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Abstract. This paper proposes a convolution tree kernel-based approach for relation 
extraction where the parse tree is expanded with entity features such as entity type, subtype, 
and mention level etc. Our study indicates that not only can our method effectively capture 
both syntactic structure and entity information of relation instances, but also can avoid the 
difficulty with tuning the parameters in composite kernels. We also demonstrate that 
predicate verb information can be used to further improve the performance, though its 
enhancement is limited. Evaluation on the ACE2004 benchmark corpus shows that our 
system slightly outperforms both the previous best-reported feature-based and kernel-based 
systems. 

Keywords: Information Extraction; Kernel-based Relation Extraction; Support Vector 
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1. Introduction 
Information extraction is an important research sub-field in natural language processing (NLP) 
which aims to identify relevant information from large amount of text documents in digital 
archives and the WWW. Information extraction subsumes three main tasks, including Entity 
Detection and Tracking (EDT), Relation Detection and Characterization (RDC), and Event 
Detection and Characterization (EDC). 

This paper will focus on the ACE RDC task1 and employ kernel method to extract semantic 
relationships between named entity pairs. Many feature-based approaches transform relation 
instances into feature vectors of high dimension, and compute the inner dot product between 
these feature vectors. Current research (Kambhatla 2004, Zhao et al 2005, Zhou et al. 2005, 
Wang et al. 2006) shows that it is very difficult to extract new effective features from relation 
examples. Kernel methods are non-parametric estimation techniques that computer a kernel 
function between data instances. By avoiding transforming data examples into feature vectors, 
kernel methods can implicitly explore much larger feature space than could be searched by a 
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feature-based approach. Thereafter, kernel methods especially on discrete structures (Haussler 
1999) attract more and more attentions in relation extraction as well as other fields in NLP.  

Prior work on kernel methods for relation extraction includes Zelenko et al. (2003), Culotta 
and Sorensen (2004), Bunescu and Mooney (2005). Due to strong constraints that matching 
nodes be at the same layer and in the identical path starting from the roots to the current nodes, 
their kernels achieve good precision but much lower recall on the ACE2003 corpus. Zhang et al. 
(2006) proposed a composite kernel that consists of two individual kernels: an entity kernel that 
allows for entity-related features and a convolution parse tree kernel that models syntactic 
information of relation examples. However, their method needs to manually tune parameters in 
composite kernels that are often difficult to determine. 

This paper describes an expanded convolution parse tree kernel to incorporate entity 
information into syntactic structure of relation examples. Similar to Zhang et al. (2006), we 
employ a convolution parse tree kernel in order to model syntactic structures. Different from 
their method, we use the convolution parse tree kernel expanded with entity information other 
than a composite kernel. One of our motivations is to capture syntactic and semantic 
information in a single parse tree for further graceful refinement, the other is that we can avoid 
the difficulty with tuning parameters in composite kernels. Evaluation on the ACE2004 corpus 
shows that our method slightly outperforms the previous feature-base and kernel-based methods. 

The rest of the paper is organized as follows. First, we present our expanded convolution tree 
kernel in Section 2. Then, Section 3 reports the experimental setting and results. Finally, we 
conclude our work with some general observations and indicate future work in Section 4. 
 

2. Expanded Tree Kernel 
In this section, we describe the expanded convolution parse tree kernel and demonstrate how 
entity information can be incorporated into the parse tree. 
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Figure 1: Different representations of a relation instance in the example sentence “in many 
cities, angry crowds roam the streets.”, which is excerpted from the ACE2004 corpus, where a 
relation “PHSY.Located” holds between the first entity “crowds”(PER) and the second entity 
“streets” (FAC). 
 
 We employ the same convolution tree kernel used by Collins and Duffy (2001), Moschitti 
(2004) and Zhang et al. (2006). This convolution tree kernel counts the number of subtrees that 
have similar productions on every node between two parse trees. However, the kernel value will 
depend greatly on the size of the trees, so we should normalize the kernel.  
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From ACE definition on relation types and subtypes, we know that entity features impose a 
strong constraint on relation types. For example, PER-SOC relations describe the relationship 
between entities of type PER. Zhang et al. (2006) described five cases to extract the portion of 
parse tree for relation extraction. Their experiments show that PT (Path-enclosed Tree) achieves 
best performance among those cases, so we begin with PT and then incorporate entity features 
at different locations as depicted in Figure 1. The four cases is listed as follows: 
(1) Compressed Path-enclosed Tree (CPT, T1 in Fig.1): Originated from PT in Zhang et al. 

(2006), we further make two kinds of compression. One is to prune out the children nodes 
right before the second entity under the same parent node of NP. The other is to compress 
the sub-structure like “X-->Y-->Z” into “X-->Z” in the parse trees. 

(2) Bottom-attached CPT (B-CPT, T2 in Fig.1): the entity type information is attached to the 
bottom of the entity node, i.e., two more nodes whose tags are “TP” are added under the 
first and the second entity nodes respectively. 

(3) Entity-attached CPT (E-CPT, T3 in Fig.1): the entity type name is combined with entity 
order name, e.g. “E1-PER” denotes the first entity whose type is “PER”. This case is also 
explored by Zhang et al. (2006), and we include it here just for the purpose of comparison.  

(4) Top-attached CPT (T-CPT, T4 in Fig.1): the entity type information is attached to the top 
node of the parse tree. In order to distinguish between two entities, we use tags “TP1” and 
“TP2” to represent the first entity type and the second entity type respectively. 

From the above four cases, we want to evaluate whether and how the entity information will be 
useful for relation extraction and in what way we can embed the entity information (especially 
the location where we attach) in the parse tree in order to achieve the best performance. 
 

3. Experiments 

3.1.Experimental Corpus and Setting 
We use the ACE RDC 2004 corpus as our experiment data. The ACE RDC 2004 data contains 
451 documents and 5702 relation instances. It defines 7 entity types, 7 major relation types and 
23 subtypes. The portion of training data we use contains 347 documents, 121K words and 4307 
relations. Evaluation of kernel is done on the training data using 5-fold cross-validation. First, 
the corpus is parsed using Charniak’s parser (Charniak, 2001). Then, we iterate over all pairs of 
entity mentions occurring in the same sentence to generate potential relation instances. 

We choose SVM (Vapnik 1998) as the binary classifier, since SVM has achieved the state-of-
the-art performances for many classification problems like text categorization (Joachims 1998). 
For efficiency, we apply the one-against-others approach to convert binary classifier to multi-
class classifier. The final decision of a relation instance in the multi-class classification is 
determined by the classifier which has the maximal SVM output. In our implementation, we use 
the binary-class SVMLight (Joachims, 1998) and Tree Kernel Tools (Moschitti, 2004). For 
comparison with the composite kernels (Zhang et.al. 2006), our training parameter C (SVM) 
and λ (tree kernel) are set to 2.4 and 0.4 respectively. 
 

3.2.Experimental Results 
In this section, we present and analyze the experimental results with respect to different settings. 
(1) Different instance representations 
According to the above discussion, we select CPT with entity order information as our baseline 
to try to discover whether and how entity information will be effective to relation extraction. In 
order to reduce training time, we only add major type information into the parse tree. Table 1 
compares the performance of seven major types for three different setups in the ACE2004 
corpus using expanded convolution tree kernel. It shows that: 
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 Using convolution parse tree kernel only embedded with entity order information achieves 
the performance of 67.8%/52.3%/59.0 in precision/recall/F-measure. This indicates that 
convolution parse tree kernel is somewhat effective for relation extraction. 

 Compared with CPT, other three setups B-CPT, E-CPT and T-CPT improve the F-measure 
by 8.5/10.1/10.5 units respectively due to the increase both in precision and recall. This 
shows that entity major type information incorporated into the parse tree of relation instances 
produces significant improvement for relation extraction. This further suggests that our parse 
tree kernel can effectively capture both the entity information and the structured syntactic 
information of relation examples. 

 Among the three different instance representations except CPT, the T-CPT (highlighted in 
bold font) achieves slightly better performance of 2.0/0.4 units in F-measure than the other 
two representations B-CPT and E-CPT respectively. This may be due to the following reason. 
From the definition of the convolution parse tree kernel, we introduce a decay factor λ (set to 
0.4 here) to make the kernel less dependent on the tree size. However, this factor also 
decreases the contribution of the entity information on the kernel when they are attached to 
the bottom of the entity. 

 
Table 1: Performance of seven major types for four different kernel setups in the ACE2004 
corpus using expanded convolution tree kernel. 

  P R  F  
CPT 67.8 52.3 59.0 
B-CPT 75.1 61.4 67.5 
E-CPT 76.4 63.1 69.1 
T-CPT 76.0 64.0 69.5 

 
(2) Different entity features 
In addition to entity type, there are many other entity features about an entity, e.g. subtype, 
mention level, entity class etc. Do they have different contributions to relation extraction? We 
will answer this question in the following.  
 
Table 2: Contribution of different entity features over seven major types in the ACE2004 
corpus using the above T-CPT kernel. The asterisk on the upper right of the feature means this 
entity feature can greatly improve the performance while the minus sign means the entity 
feature doesn’t increase the performance and should be removed from the feature set in the next 
round. 

  P R  F  
CPT 67.8 52.3 59.0 
+major type* 76.0 64.0 69.5 
+subtype* 77.6 64.9 70.7 
+mention level* 79.0 66.4 72.2 
+entity class(-) 79.1 66.2 72.1 
+GPE role(-) 79.1 66.5 72.2 
+head word(-) 80.1 64.7 71.6 
+LDC type(-) 78.9 65.9 71.8 
+predicate base 79.2 67.4 72.8 

 
Table 2 reports the contribution of different entity features over seven major types in the 
ACE2004 corpus using the above T-CPT kernel. It indicates that our system achieves the best 
performance of 79.0%/66.4%/72.2 in precision/recall/F-measure when combining some of the 
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entity features. In order to measure the contribution of different entity features we add them one 
by one in the decreasing order of their potential importance. It also shows: 

 Entity type feature is very effective for relation extraction and it increases precision/recall/F-
measure by 8.2%/11.7%/10.5 units respectively.  

 Entity subtype feature improves the F-measure by 1.2 units. This further shows that 
gracefully defined entity type and subtype features in the ACE2004 corpus contribute to 
most of the performance improvement among all entity features. 

 Mention level feature is also useful and increases the F-measure by 1.5 units while both 
entity class and GPE role feature are futile because they don’t lead to any improvement in F-
measure. 

 Other two entity features (i.e. “head word”, “LDC mention type”), however, both decrease 
the performance by 0.6/0.4 units in F-measure respectively. This suggests that both of these 
features can’t differentiate relation types from each other and their incorporations into parse 
tree make relation extraction even more difficult. 

 In the last experiment (highlighted in bold and italic font) we add the base form of the 
predicate verb nearest to the second entity mention. Although it only improves the F-
measure by 0.6 units largely due to the increase in recall, it indicates that moving verbs from 
the bottom to the top of the parse tree is helpful to relation extraction. This also suggests that 
constructing a parse tree that contains all necessary features and is designed specifically for 
relation extraction is very promising.  

 
(3) Different relation lexical condition 
In ACE vocabulary, relation lexical condition indicates the syntactic structure where the entity 
pair relates to each other. There are five relation lexical conditions in the ACE2004 corpus, i.e. 
“Possessive”, “Preposition”, “PreMod”, “Formulaic” and “Verbal”. Table 3 separately measures 
the recall performance of different relation lexical condition on one of the testing sets in the 
ACE2004 corpus. It also indicates the number of testing instance, correctly classified instances 
and wrongly classified instances for each condition respectively.  
 
Table 3: Recall of different lexical conditions on the testing data in the ACE2004 corpus 

  #Testing 
Instances

#Correct 
Instances

#Error 
Instances Recall 

Possessive 158 135 23 85.4 
Preposition 215 146 69 69.3 
PreMod 250 199 51 79.6 
Formulaic 71 55 16 77.5 
Verbal 174 42 132 24.1 

 
This table shows: 

 The recall performance is best in the condition “Possessive”. This may be largely due to 
consistency of syntactic structure for this condition in the ACE2004 corpus.  

 It is somewhat surprising that our system performs worse than we expected in the condition 
“Formulaic”, since we think that there should be several fixed patterns for this condition. 
The reason may be that there are many syntactic errors in the parse trees produced by 
Charniak’s parser although this parser represents the-start-of-art in parsing.  

 Finally our system achieves surprisingly lowest performance in the condition “Verbal” 
although they occur frequently in the testing data. This may be that the syntactic structure 
in this condition is diverse and it contains too much noise in this kind of parse tree. It also 
suggests that much more noise needs to be pruned out from the parse tree while the key 
relation structure should remain in this condition. 
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 (4) Comparison with recent work 
Table 4 compares our system with recent work on the ACE2004 corpus. It shows that our 
system slightly outperforms recently best-reported systems. Compared with the composite 
kernel (Zhang et al, 2006), our system further prunes the parse tree and incorporates entity 
features into the convolution parse tree kernel. It shows that our system achieves higher 
precision, lower recall and slightly better F-measure than their method. Compared with feature-
based systems (Zhou et al, 2006 and Zhao et al, 2005) that incorporate many lexical, syntactic 
and semantic features, our system improves the F-measure by 1.8/2.5 units over relation types 
respectively. This suggests that kernel-based systems can promisingly outperform feature-based 
systems, although much work like performance enhancement and reduction of training speed 
still needs to be done to further improve the system. 
 
Table 4: Comparison of our system with other best-reported systems in the ACE RDC 2004 
corpus using 5-fold cross-validation (Note: * for feature-based) 

Relation Detection RDC on Types   
P R F P R F 

Ours: 
SVM (expansion kernel) 86.3 73.4 79.3 79.2 67.4 72.8 

Zhang et al (2006): 
SVM (polynomial expansion) - - - 76.1 68.4 72.1 

Zhou et al (2005): 
SVM (polynomial kernel)* 89.0 66.6 76.2 82.8 62.1 71.0 

Zhao et al (2005): 
SVM (composite polynomial)* - - - 69.2 70.5 70.3 

 

4. Conclusion and Future Work 
In this paper, we have designed a convolution parse tree kernel expanded with entity features 
for relation extraction using Support Vector Machines. Evaluation on the ACE2004 corpus 
shows that the expanded convolution parse tree kernel achieves better performance on relation 
extraction than recent feature-based and kernel-based systems. This may result from the 
following reasons: First, syntactic structure information of relation examples is very useful and 
can be effectively captured by the convolution parse tree kernel, therefore the convolution parse 
tree alone achieves comparable performance on relation extraction. Second, the expanded 
convolution parse tree incorporated with entity features significantly improves performance. 
And the higher we put entity feature node in the parse tree, the better performance we can get. 
We also discover that entity type feature contributes to most of performances improvement 
while some other features such as “head word” or “GPE role” conversely decrease the 
performance. Last, compared with other recent systems, performance enhancement of our 
system is limited, for many parse errors still exist both in short-distance relations and long-
distance relations even though the Charniak’s parser we use in our system represents the-state-
of-the-art in full parsing. This suggests that the parser needs to be further improved in order to 
provide more accurate syntactic structure information. 

In the future work, we will try to construct a dynamic relation tree to reflect both the syntactic 
structure and semantic information more accurately. First, we will further prune out the noise 
from the parse tree according to linguistic knowledge especially for lexical condition “Verbal”. 
Second, more weight will be assigned to discriminative features no matter where they are 
located (e.g. entity features, predicate verb and preposition etc) to reflect their contributions. 
Last, we will use semantic resources such as WordNet to compute semantic similarity between 
terminal words (e.g. noun for entity and verb for predicate respectively) in the parse tree. 
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