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Abstract    
In the paper, an effective technique, based on the non-uniform redistribution probability for 

novel events (the unknown events), to improve the smoothing method in language models is 
proposed. Basically, there are two processes in the smoothing methods: 1) discounting and 2) 
redistributing. Instead of uniform probability assignment to each unseen events used by most 
smoothing methods, we propose new technique to improve the redistribution process. Referring 
to the probabilistic behavior of all seen events, the redistribution process for novel events in our 
method is non-uniform. The proposed technique is exploited on well-known and frequently-used 
Good-Turing smoothing method. The empirical results are demonstrated and analyzed for two 
n-gram models. The improvement is apparent and effective for smoothing methods, especially on 
higher unseen event rate. 

Keywords: Language model, Smoothing method, Good-Turing, Cross entropy,   
Non-uniform Redistribution. 

 

1. Introduction 
1.1 Statistical language Models  

In many domains of natural language processing (NLP); such as speech recognition [1], grammar 
parser [4], document retrieval [17] and machine translation [Brown]; the statistical language 
models (LMs) [6], [10] plays an important role in natural language processing. The LMs can be 
exploited, for instance, to decide the correct target word sequence w . As shown in Fig. 1 of a 
speech recognition system, the P(W) is the conditional probability of a word sequence W given a 
speech data S, where W=w1w2w… wm is a possible translation of texts, m is word number of M.  
The predicted sequence w  can be expressed: 

)()|(maxarg)|(maxarg WPWSPSWPW
ww

∂==       (1) 

where )|( WSP∂  is the probability of input speech given a word sequence W.  
   A language model is regarded as the probability distribution over events or token sequences 
(texts) that models how often each sequence occurs as a sentence. Chain rule is used to 
decompose probability prediction: 
                                                                 
* Correspondence author. 
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where mw1  denotes the word sequence with m words.  
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Fig. 1: LMs in speech recognition system. 
 
1.2  n-gram Model 

Because of the finite training corpora in real world and to reduce the parameter space of word 
feature in languages, the approximate probability of a given word by using the (n-1)th preceding 
words is used to estimate sequence W.  

The probability model with various n can be written:             

                (3) 
where wi-n+1 denotes the history of n-1 word for word wi. 

In many applications, the models for n=1, 2 and 3 are called unigram, bigram and trigram 
models [1], [8] and [16], respectively.   
   In Eq. (3), the probability for each event or token can be obtained by training the bigram 
model (for clarity, bigram model is illustrated). Therefore the probability of a word bigram will 
be written as: 
                  ,                    (4) 
 
where C(wi) is the count of word wi appeared in training corpus. The probability P of Eq. (4) 
refers to the relative frequency and such method is called maximum likelihood estimation (MLE).   

1.3 Smoothing Issue in Language Models  
As shown in Eq. (4), C(‧) of a novel word, which don’t occur in the corpus, may be zero 
because of the limited training data and infinite language. It is always hard for us to collect 
sufficient datum. The potential issue of MLE is that the probability for unseen events is exactly 
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zero. This is so-called the zero-count problem. It is obvious that zero count will lead to the zero 
probability of P(‧) in Eqs. (3) and (4).  
   The prediction of zero probability of certain event is unreliable and unfeasible for most 
applications, especially for language models. The smoothing techniques [3], [4], [11] and [19], 
are essential and employed by language mode to overcome the issue zero count of traditional 
language models, as described above.  
There are many smoothing methods, such as Add-1, Good-Turing [6], deleted interpolation [7], 
Katz [13], etc. There are several literatures discussing about smoothing methods [3], [4], [12], 
[14], [15], [16] and [18]. 

2. Smoothing Processes in LMs 
The adjustment of smoothed probability for all possibly occurred events involves discounting and 
redistributing processes: 

2.1 Discounting Process 

The probability of all seen and unseen events is summed to be one (unity). First operation of 
smoothing method is the discounting process, which discount the probability of all seen events. It 
means that the probability of seen events will be decreased a bit.  

 The adjustment can be divided into two types: static and dynamic. Static smoothing methods, 
as most smoothing methods, discount the probability based on the frequency of events in trained 
corpus. However, dynamic smoothing method, i.e., cached-based language, discounts the 
probability based on the frequency of seen events in cache and trained corpus.  

2.2 Redistributing  Process  

In this operation of smoothing algorithm, the escape probability Pesc obtained from all seen 
events will be redistributed to all unseen events. Pesc is usually shared by all the unseen events. 
That is, Pesc is redistributed uniformly to each unseen event, Pesc/U, where U is the number of 
unseen events of a language model. In other hand, each unseen event obtains same probability 
based on the uniform distribution.      

The redistribution process of most well known smoothing methods, such as Add-1, Absolute 
discounting, Good-Turing, Delete interpolation, Back-off and Witten-Bell, and so on. The escape 
probability Pesc (or called probability mass assigned to all unseen events) is uniformly shared by 
all unseen events. It is a possible factor that affects the performance of smoothing algorithm. 
There are little previous papers discussing how to redistribute the escape probability Pesc, and how 
the different redistribution can improve the smoothing methods for language models.  

3. Improving the Smoothing Process 
3.1 Interval Behavior of Seen Events Count 
As described in the section 2, there are two main processes for smoothing methods; discounting 
and redistributing. In the redistributed process, the escape probability Pesc is shared uniformly by 
all unseen events for most smoothing methods, each event obtain same smoothed probability 
Pesc/U. Based on the observation of behaviors for seen events, each event has its probability 
relying on the event frequency in the training corpus. It is obvious that the probability distribution 
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for each event is quite different. Therefore, It is unreasonable to assign same probability to each 
incoming unseen events.  

As shown in Fig. 2, the figures draw the frequency interval (offset) between two new 
successive events for two models; Chinese character word unigrams and bigrams. There are 
100M (108) Chinese characters for source training data. The sentences in source are segmented 
into words and 65M (65*106) words are obtained. The length of word is 1.45 Chinese characters  
per word in average.    

The recourse files are randomly selected and we obtain the offset diagrams. More than 100 
training processes are implemented and then the final curve can be obtained in average. The 
regression curves Y1 and Y2 for Chinese word unigram and character bigram models can be 
described as follows: 

 
Y1 = 1E-10x3 - 4E-06x2 + 0.0307x - 39.825                     
Y2 = -1E-16x4 + 2E-11x3 - 6E-07x2 + 0.0058x - 3.7502 
 
where x and y denotes the data size the offset. 

An idea for redistributing escape probability Pesc  is that how many tokens read- in while the 
next new event will occur? It means the count interval between two successive events, which 
vary usually with the training data N. Basically, the larger the training data N, the larger, and the  
interval. In the beginning of training phase, next new events will occur in short interval of count. 
It means that next new event will occur rapidly at smaller N while slowly at larger N. 
The larger the training data N is, the larger the offset (interval) is. It is apparent that the. The 
regression curves present the general interval of original intervals and its trend increased 
gradually. Note that the regression curves varied with N and flatter at the beginning and steeply 
at end of curves. 

 

 
Fig. 2: the interval (offset) between two successive events varied with training data;  

(left) word unigrams, (right) character bigrams. 
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3.2 Redistributing Process for Unseen Events 
As described above, the regression curves from seen events can be used to demonstrate the 
interval of unseen events. Based on the curves derived from the seen events occurrence, we can 
furthermore derive the behaviors for estimating the probability assigning to the next incoming 
unseen event. Note that all the probability for seen and unseen events should be unity; which 
must satisfy the basic statistical condition. 
   Supposed that the interval yi on training data Ni, the distribution for all unseen events can be 
as follows:  
                               

        (6) 
 
 
where yi denotes the interval on location i in Fig. 2 and U denotes the types of unseen events. 1/yi 
can be regared as the derivatives at yi and as the probability for unseen events.      
   The smoothed probability assigning to an unseen event Ui is: 
           .                          (7) 
      

Referring to Eqs (6) and (7), the total smoothed probability for all unseen events is Pesc. The 
probability for all seen and unseen events are summed as unity.  

 

4. Evaluation  
Our proposed method will be evaluated on the well-known and popular smoothing Good-Turing 
technique.  The cut-off value for word count is usually used to improve the technique. Based on 
the empirical results, we can obtain best cut-off value on various training data N.   

4.1 Basic Idea of Good-Turing Method 
Good-Turing method is a well-known and effective smoothing technique, which was first 
described by I. J. Good and A. M. Turing in 1953 [7] and used to decipher the German Enigma 
code during World War II. Some previous works are in [4] and [9]. Notation nc denotes the 
number of n-grams with exactly c count in the corpus. For example, n0 represent that the number 
of n-grams with zero count and n1 means the number of n-grams which exactly occur once in 
training data.  

The redistributed count c* for Good-Turing smoothing will be presented in term of nc, nc+1  
and c as follows: 
      .      .                      (8) 

  

4.2 Best Cut-off Value in Good-Turing Smoothing Method 
In the most previous works of smoothing methods, they discussed the situation the possible event 
types B were much larger than the training data N 1)( <<N/B , such as words trigram models in 
English text or character trigrams in Mandarin. However, the situation 1or  1 /B ≅>> N/BN  
should be considered in certain applications. For instance, the event types B for Chinese character 
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bigram is close to 1.69*108 while the training data size N, in general, is usually less than 1*108. 
In such case, the ratio of N/B is close to 1. 

The cut-off value co for event count is used to improve the Good-Turing Smoothing, as 
shown in previous section. The best co on various training data N should be analyzed to obtain 
better improvement, shown in next section. 

4.3 Data Sets and Empirical Models  
      In the following experiments, two text sources are collected from the news texts and 
Academic balanced corpus (ASBC); the former and the later contain 100M and 10M Mandarin 
characters, respectively. We construct two models to evaluate the cross entropy CE of the 
technique to improve smoothing process; word unigrams model (word length is 1.45 characters 
in average) and Chinese character bigrams. The cross entropy is calculated on various data size N 
in our experiments.   
   Comparing uniform with non-uniform redistribution probability for unseen events, Fig. 3 and 
Fig. 4 display the cross entropy (CE), unseen event rates and improvements of different cut-off co 
on various N for word unigram and character bigram models, respectively. The best cut-off co 
can be found on various N for both models. For the word unigrams model, it is apparent that the 
best CE improvement reaches near 1.8% at N=0.5M, and the effectiveness decreases while the N 
is larger, as shown in Fig. 3. For bigram model, the best CE improvement reaches near 14.3% at 
N=1M, and the effectiveness decreases while the N is larger, as shown in Fig. 4. 

Both models reach lower CE while the cut-off and non-uniform redistribution technique are 
exploited.  It can improve better, especially on higher unseen event rate. 

 

 
Figure 3: the cross entropy, unseen event rates and improvements on different cut-off co  

on various N for word unigram model. 
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unseen event rate and CE improvement for bigram models
based on the regression curve
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Figure 4: the cross entropy, unseen event rates and improvements on different cut-off co  

on various N for character bigram model. 
 

5. Conclusions 
In the paper, we have proposed an effective technique, based on the non-uniform redistribution 
probability for novel events, to improve the redistribution process in smoothing method of 
language models. The smoothing method is used to resolve the zero count problems in traditional 
language models.  The cut-off co for event count is used to improve the zero nc issue of 
Good-Turing Smoothing.   

Based on the probabilistic behavior of seen events, the redistribution process exploited by 
our technique is non-uniform. The improvements discussed in the paper are apparent and 
effective on Good-Turing smoothing methods.   

Empirical results are demonstrated and analyzed for two language models to evaluate the 
proposed technique methods discussed in the paper; Chinese word unigrams, character bigram 
model. The cross entropy can be reduced in these two models.  
Both models reach lower CE for various cut-off co on different training data N and non-uniform 
redistribution probability are used. Two methods can improve better, especially on higher unseen 
event rate. In other word, we can improve especially the CE for application with small training 
data N. The best CE improvement reaches 1.8% and 14.3% for word unigrams and character 
bigram models. 
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