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Abstract

Part-of-speech tagging for a large corpus is a labour intensive and time-consuming task. In order
to achieve fast and high quality tagging, algorithms should be high precision and in particular, its
tagging results should require less manual proofreading. In this paper, we proposed a
context-rule model to achieve both the above goals for pos tagging.

We compared the tagging precisions between Markov bi-gram model and context-rule
classifier. According to the experiments, context-rule classifier performs better than those two
other algorithms. Also, it covers the data sparseness problem by utilizing more context features,
and reduces the amount of corpus that is need to be manual proofread by introducing the
confidence measure.

1	 Introduction

Part-of-speech tagging for a large corpus is a labour intensive and time-consuming task. In order to
achieve fast and high quality tagging, algorithms should be high precision and in particular, its tagging
results should require less manual proofreading. There is lots of work on part-of-speech tagging such as
Hidden Markov Models (HMMs), Maximum Entropy Models (MEs), and Support Vector Machines
(SVMs), etc. Most of works addressed on the high accuracy of tagging results only. In this paper, we
proposed a context-rule model to achieve both the above goals for pos tagging.

2 Tagging Algorithms

In this study, we are going to test two different tagging algorithms based on same training data and
testing data. The two tagging algorithms are Markov bi-gram model, and context-rule classifier. For
Markov bi-gram model, we propose a new form named word-dependent Markov bi-gram model, which
will be described later. The training data and testing data are extracted from Sinica corpus, a 5 million
word balanced Chinese corpus with pos tagging (Chen et al., 1996). The confidence measure will be
defined for each algorithm and the best accuracy will be estimated at the constraint of only a fixed
amount of testing data being proofread.

It is easier to proofread and make more consistent tagging results, if proofreading processes were
done by checking the keyword-in-context file for each ambivalence word and only the tagging results of
ambivalence word need to be proofread. The words with single category need not be rechecked their pos
tagging. For instance, in Table 1, the keyword-in-context file of the word '1111:F9: (research), which has
pos-categories of verb type VE and noun type Nv, is sorted according to its left/right context. The
proofreader can see the other examples as references to determine whether or not each tagging result is
right. If all of the occurrences of ambivalence word have to be rechecked, it is still too much of the work.

The common terms used in the following tagging algorithms were defined as follows:
Wk	 The k-th word in a sequence

Ck	 The pos-category associated with k-th word wk
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ilig(DE)	 *16,-(VH) fi)fR(Nv)	 vt 40(Na)
(Dfa)	 wrE(VJ)	 iiffR(Nv)	 (Nv)
(Na)	 frEM(Na) ifFR(VE)	 (Na)

ki_1(VCL)	 w4(Nc) iffri,(VE) A(Nes)
.71( 3)	 ift-f4(VH) ii):FR(VE)	 (PERIODCATEGORY)

1-rkit(Na)ffif4(VH) lifFR(VE)	 (PERIODCATEGORY)
W(D)	 MV4(VH) ii)M(Nv)	 (PERIODCATEGORY)

Z(DE)
(COMMACATEGORY)
1. 'tj (Nb)

t{h(Na)

Table 1 Sample keyword-in-context file of the words 'z sorted by its left/right context

141,Cn
	 A word sequence containing n words with their associated categories

respectively

2.1 Markov Bi-gram Model
The most widely used tagging models are part-of-speech n-gram models, in particular bi-gram and
tri-gram model. In a bi-gram model, it looks at pair of categories (or words) and uses the conditional
probability of P(ck I ck_1 ) , and the Markov assumption is that the probability of a category occurring

depends only on the one category before it.
Given a word sequence wo...wn , the Markov bi-gram model calculates the probability of each

candidate category ck for a target word wk by P(ck I ck_i ) P(wk I ck ). There are two approaches to

estimate the statistical data for P(ck ck_i ) . One is to count all the occurrences in the training data,

called general Markov model, and another one is to count only the occurrences in which each wk occurs,

called word-dependent Markov model. We compared the two different approaches of Markov bi-gram
model with the proposed context-rule model algorithm in the experiments.
2.2 Context-rule Model
The conventional Markov n-gram models utilize the features of categories of context words and the
probability distribution of the categories of target words. In fact, for some cases the best pos-tags might
be determined by other context features, such as context words instead of the categories. In the
context-rule model, we extend the scope of the dependency context of a target word into its 2 by 2
context windows. Therefore the context features of a target word wo can be represented by the vector of

[w_2 , c_2 , w_1 , c_1 , w1 , ci ,w2 , c2 ] . Each feature vector may be associated with one or more pos-tags. The

association probability of the candidate category c; is P(c;Iwo , feature vector). If for some ( wo ,

the value of P(co wo , feature vector) is not 1, it means that the pos of wo cannot be uniquely

determined by its context vector. Some additional features have to be incorporated to resolve the
ambiguity. If for some word wo , all of its pos c; such that the value of P(c'o I wo , feature vector) is zero

which means there is no training examples with the same context vector of wo . If the full scope of the

context feature vector is used, data sparseness problem will seriously hurt the system performance.
Therefore partial feature vectors are used instead of full feature vectors. The partial feature vectors
applied in our context-rule classifier are w_1 , w1 , c _2c , c1 c2 , c_1 cl ,w_2 c_1 , w_l c_i , and c1 w2 .

At the training stage, for each feature vector type many rule instances will be generated. For
instance, with the above applied feature vector types, we can extract rule patterns of w _1 (%), w1 (2,

c _2 c _1 (Nb, Na), ci c2 (Ng, COMMA), ... etc, associated with the category VE of target word 'FR

research' from the following sentence:
Tsou (Nb) 	  Mr (Na) ifFR research (YE) zn after (Ng) ' (COMMA)

" After Mr. Tsou has done his research,"
By investigating all training data, different rule patterns will be generated, and their association

probabilities P(c'olwo , feature vector) are also derived. For instance, If we take those word sequences
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Word Meaning Characteristics

-r an expletive in the Chinese high frequencyg get, be about to average distribution of candidate categories
w5f., research high inconsistence of context information
aV change simply two candidate categories

,--MI- interview, gather material low frequency 

Nffi perform extreme low frequency
Table 2 Target words used in the experiments

listed in Table 1 as training data and c _lci as feature pattern, and set .. research' as target word, we

would train with a result containing a rule pattern = 	 PERIOD) and derive the probabilities of

P(VE (VII, PERIOD)) = 2/3 and P(.1VV I (Y1-1,PERIOD))= 1/3. Suppose that the target word wo

has ambiguous categories of cl , c2 c , and the context patterns of patterni , pattern 2 ,..., pattern m,

then the probability to assign tag c i to the target word wo is defined as follows:

P(c1 I w, pattern),)

Y=m1	 n
y, y, P(ex I w, pattern),)
x=1 y=1

In other words, the probabilities of different patterns with the same candidate category are
accumulated and normalized by the total probability distributed to all candidates as the probability of the
candidate category. The algorithm will tag the category of the highest probability.

3 Experiment Results

The Sinica corpus is separated into two parts as our training data and testing data. The training data is
randomly generated and utilizes 90% of the corpus, while the testing data is the remaining 10% part.
Some ambiguous words' frequencies in the corpus are too low so that neither the context-rule algorithm
nor the word-dependent Markov model is able to tag them well. Those words should be processed by
other generic tagging algorithms. Therefore, we picked up words that its frequency is equal to or greater
than 10 only as the target words in the experiments. The six ambivalence words with different
frequencies, listed in Table 2, were picked as our example target words to see the performance of each
tagging algorithm on words with different characteristics.
Some words like .. interview' and `.. perform' have too low frequencies to have enough training data.

To solve the problem of data sparseness, the Jeffreys-Perks law, or Expected Likehood Estimation
(ELE), is introduced as the smoothing method for all evaluated tagging algorithms. To smooth for an

unseen pattern	 wn , the probability PO411 ,...,1410 is defined as 	  , where
N+.13.1,

C(wi,...,wn) is the amount that the pattern occurs in the training data, and N is the total amount of all
training patterns, and B denotes the amount of all pattern types in training data and A denotes the
default occurrence count for an unseen pattern. The most widely used value for A. is 0.5, which is also
applied in the experiments.
The Markov bi-gram model was evaluated to be compared with our context-rule model. Markov

bi-gram model looks the category of the target word and categories before/after the target words. That is,
given a word sequence w1 ,...wn , it calculates the probability of each candidate category ck for a target
word wk by P(ck I ck_1 ) P(e lc+, I Ck) P(wk I ck ). In the experiments, we evaluate the probabilities of
P(ck Ic k_1 ) and P(c k+1 I c k ) by two different approaches. One is to train all the sequences in the

training data, and another one is to train only the sequences in which each wk occurs.
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Word General Markov Word-Depend. Markov Context-Rule
T 96.95 % 97.92 % 98.87 %

;f4 93.47 % 93.17 % 95.52 %
FR 80.76 % 79.28 % 81.40 %

EzV 87.60% 89.92% 93.02%

"iii 68.06 % 63.89 % 77.78 %
Affi 41.67 % 66.67 % 66.67 %
Avg. of 6 words 94.56% 95.12% 96.60%
Avg. of all words 91.07 % 94.07 % 95.08 %

Table 3 Precision rates between evaluated tagging algorithms

The evaluated result is shown in table 3. The comparison of two approaches to evaluating P(c k I ck_i )

and P(C k+i 
I

C k ) in Markov model shows that using word-dependent context features is better than using

all context features. The proposed context-rule model has higher precision rate than the Markov models.

4 Confidence Measure and Reduction on Manual Proofreading

The accuracy of a tagging result is usually estimated by the tagging precision of the algorithm. However
the report precision of automatic tagging algorithm is about 95% to 96% (Chang et al., 1993; Lua, 1996;
Liu et al., 1995). A better accuracy can be achieved if the tagging results are manually proofread. If we
can pinpoint the errors, only 4-5% of the corpus has to be revised. Since it is not known where
occurrences of errors are, conventionally the whole corpus has to be reexamined. It is most tedious and
time consuming, since a practically useful tagged corpus is at least in the size of several million words.
In order to reduce the manual editing and speed up the construction process of a large tagged corpus, a
partial proofreading process has to be carried out. Only potential errors of tagging will be rechecked
manually. The problem is how we find the potential errors of the tagging and what is a reliable tagging
system, which can provide a confidence score for each step of tagging?

Since a probabilistic-based tagging method will assign a probability to each candidate pas-category,
we assume that a candidate with higher probability might be more reliable. Therefore we adopt the

following hypothesis. If the probability P(c1 ) of the top choice candidate c 1 is much higher than the

probability P(c2 ) of the second choice candidate c2 , then the confidence value assigned for c 1 is also

higher. Likewise if the probability P(c 1 ) is closer to the probability P(c 2 ) , then the confidence value

P(ci ) 
assigned for c1 is also lower. A general confidence measure was defined as the value of

P(c1)+P(c2)

where P(c1 ) is the probability of the top choice category c1 assigned by the tagging algorithm and

P(c2 ) is the probability of the second choice category c2 . By using this definition of confidence

measure, one can choose a confidence score, for example, 0.6, to filter those tagged words that have
score lower than the pre-chosen confidence score, which are need manual proofreading. We like to
prove the above hypothesis by empirical methods.

A tagging algorithm provided with a very reliable confidence score in some sense is a good
cost-effective algorithm. A cost-effective algorithm may not be the algorithm with the highest precision.
Therefore we defined below a new concept of reliability of a tagging system in term of cost-effective:

Reliability	 The estimated best accuracy can be achieved by the tagging model under the
constraint that only a fixed amount of K% corpus with the lowest confidence value
is manually proofread.

We carried out an experiment on the confidence measure on the context-rule tagging model. The
target words are the ambivalence words of frequency greater than or equal to 10. Figure 1 shows the
results. The confidence score is increased from 0.50, step in 0.01, to 1.00, to observe the curve between
the amount of manual proofreading and the best accuracy with manual proofreading. When a certain
confident score is chosen, some tagged words with confidence score lower than the chosen one will
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Figure 1	 Tradeoffs between amount of manual proofreading and the best accuracy

show that they might have been tagged with wrong category. If those words are all manual proofread,
the tagging accuracy can be increased more efficiently, and the final tagging accuracy can be easily
estimated. For instance, if the confidence score is set 0.6, only 10.04% of tagged words have the
confidence scores less than 0.6 that cover 57.92% error tagging. Therefore the estimated best tagging
accuracy is 97.93%, if those tagged words with lower confidence score are all manual revised. The best
accuracy is estimated by adding the amount of error reduction by manual proofreading to the original
tagging accuracy, i.e. 95.08%+4.92%*57.92%=97.93% for confidence threshold of 0.6.

It is obviously that there is a trade-off between the accuracy and the amount of corpus to be manual
proofread. The higher accuracy required, the larger corpus to be manual proofread. Thus, with a fixed
resource of labour, one can determine the final accuracy of corpus after manual proofread is done, or
he/she can estimate how many corpus should be manual proofread to achieve the required accuracy
according to the curve.

5	 Conclusion

The proposed context-rule model utilizes a broader scope of features to tag pos and achieve a better
precision. The target word dependent Markov model also performs better than general Markov model. It
clearly shown that to utilize more dependent features and more precise probability dependent statistics
will perform better on the pos tagging. On the other hand the sparseness of training data reduces the
accuracy of the tagging algorithm. Therefore use of more dependent features means more serious of data
sparseness problem. However the context-rule model avoid the data sparseness problem by utilizing the
rules with higher occurrence patterns only and use the general category patterns to cope with the low
frequency target words. The context-rule tagging models focus on the ambivalence words only since top
300 ambivalence words contains 95% of tagging ambiguities according to Huang et al (2000). Therefore
using confidence evaluation and context-rule models can drastically reduce amount of manual
proofreading.
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