete sub-trees after the current labeling. This enables the tokens to change their

Figure 1: Example of (a) the sequential neighboring relation labeling, (b) the reduce decision labeling.

The DT RH_NMOD

chair NN O

of IN LH_NMOD

the DT RH_NMOD

conference NN O

declared VBD O

that DT RH_NOMD

decision NN O

The chair of the conference declared that decision

(b)

The DT RH_NMOD r

chair NN O o

of IN LH_NMOD o

the DT RH_NMOD r

conference NN O o

declared VBD O o

that DT RH_NOMD r

decision NN O o

(a)

231

attachments when the context is refreshed in the next layer. For example, in Figure 2, if the

parent word “of” and the child word “conference” are far from each other in the early parsing

stage, the child “conference” may be wrongly attached to the word “declared” (Figure 2(a))

because long distance interrelations are difficult to be caught in sequence labeling models. If

the tagger is learned to only reduce the lowest child token each time, i.e., the leftmost word

“the”, the word “conference” has the chance to adjoin “of” and be attached correctly at last

(Figure 2(b)).

As the dependency relations only exist between adjacent tokens and all the survivals will be

relabeled in the next layer, the dependency depth of the layer is at most one.

Pseudo-code of the parsing algorithm is given as follows:

Input sentence: w1, w2, …, wn
Initialize:

L = {w1, w2, …, wn};

have_reduce = false;
Start:
While |L|>1 do begin

x = get_feature (L);

y1 = estimate_relation (model1, x);

y2 = estimate_reduce (model2, x, y1);

 have_reduce = sign(count_reduce(y2));

 if(have_reduce == true)

 reduce (L, y2);

have_reduce = false;
 else break;
 end;
end.

At each processing stage, two functions, estimate_relation and estimate_reduce, are

employed to label the sequence L with neighboring dependency relations (y1) and reduce

decisions (y2). model1 and model2 are the pre-trained models accordingly. Then the parser

reduces the “r” tagged tokens and transfers them as the children features for the next labeling

stage. This process is repeated until there is no token to be reduced or the size of L equals 1.

The remaining parsing process for the example sentence in Figure 1 is illustrated step by step in

Figure 3 to give a more specific description of the algorithm.

Together with the initial labeling stage showed in Figure 1(b), the layer-based algorithm spends

five iterations, i.e., five layers to get the final dependency graph of the input sentence. In each

layer, the neighboring dependency relations and reduce decisions are traded off at different

chair the - O o

of - - LH_NMOD o

conference the - LH_PMOD r

declared - - O o

decision that - LH_OBJ r

chair the - O o

of - conference LH_NMOD r

declared - decision O o

chair the of RH_SUB r

declared - decision O o declared chair decision O o

Figure 3: The parsing process following the stage showed in Figure 1(b). The second column lists the left

child of the current token attached in the latest analysis and the third column is the right one.

of …

the RH_NMOD

conference RH_SUB ××××

declared …

of …

conference LH_PMOD √√√√

declared …

(a): (b):

Figure 2: Long dependency attaching error in neighboring relation labeling

232

sequence positions to obtain a globally optimal depth-one dependency sub-graph. Between the

layers, the pre-built structure is handed on through the surviving tokens as well as their children.

Since dependency relations only exist between two consecutive tokens, the child appearing in

the observation sequence is always the leftmost or rightmost one of the parent token. Previous

work based on deterministic models (Nivre and Scholz, 2004; Hall et al., 2007) has verified that

the information of the children at these positions is more useful than that of others.

For training, the parsing process described above is repeated on each sentence in the training

set to pick up instances on different layers.

In addition, the reduce examiner in the two-time labeling algorithm described above relies

too much on the relation labeling results since it takes the relation labels as features. Therefore,

a one-time labeling framework is introduced to be an alteration of the two-time labeling one.

Figure 4 shows an example. The strings in the third column are the integrated symbols of the

dependency relation labels and the reduce labels. Because the token whose head is not found

will not be tagged with “r”, a unique symbol “O” is enough to express this case.

2.2 Usage of N-best Searching Results

The algorithm described above stops the parsing process if there is no reduce label “r” in the

current layer. However, sometimes the fact is that the parser quits so early while the tree is not

well formed yet at that point. One reason is that the reduce tagger is more prone to assign an

“o” than an “r” due to the unbalanced training instances. Taking this into account, we use the n-

best searching results produced by the CRF-based labeler to amend.

Taking the two-time labeling for example, although there is no “r” assigned in the current

stage, the parsing process still continues if there is a relation annotated between the neighbors.

The parser will ask for the next best relation label sequence (y1’) and consequently estimate the

reduce labels based on it. But if y1’ is not assigned with relations, the parser will fall back on

the initial best labels (y1) and further request the next best reduce labels for y1. In our

experiments, only 2-best outputs of the labeler are utilized and the experimental results show

that it works well.

2.3 Feature Design

The features used in our labelers are summarized in Table 1. Features of the tokens and

children are prepared to parameterize the dependency attachment model. The relation features

are added when tagging the reduce decisions in two-time labeling case.

As a typical sequence labeling task, the features chosen for our parser are similar to those

adopted in (Sha and Pereira, 2003) for shallow parsing, and a first-order Markov dependency

between labels is considered.

Cheng et al. (2006) argued that the features and the strategies for parsing in the early stage

are different from parsing in the upper stages in bottom-up deterministic parsing approaches.

Because the initial stage parses “words” while the upper stages parse “phrases”. For this reason,

we improve the proposed parser to a model-divided one in which one model is only for the first

parsing layer and the other takes charge of the higher layers. The children features listed in

Table 1 will not be used to parameterize the first layer model.

The DT RH_NMOD_r

chair NN O

of IN LH_NMOD_o

the DT RH_NMOD_r

conference NN O

declared VBD O

that DT RH_NOMD_r

decision NN O

Figure 4: Integration of the relation and reduce labels

233

Table 1: Feature set for the neighboring parsing. w is the word and p is the POS tag of the token. lc and rc

represent the leftmost and rightmost child, and the dependency relation type of them uses typ. The relation

features like “RH_SUB” are denoted by rel. Digit bracketed marks the position of the token where the

feature is sampled, negative for the left and positive for the right. “�” denotes the combination.

Tokens w[-3], w[-2], w[-1], w[0], w[1], w[2], w[3]

p[-3], p[-2], p[-1], p[0], p[1], p[2], p[3]

p[-2] � p[-1], p[-1] � p[0], p[0] � p[1], p[1] � p[2], p[-1] � p[0] � p[1]

w[-1] � p[-1], w[0] � p[0], w[1] � p[1]

Children w_lc[0], w_rc[0]

p_lc[-1], p_rc[-1], p_lc[0], p_rc[0], p_lc[1], p_rc[1]

p[-1] � p_lc[-1], p[-1] � p_rc[-1], p[0] � p_lc[0], p[0] � p_rc[0], p[1] � p_lc[1], p[1] � p_rc[1]

typ_lc[-1], typ_rc[-1], typ_lc[0], typ_rc[0], typ_lc[1], typ_rc[1]

Relations rel[-3], rel[-2], rel[-1], rel[0], rel[1], rel[2], rel[3]

3 Experiments

To evaluate the effectiveness and efficiency of the layer-based approach, we conducted

dependency parsing experiments on both English and Chinese datasets.

The English experiments were carried out on the WSJ part of Penn Treebank (Marcus et al.,

1993). To match the previous work (Nivre and Scholz, 2004; Hall et al., 2006; McDonald and

Pereira, 2006), we used sections 02-21 for training, section 22 for development and section 23

(about 56,684 words) for testing. The head-finding rules employed by Yamada and Matsumoto

(2003) were adopted here to convert the constituent structures to dependency ones and a set of

12 dependency types was utilized as what Hall et al. (2006) did.
 1

 The POS tags for the

development and testing set were automatically assigned by MXPOST (Ratnaparkhi, 1996). A

tagging accuracy 97.05% was achieved on the testing set.

The Chinese experiments were evaluated on the Penn Chinese Treebank (CTB) version 5.0

(Xue et al., 2005). The corpus was split into training, development, and testing data as Duan et

al. (2007) did to balance the different resources. 16,079 sentences were for training, 803 for

development, and 1,905 (about 50,319 words) for testing. The head-finding rules and

dependency type set also followed Hall et al. (2006).
 2
 Gold standard POS tags were used.

Eight parsers involved in our main experiments are concisely introduced as following:

MaltParser (Nivre et al., 2006): adopts transition-based model described in (Nivre, 2004).

Here, MaltParser version 1.1 is employed.

Yamada03: our implementation of another typical transition-based model proposed in

(Yamada and Matsumoto, 2003).

MSTParser1: The first-order paradigm of MSTParser
3
 which implements the graph-based

models described in (McDonald et al., 2005; McDonald and Pereira, 2006). Version 0.2 is used.

MSTParser2: The second-order paradigm of MSTParser.

Duan07: A probabilistic parsing action model proposed by Duan et al. (2007) which globally

seeks the optimal action sequence above the transition-based model described in (Yamada and

Matsumoto, 2003) with beam search algorithm and employs SVMs for learning.

LDParser1: One of the layer-based dependency parsers which labels the relations and

reduce decisions at one time.

LDParser2: One of the layer-based dependency parsers which labels the relations and

reduce decisions separately.

1 The tree conversion and the arc labeling were implemented by Penn2Malt

 (http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html) with the “Malt” hard-coding setting.
2 It was realized by Penn2Malt with the head-finding rules it provided for Chinese and the hard-coding setting.
3 http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html

234

LDP1div: LDParser1 using divided models. In our experiments, the first layer instances in

the training set are used to train the first layer model while the instances on all of the layers are

trained for the higher layer model.

The first five models are taken as the baselines in the experiments and the last three ones are

the proposed parsers to be compared.

The results are evaluated by the unlabeled attachment score (UAS), labeled attachment score

(LAS), root accuracy (RA) and complete match (CM) according to Nivre and Scholz (2004)

except that RA is the proportion of sentences in which the root word is correctly identified. All

the metrics are calculated excluding the punctuations besides CM. We also present the detailed

comparisons with the baselines in aspects of the computational complexity and the testing time

(the CPU time). All the experiments were done on a 32-bit Intel Xeon 2.33GHz processor.

3.1 English Results

In the English experiments, all the parsers listed above except Duan07 were compared. For

MaltParser, we chose the arc-eager algorithm (Nivre, 2004) and the feature set which got the

best performance for English in (Hall et al., 2006) (the feature model Φ5 in their work). Hall et

al. (2006) reported that the SVMs learning algorithm outperformed memory-based learning

(MBL) on this feature set and could parse faster. It is the same case for Chinese. Therefore,

SVMs were used for both our English and Chinese experiments. We also compared the split

MaltParser which utilizes the efficient Classifiers Splitting in the experiment where the POS

tag of the next input token was selected for splitting and the split threshold was 1,000. For

Yamada03, the optimal feature context window size six was chosen and the dependency

relation type of the child tokens was added into the feature set. The model was also trained

dividedly according to the POS tag of the left target token. For MSTParser, we tried to

reproduce the results in (McDonald et al., 2005) and (McDonald and Pereira, 2006) by using

the 5-best projective parsing algorithm and not including punctuations in Hamming loss

calculation.

Considering the training cost, only the features that occur more than twice were modeled in

LDParser1 and LDP1div. The combination of the children features and the combination

between the word and POS features in Table 1 were also omitted.

The final results are compiled in Table 2. n denotes the length of the input sentence and R is

the number of the dependency types appearing in the corpus. The complexity of LDParser is a

constant multiple of R
2
n

2
 according to the labeling strategies (one or two times labeling).

Table 2: Parsing results on the English testing set

Parser UAS (%) LAS (%) RA (%) CM (%) Complexity Testing time

MaltParser

MaltParser (split)

Yamada03 (split)

MSTParser1

MSTParser2

LDParser2

LDParser1

LDP1div

89.68

89.52

89.59

91.03

91.72

88.60

89.16

89.68

88.48

88.19

88.72

89.78

90.46

87.34

87.91

88.43

84.73

84.81

85.11

94.21

94.41

87.96

88.70

89.16

33.69

33.77

34.15

35.72

39.53

31.13

32.62

33.90

O(n)

O(n)

O(n
2
)

O(n
3
)

O(n
3
)

O(R
2
n

2
)

O(R
2
n

2
)

O(R
2
n

2
)

2hour 46min

10min 20sec

20min 8sec

6min 58sec

9min 44sec

1min 18sec

2min 6sec

1min 58sec

Among the three proposed parsers, LDParser1 outperforms LDParser2 and LDP1div is the best

one. Concerning the terms for parent-prediction accuracies and sentence complete matching,

the LDParsers perform similarly to the transition-based models but exceed them more in root

accuracy. Thanks to the global search over the whole dependency tree the graph-based models

realized by MSTParser gain the best performance among the competitors on the English dataset.

However, considering the parsing efficiency, the LDParsers are quite competitive. They have

235

lower complexity than graph-based models and accordingly parse faster than them under the

current implementations in projective case. Transition-based models can be implemented in

linear time but SVMs which have been proved to achieve the highest performance in parser

learning (Cheng et al., 2005; Wang et al., 2006) are not regarded as fast algorithms especially
when the number of classes is large. The Classifier Splitting heuristic strategy and SVM

speeding up methods (Goldberg and Elhadad, 2008) are gold choices to accelerate these

implementations. However, even considering these cases, the parsing speed of the proposed

LDParsers (up to 480 English words per second) is still desirable. Moreover, the speed boosting

of SVMs is usually accompanied with the decrease of the accuracies or more memory

consumption.

3.2 Chinese Results

We compared LDParser (LDP1div) with MaltParser, Yamada03, MSTParser and Duan07 in the

Chinese experiments. Arc-standard algorithm (Nivre, 2004) is adopted in MaltParser because

the experiments on the development set revealed that it got a higher performance than the arc-

eager one. We also used the best Φ5 feature set in Hall et al. (2006) for Chinese and the setting

of classifier splitting was kept the same as what it was for English. So were the feature model

and splitting for Yamada03. All the settings for Chinese experiments of MSTParser were not

changed from English ones except the 1-best parse set size. The results on the development set

indicated that the k-best (k>1) models did not surpass the 1-best one remarkably.

Only the features that appear more than once were utilized in LDP1div. Table 3 illustrates

the parsing accuracies and speeds.

Table 3: Parsing results on the Chinese testing set. The complexity of Duan07 is O(BKn
2
), where B is the

beam size of beam-search algorithm and K is the number of action steps in PAPM (Duan et al., 2007)

Parser UAS (%) LAS (%) RA (%) CM (%) Testing time

MaltParser (split)

Yamada03 (split)

MSTParser1

MSTParser2

Duan07

LDP1div

83.82

83.91

83.39

85.23

84.38

83.44

82.15

82.44

81.75

83.47

82.94

81.89

73.54

70.38

70.76

75.70

71.28

70.29

32.55

31.32

26.30

31.81

32.17

29.66

22min 42sec

27min

10min 28sec

15min 40sec

9hour 57min

1min 53sec

The scores in Table 3 imply that LDParser is comparable to first-order MSTParser for Chinese

parsing and a little weaker than transition-based approaches. The reason is that the transition-

based models are more suitable for Chinese parsing than English because of the richer feature

representations. This is also the reason why LDParser catches up with MSTParser on Chinese

dataset. The optimal sub-graphs are delivered deterministically between the layers in LDParser

which makes the parser be able to use the dependency graph pre-built. Duan07 which added

global search to Yamada03 obtains further better performance.
4

Similar to the experiments for English，LDParser spends the shortest time. It parses

Chinese sentences about 450 words per second. Moreover, the gaps between the speeds of

LDParser and others’ consistently increase. For example, LDP1div is about 8 times faster than

MSTParser2 and 15 times faster than split MaltParser while it was both 5 times faster in the

English experiments. We think it is partially due to the character encoding mechanism in the

Java implementation of MaltParser and MSTParser. Another reason is that the average sentence

length of the Chinese testing set is 26.4 words, which is longer than that of English (23.5).

Profiting from the layer-based search and sequence typed analysis, LDParser handles long

4 The rank of the parsers under the metrics of parsing accuracies in Table 3 is not quite the same as what was in

Duan et al. (2007). It is because the dependency structures of the data were differently converted in our

experiments.

236

sentences more efficiently. The global search of the transitions adopted in Duan07 makes the

parser the most laggard one.

3.3 Additional Results

To further study the character of the layer-based parser, we present two additional results in this

section. Table 4 illustrates the unlabeled attachment scores (UAS) of different dependency

lengths in the English parsing experiment. The dependencies are calculated separately

according to their length, equal to 1 (the neighboring relations), shorter than 3 or longer than 3.

The threshold is chosen in terms of the average dependency length of the corpus which is 3.28.

Table 4: Unlabeled attachment scores of different dependency lengths on the English dataset

Parser =1 ≤ 3 > 3

MaltParser

MSTParser2

LDP1div

94.24

94.67

94.56

93.09

93.59

93.07

73.92

83.23

74.53

The moderate behavior of LDParser in neighboring attachment accuracy demonstrates that the

globally optimal sequence labeling is competent for neighboring relation parsing compared

with the tree-typed hierarchical ones. It even exceeds the transition-based parser. For the long

dependencies, LDParser also does well than the transition-based one which verifies that the

global search inside the parsing layer lightens the error propagation in transition-based models.

By keeping partial parsing history through factoring over adjacent edge pairs of the

dependency tree, the second-order MSTParser performs the best both for short and long

dependencies. Making use of the pre-built structures, LDParser achieved a similar performance

as MSTParser for short dependencies but gets worse for long ones. It is because LDParser is

still a deterministic model in nature, the error propagation is unavoidable when the

dependencies grow long. Another reason is that the higher layers are not modeled separately

from each other in the current LDParser and it depresses the disambiguation ability of the

model for higher layer parsing.

We further examined the behaviors of the parsers on long sentences. 171 sentences with

more than 40 words in the English testing set were tested and the results are listed in Table 5.

The percentages represent the decrease of the speed when parsing the long sentences. Taking

both the dependency accuracy and root accuracy into account, LDParser is almost the same as

MaltParser. Although MSTParser is still the best, the parsing speed has dropped a lot (57%)

when sentences grow long. Contrarily, there is only 8% slower for LDParser to parse these

sentences which further implies that the layer-based approach is not sensitive to the length of

the sentences and can be more efficient for long sentences than other parsers compared.

Table 5: Results for sentences longer than 40 words. 8,019 words were analyzed in the experiment.

Parser UAS RA Testing time

MaltParser (split)

MSTParser2

LDP1div

87.34

89.84

86.58

71.92

94.74

78.95

1min 45sec (17%)

3min 11sec (57%)

18sec (8%)

4 Related Work

Actually, as a bottom-up framework the proposed approach is a little similar to the model

proposed by Yamada and Matsumoto (2003) which employed a shift-reduce algorithm with

multiple passes over the input. The transitions in this model are greedily selected at each parser

state, i.e., configuration, from the left to the right during the parsing pass. To remove the greedy

properties in the transition-based models, Johansson and Nugues (2007) and Duan et al. (2007)

added a global search over the transition sequences. Our approach also uses multiple passes

237

(layers) to form the dependency tree, and integrates global search like Johansson and Nugues

(2007) and Duan et al. (2007) did to find the optimal combination of dependency relations.

However, they scored all the graph space as what graph-based models do while we focalized it

in a parsing layer for the sake of efficiency. In addition, they inherited the hierarchical

analyzing mechanism used in transition-based models but our parser introduced the sequence

labeling technique.

Some existing work tried to combine the graph-based and transition-based models for

dependency parsing. Sagae and Lavie (2006) built a graph-based model to reparse a

dependency graph of which the arc scores were created by the outputs of three transition-based

parsers. Hall et al. (2007) followed Sagae’s methodology and blended six transition-based

parsers. This kind of combinations can be seen as a structural voting of the graph-based and

transition-based models. A more effective integration was developed by Nivre and McDonald

(2008) who treated the outputs of one model as features for the other. However, all these

combination approaches just made use of the outputs of the component parsers without

modifying their structures or parsing algorithms. It is quite different from ours. Our parsing

framework inherits the benefits of the graph-based and transition-based models with both new

structure and algorithm.

Cheng et al. (2006) and Wu et al. (2007) used neighboring dependency attachment taggers to

improve the performance of the deterministic parser. In Cheng’s method, neighboring relations

were decided by greedy sequential SVM-based classifiers and the tagging results were

delivered directly to continue the subsequent parsing. Wu et al. (2007) adopted CRFs as the

dependency learner and accepted the results of the neighboring parsing as features to increase

the original feature set. In their parsers, the neighboring relation tagger was just a preprocessor,

while ours works throughout the whole parsing process. We have proved that it can also work

well just relying on the neighboring relation taggers for parsing.

5 Conclusion

In this paper, we proposed a novel bottom-up layer-based dependency parsing approach. It

takes a dependency layer as the parsing unit and works as a discriminative “graph-based” parser

inside the layer while a deterministic “transition-based” parser between the layers. The CRF-

based sequence labeling algorithm is adopted entirely to build the dependency structures. The

experimental results confirm the effectiveness and efficiency of the proposed parser and they

also proved that the sequence labeling techniques can be good substitutes to tree-typed ones for

hierarchical structure analysis tasks.

Efforts are going to be made to improve the parsing accuracy of the proposed parser. More

sophisticated labeling models for the higher layers and finer feature combinations are in

investigating. As only consecutive words are considered, nonprojective case is not yet well

dealt with in our approach. It is left to be another future work.

References

Cheng, Y., M. Asahara and Y. Matsumoto. 2005. Machine learning-based dependency analyzer for

Chinese. Proceedings of the International Conference on Chinese Computing, pp. 66-73.

Cheng, Y., M. Asahara and Y Matsumoto. 2006. Multi-lingual dependency parsing at NAIST.

Proceedings of the Conference on Computational Natural Language Learning, pp. 191-195.

Duan, X., J. Zhao and B. Xu. 2007. Probabilistic models for action-based Chinese dependency

parsing. Proceedings of the European Conference on Machine Learning and theEuropean

Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 559-566.

Goldberg, Y. and M. Elhadad. 2008. SplitSVM: fast, space-efficient, non-heuristic, polynomial

kernel computation for NLP applications. Proceedings of the Annual Meeting of the Association

for Computational Linguistics, pp. 237-240.

238

Hall, J., J. Nivre and J. Nilsson. 2006. Discriminative classifiers for deterministic dependency

parsing. Proceedings of the 21
st
 International Conference on Computational Linguistics and 44

th

Annual Meeting of the Association for Computational Linguistics, pp. 316-323.

Hall, J., J. Nilsson, J. Nivre, G. Eryiğit, B. Megyesi, M. Nilsson and M. Saers. 2007. Single Malt or

blended? A study in multilingual parser optimization. Proceedings of the 2007 Joint Conference

on Empirical Methods in Natural Language Processing and Computational Natural Language

Learning, pp. 933-939.

Johansson, R. and P. Nugues. 2007. Incremental dependency parsing using online learning.

Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning, pp.1134-1138.

Kudo, T. and Y.Matsumoto. 2001. Chunking with support vector machines. Proceedings of the

North America Chapter of the Association for Computational Linguistics, pp. 192-199.

Marcus, M. P., B. Santorini and M. A. Marcinkiewicz. 1993. Building a large annotated corpus of

English: the Penn Treebank. Computational Linguistics, 19(2): 313-330.

McDonald, R., K. Crammer and F. Pereira. 2005. Online large-margin training of dependency

parsers. Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp.

91-98.

McDonald, R. and F. Pereira. 2006. Online learning of approximate dependency parsing algorithms.

Proceedings of the European Chapter of the Association for Computational Linguistics, pp. 81-

88.

McDonald, R. and J. Nivre. 2007. Characterizing the errors of data-driven dependency parsing

models. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning, pp. 122-131.

Nivre, J. 2004. Incrementality in deterministic dependency parsing. Proceedings of the Annual

Meeting of the Association for Computational Linguistics, pp.50-57.

Nivre, J. and M. Scholz. 2004. Deterministic dependency parsing of English text. Proceedings of the

International Conference on Computational Linguistics, pp. 64-70.

Nivre, J., J. Hall and J. Nilsson. 2006. MaltParser: a data-driven parser-generator for dependency

parsing. Proceedings of the International Conference on Language Resources and Evaluations,

pp. 2216-2219.

Nivre, J. and R. McDonald. 2008. Integrating graph-based and transition-based dependency parsers.

Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp. 950-

958.

Ratnaparkhi, A. 1996. A maximum entropy model for part-of-speech tagging. Proceedings of the

Conference on Empirical Methods in Natural Language Processing, pp. 133-142.

Sagae, K. and A. Lavie. 2006. Parser combination by reparsing. Proceedings of the North America

Chapter of the Association for Computational Linguistics, pp. 129-132.

Sha, F. and F. Pereira. 2003. Shallow parsing with conditional random fields. Proceedings of the

North America Chapter of the Association for Computational Linguistics, pp. 213-220.

Wang, M., K. Sagae and T. Mitamura. 2006. A fast, accurate deterministic parser for Chinese.

Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp.425-432.

Wu, Y., J. Yang and Y. Lee. 2007. Multilingual deterministic dependency parsing framework using

modified finite Newton method support vector machines. Proceedings of the 2007 Joint

Conference on Empirical Methods in Natural Language Processing and Computational Natural

Language Learning, pp. 1175-1181.

Xue, N., F. Xia, F. Chiou and M. Palmer. 2005. The Penn Chinese Treebank: phrase structure

annotation of a large corpus, Natural Language Engineering, Cambridge University Press, 11(2):

207-238.

Yamada, H. and Y. Matsumoto. 2003. Statistical dependency analysis with support vector machines.

Proceedings of the International Conference on Parsing Technologies, pp. 195-206.

239

