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Abstract

Latent Semantic Indexing (LSI) approach provides a promising solution to overcome the
language barrier between queries and documents, but unfortunately the high dimensions of the
training matrix is computationally prohibitive for its key step of Singular Value Decomposition
(SVD). Based on the semantic parallelism of the multi-linguistic training corpus we prove in
this paper that, theoretically if the training term-by-document matrix can appear in either of
two symmetry forms, strong or weak, the dimension of the matrix under decomposition can be
reduced to the size of a monolingual matrix. The retrieval accuracy will not deteriorate in such
a simplification. And we also discuss what these two forms of symmetry mean in the context of
multi-linguistic information retrieval. Although in real world data the term-by-document
matrices are not naturally in either symmetry form, we suggest a way to make them appear
more symmetric in the strong form by means of word clustering and term weighting. A real
data experiment is also given to support our method of simplification.

1	 Introduction

Multi-linguistic Information Retrieval (MLIR for short, also "translingual" or "cross-language" IR)
enables a query in one language to search document collection in another one or more languages.
Many monolingual IR approaches can be extended to multi-linguistic environment and among them
Latent Semantic Indexing (LSI for short, Deerwester et al., 1990) has proved effective (Y. Yang et al.,
1997, Douglas William Oard, 1996).

The particular technique used in LSI is singular-value decomposition (SVD for short), in which a
large term-by-document matrix is decomposed into a set of orthogonal factors from which the original
matrix can be approximated by linear combination. However, SVD on the large term-by-document
matrix whose size increases with the size of the training corpus brings huge computation costs. This
situation becomes even worse when we use LSI for MLIR because the training matrix consisting of
various languages is always several times larger. To reduce the cost of SVD in LSI and thus make it
feasible in MLIR, we try to exploit the semantic symmetry hidden in the training corpus. We find that
theoretically if the term-by-document matrices of multi-linguistic training set have either a weak
symmetry form or a strong symmetry form, the SVD step of LSI in multi-linguistic environment can
be simplified. Both symmetry forms have clear meanings in the context of MLIR. Further, though we
can never reach precisely either of two symmetry forms from real world data, two possible methods
are raised to enhance the strong form symmetry of the term-by-document matrices. Our small-scale
experiment gives a satisfying result though we only roughly keep the strong symmetry.

In section 2 we will briefly introduce how LSI approach can be extended to multi-linguistic
environment. In section 3 we will prove some theorems for the LSI simplification in the two symmetry
forms, then discuss symmetry enhancement issues for real world data. Experiments and results will be
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given in section 4. Finally in section 5 we will draw our conclusions with some problems for future
work.

2	 LSI for MLIR

LSI is based on the vector space mode (VSM), in which both queries and documents are represented
as vectors of term weights

= (qi, q2

d = (di,d2,•••,dm)t

where q is the query vector, d is the document vector, m is the number of unique terms (words,
phrases or word clusters) in the corpus after stop-word removal and stemming, qi and di are term
weights in the query and the document respectively. Terms are usually weighted by term frequency,
term frequency inverted document frequency (TFIDF), information gain or other weighting schemes.
In monolingual IR, the similarity between a query and a document is defined as

sim(q, d) = cos(q, d) =
2 ÷1

'tni=1 qi 6.di

2

LSI is a one-step extension of VSM. The claim is that neither terms nor documents are the optimal
choice for the orthogonal basis of a semantic space, and a reduced vector space consisting of the most
meaningful linear combinations of documents would be a better representative basis for the documents
content.

In monolingual IR, let W be the term-by-document matrix of the training corpus consisting of only
one language. By SVD analysis

W = USV

[Z, 01
where matrices U and V are unitary matrixes, which means that LY= U 4, NT1= V'. And S =	 in

0 0

which E is a diagonal matrix with r nonzero diagonal entries. These r nonzero values are called
singular values of the matrix W. If we take the first k biggest nonzero diagonal entries of S and the
corresponding columns in matrices U and V, the bilingual term-by-document matrix W can be
approximated as

W UkSkVif

where matrices Uk and Vk contain a set of k orthogonal singular vectors each (one for the
representation of terms and the other for the representation of documents). Matrix Sk is k-diagonal,
containing the singular values indicating the importance of the corresponding singular vectors in
matrices Uk and Vk. The monolingual retrieval criterion of LSI approach is defined to be

sim(q,d) = cos(Wkci , Ikd)

LSI approach can be extended to multi-linguistic environment. Let us take bilingual case for
example. We define Amxn be a term-by-document matrix for the training documents in the source

language (also the language of queries), B .. be a term-by-document matrix for the training

documents in the target language. The corresponding columns of A and B are the matching pairs of
documents in the bilingual corpus.

Now, W is defined as an (m + s)xn term-by-document matrix of the entire corpus, representing
the bilingual document pairs
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Utk d

0

[A]
W=

B
Then we do the SVD analysis and k singular value approximation on the bilingual term-by-document
matrix W just as in the monolingual case. Let q be a query in the source language, d be a document in
the target language. The retrieval criterion of LSI approach in bilingual environment is (Y. Yang et al.,
1997)

sim(q, d) = cos(Ukt [coil , rd])

The bilingual case above can be easily extended to multi-linguistic cases. When the training corpus
has more than one target language, the matrix W will be composed of all the term-by-document
matrices of the languages involved. Suppose that the training corpus consists of 1 languages, and for
each language Li we choose mi terms and the same n matching documents. We define Ai as the
term-by-document matrix for the training documents in the i-th language. That the documents of
different languages are "matching" means out of n training documents of any language the i-th one has
the same content but in different languages. Accordingly we align the corresponding columns
representing those matching documents to the same position in A. Now the term-by-document matrix
W representing the entire training corpus is defined as

A1

= A2

A1

The query q can be in any one of the 1 languages, for example L 1 . And the document d in search
can be in any other /-1 languages. After SVD analysis on the matrix W, the retrieval criterion is

q	 0
0

sim(q, d) = cosark

0
However, when the size of the matrix W increases the SVD becomes more and more

time-consuming and even infeasible in practical use. This is one of the major problems of LSI
approach and it is intensified in the field of MLIR.

3	 Simplified LSI approach

LSI for MLIR is based on parallel corpus training. In parallel corpus, each documents in one language
has its counterparts in all other languages. This kind of parallel structure makes the corpus documents
semantically symmetric. If the symmetry can be embodied in text representation, we could use it to
simplify computation with mathematical methods. That is the basic idea of our simplified LSI
approach.

In this section we will show that in two particular circumstances the dimension of the matrix under
decomposition in MLIR can be reduced to the size of a monolingual matrix. In either of the two
circumstances, the term-by-document matrix of each language has some kind of symmetry, which we
call weak and strong symmetry form respectively. Theoretically we prove that our simplification will
not deteriorate the accuracy of information retrieval. For practical use, we will also discuss how to
enhance the symmetry of real world data to approximate the conditions required in theoretical
conclusions.
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3.1 Simplified LSI for the Weak Symmetry form

The simplification of LSI under the weak symmetry form is based on the following theorem.

Theorem 1

If two matrices B e 0 "z",C e 0 s" (m, s � n) satisfi, that I313 = CC , then
(1) B and C have the same singular values
(2) Let oi , a2, • • • or be the singular values ofB and C. If all these singular values are

different, i.e. oi > 62 > • • • > cr, > 0 , and we define E = diag(ai , 62 , • • • , 6r ) , then

there must exist SVD

B = i'01-1! and C = kit'
satisfying that

I 0 . [L Ol e 0 mxn 9 i, = [E le 0 sxn ,
1

00	 00

II. Ifwe define the first r columns of it and d as iii
	

and di respectively, then

Before proving Theorem 1 we first give a lemma with proof.

Lemma
Define unit matrix

Wm, k) = diag(6i,a2,••• • ani)

ai = —1, i = k

of =1, i = others

B = PQRt is an arbitrary SVD on a matrix BEO ' If we define

is = PM(m,k), ii = R1V1(n, k)

k 5_ min(m, n)

then B = PQRt is also a SVD on the matrix B.

iii. = d1.

Proof of Lemma
According to the definition of SVD, P and Q are both orthogonal matrices. And the unit

matrix M(n, k) is an symmetric orthogonal matrix. So -13 is also an orthogonal matrix.
Hence

PQRt = PM(m, k)QM(n, 14 le
= PM(m, k)QM(n, k)Rt
= P [M(m, k)QM(n, k)] itt

For any matrix C e D "1", M(m, k)C equals to multiplying the k-th row of matrix C by
-1, and CM(m, k) equals to multiplying the k-th column of matrix C by -1. According

to the definition of SVD, the matrix Q is composed of a diagonal matrix E and three zero
matrices, i.e.

Ql. [E o
o o

So M(m, k)QM(n, k) = Q~ ~
Hence B = PQRt holds true, i.e. B = PQR t is also a SVD on the matrix B.
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Then we prove Theorem 1.

Proof of Theorem 1
(1) According to the definition of SVD, the singular values of matrix B are the square roots of

the positive eigenvalues of matrix B`13 , and the singular values of matrix C are the square

roots of the positive eigenvalues of matrix CtC . Because of 13`B = CtC , B and C have
the same singular values.

(2) Let B = PQR t and C = EFG t be two arbitrary SVDs of matrices B and C. Here P, R, E
and G are all orthogonal matrices.

[E 01
According to (1) and the definition of SVD, we have Q = F =

0 0

S = 4:YQ = F tF = diag(62 , 62 ,- , 62 , 0,— , 0) .

Because of BIB = CtC , i.e.

(PQRt )tPQR! = (EFG t )EFG

RI:YQR! = GFtFGt

RSRt = GSGt

SRtG = RIGS
Let L =	 = (1 j ) nxn , and L is also an orthogonal matrix. So

SL = LS
i .e.

. Let us define

0.2/	 .„2/

1 "1,1	 • •	 `1r

6r
2 

r,1
	 0. r2 r

• 'r`r,n

0 0

Compare the corresponding entries of both sides
2

(72/ = cr./ lid .

0.2/. = 0

aA J = 0

1	 j r

15_i � r, r+1<_ j5.n

r+1 � i � n,1 � j � r

Considering that al > 62 > • • • > a,. > 0 , we get
/id =0	 1 � i � r or 15j � r and i
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=

...

] , and L i = diag(43, 12,2 , • • • 91r,r) •L2

L is an orthogonal matrix, i.e. LtL = (R tG)t IVG = G tRRtG = I , or
... __	 ....	 _

/2
11,1	 '1,1

So L can be represented in the form of 
[Li

0
ir,2

= I
0

1r,rlr,r

0
	

Lt2L20 0 L2

0

1.12
_

hence li,i = ±1, 1 < i < r .

We define the first r columns of R as matrix R1 , and the rest as matrix R2 ; similarly we

define the first r columns of G as G1 , and the rest as G2 , i.e.

R = [R I R2 j , G = [G, G2]

RtG = L
G = RL

[G, G2 1 = [R, R2 1[1.'1	
2 
i = [R1L1 R2L2 ]
L2 

So

G 1 = R1L1
The corresponding column of R i and G1 are either equal or opposite, because L 1 is an

diagonal matrix with either 1 or -1 as its diagonal entries. Supposing that 1„ ,„ = –1,
according to the Lemma, when the k-th columns of R and P are multiplied by a factor –1
we get a new form of SVD on matrix B. Repeat such transformation for each -. 1 entries of

L 1 and we will reach a SVD in the following form

B = i'QiZt
with the matrix iii

,
the first r column °fit , satisfying G1 = AlR.

Finally, let E = È , F=i 1 ,G=d,Q=0, and we find SVDs

B = i'451-it and c = Eitt

with it, and di ,the first r columns off?. and d respectively, satisfying k, = d,G.

The above theorem gives a possible way of reducing SVD computation in a particular case. In the
context of multi-linguistic IR the prerequisite condition can be formally written as

Weak Symmetry Form
AtiAi = A2 A2 2

A = • • = At/A, ( Ai is defined as the term-by-document matrix for the

training documents in the i-th language ).

If the term-by-document matrices are in the symmetry form above, according to Theorem 1 there
exist SVDs

Ai = UiSiVi ......- UikSikVik

k � min(rank(Ai )) , i =1,2,• • • ,/

satisfying that
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S = S ik Vik = V ik	 15i,j51

Note that the condition in Theorem 1 that all singular values of Ai are different is always satisfied

because SVD is calculated numerically in practice.
Hence

Ut A =S Vt = 	 =Utik ik	 ik ik	 jk jk	 jkA jk 1 1, j 5_1

which means that in two different LSI-generated reduced vector spaces for two different languages,
the matching documents have the same vector representations. Therefore if the query q is in the
language L1 and the document d is in the language Ld, the criterion of LSI for weak symmetry form
can be simplified as

sim(q, d) = cos(U kci, Wad)

3.2 Simplified LSI for the Strong Symmetry Form

Hongxing Zou, Dianjun Wang et al. have reached some useful conclusions on the SVD for unitary
symmetric matrix (Hongxing Zou et al., 2000 & 2002), which we call strong symmetry form in this
paper. Their conclusions are recapitulated below as Theorem 2.

Theorem 2
We define

=
A2

A_ 1 _

where Ai E 0 m", i = 1,2,- • • ,1 satisfying A2 = PiAi , A3 = P2A1 , • • • , A1 = Pi_lAi , and

P1 , P2 , • • • , P1_1 are all permutation matrices. A1 = U iS iV: is an SVD on A1 , where

S = /1 ° e 0 m" and Ei = diag(cri , Ci2 , • • • , ar ) . Then there must exist SVD
1	 0 0

[

W =USV , satisfying

[E l e 0 lmxn , E = diag(licri,
,,fic.

2,• • • ,.,ficrir)I. S =
0 0

1	 11	 TT
II. U =[ U	 PiUi • • •	

n
-, ri_i u 11

 V1

HI. V =Vi

It is not difficult to find that Theorem 2 is a special case of Theorem 1. That is why we call their
corresponding symmetry form "weak" and "strong" respectively. For this reason we do not prove
Theorem 2 here and you can find a wonderful proof for that in Hongxing Zou et al., 2000 & 2002.
Accordingly, Theorem 2 gives basis of LSI simplification for the following strong symmetry form.

Strong Symmetry Form

A2 =	 , A3 = P2 A 1 , • • • ,	 =	 Here P1 , P2 • • • , Pl_i are all permutation

matrices. ( Ai is defined as the term-by-document matrix for the training documents in the

i-th language ).
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0

U tk d

0 0

0

d

0

Supposing that the query q is in the language L1 and the document d is in the language Ld, when
the term-by-document matrices in strong symmetry form take A i = UiSiVi UikSikVik as their

SVDs, the criterion of LSI for the strong symmetry form can be simplified by Theorem 2 as below.
0

sim(q, d) = cos(Vk

•••

lr
= COS(---LUik UikPi • • • Urkl)t	

q

 0/1

0

[utik utikPit
Vl

• • •
utik pit

1	 t	 1 ,Tt nt
= COS(- 'JAY- u ikr c1-1U)

= cos(UkcbUad)

3.3 Discussion on the Two Symmetry Forms

In both symmetry forms when we make SVD analysis we can only decompose matrices of the query
language and the target language instead of the several times larger matrix W of all the languages.
Therefore the LSI approach is simplified.

Both symmetry forms have clear meanings in the context of MLIR. They embody in deferent
levels the parallel structure of the training corpus. When we normalize all the term-by-document
matrices Ai by column, each entry of AitAi represents a similarity between two documents in the

same i-th language. So in weak symmetry form, the similarity between documents in one language is
the same with those of the matching documents in another language. That is, though corresponding
documents in different language may be quantified differently, for example in vectors of different
dimensions, we can simplify LSI approach as long as the consistency of similarity relationships
between documents of the same language are preserved across languages. In strong symmetry form,
all term-by-document matrices in different languages have the same row vectors but can be arranged
in random order. It requires corresponding documents in different languages have the same quantified
representations but need no alignment work. The strong symmetry form is actually a special case of
the weak symmetry form.

3.4 Enhancement of Symmetry for Real Data

Naturally the term-by-document matrix from real data does not precisely conform to either of the two
symmetry forms. But we find at least two ways that can help to enhance the strong form of symmetry.
As we know documents are represented as vectors of term weights. Firstly we can change the
conventional ways of term selection. When we use word clusters for synonyms rather than words or
phrases as terms, the term-by-document matrices appear more symmetric. This is because different
languages will have various amounts of synonyms to refer to the same thing or similar things, which
diversify the word frequency distribution. However when we gather all these synonyms into a cluster,
the frequency of the cluster appearance tends to be consistent.
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Also we can choose appropriate weighting scheme, for example binary weighting, to promote the
symmetry. Binary weighting ignores the details of term frequency but only cares about whether a term
appears or not. Despite of being almost the simplest weighting scheme binary weighting gives a
reasonable IR performance in many occasions, for example matching similar documents of different
languages in MLIR.

The weak points of the above two ways are very clear. Though statistical method can help us to do
word clustering job, it usually brings a lot of calculation and hence counteract with our motive of
computation reduction. More precise clustering should be on a semantic basis, which practically
depends on a good synonym thesaurus or even manual labor. Binary weighting leads to a loss in IR
performance because it ignores details of term distribution. In fact the "strong" symmetry form has a
rather strict requirement for term-by-document matrix. We hope to find easy ways for weak form
symmetry enhancement. Unfortunately, we haven't so far found any effective way that can give a
satisfactory result. The major problem lies in the difficulty to preserve documents similarity across
different languages. Ideally if the vectors are proper semantic representation of documents and
quantified properly, the similarity of a pair of documents in one language should be identical to that of
a matching pair of any other language. But currently all term-frequency-based weighting schemes
cannot be a good quantification of the original documents. How to represent a document on a semantic
basis rather than on a pure statistical basis is one of the chief goals of our further research.

Symmetry enhancement still does not provide a precise symmetry form. However our experiment
suggest that small perturbations will not harm the precision of IR greatly. In Hongxing Zou et al., 2000
& 2002, a perturbation analysis is also given on Theorem 2.

4	 Experiments on Strong Symmetry Form

4.1 Test Collection

Our experiment is based on a bilingual corpus consisting of 352 Chinese-English document pairs. All
the documents are passages adopted from a bilingual column of an IT weekly newspaper China

Computer World in a period of about six years. And all passages are introduction or comment on
various new IT technologies, about 400-500 English words or 800-900 Chinese characters long. We
make 2/3 of the corpus documents as training set and the other 1/3 as test set. Also we manually
generate 38 queries for IR test, 19 in Chinese and another corresponding 19 in English.

4.2 Experiment Result

Chinese Word Clusters 	 !	 English Word Clusters

PE Ak
	

1 company. enterprise: corporation on

V-3,,111+	 password

.5 .E	 change. alter, transform, shift

iN*,45)111.4t,t)10	 I increment. add, addition, increase
1 router

Table 1 Word Clusters

To enhance symmetry, we use word clusters as terms. For weak symmetry form, we manually
generated different amount of word clusters for Chinese and English documents. But we find the
symmetry is not good enough to give a reasonable performance on IR test. Further, from all the word
clusters we choose 361 pairs for the two languages and now they are in strong symmetry form. Table 1
gives some examples for word cluster pairs. In fact the term-by-document matrices of the two
languages has a difference approximately 9.1% compared to their own, which shows the extent to
which the strong symmetry form is violated. The difference is calculated as follows
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D IIA, —A,112 

IIAcilliAell

where Ac and Ae representing the training matrix in Chinese and in English respectively.

We use 19 Chinese queries to search for English documents and then use 19 English queries to
search for Chinese documents. For comparison, we use two kinds of weighting scheme -- term
frequency (TF) weighting and binary weighting. For either weighting scheme, we compare two
retrieval criterions -- LSI criterion and simplified LSI criterion. The average precision-recall curves
are shown in Figure I.

From Figure 1, we find the best precision comes from our LSI criterion with TF weighting. Binary
weighting give a better recall but a worse precision, because binary weighting lost much of the detail
about term distribution and hence cannot discriminate as well as TF weighting. Simplified LSI (SLSI
for short in Figure 1) criterions with both weighting schemes suffer a loss of about 5% in both
precision and recall because the symmetry is not precisely kept. However the reduction in calculation
and time cost is clear, as shown in Figure 2. We simulate the SVD process involved in the LSI
approach and the simplified LSI approach for bilingual training corpus and compare the CPU time
used for SVD on an m x m randomly generated matrix and for SVDs on two halves of the same
matrix. The result shows that for bilingual cases the simplified LSI approach can save half of the SVD
cost approximately. All the calculations are made on a PC with a P4 1.7G CPU and 256M RAM and
the CPU time is given by a Matlab function.

The experiment results show that by manually clustering words as terms and binary weighting
scheme, we can enhance the symmetry of term-by-document matrices of different languages.
Although the simplified LSI approach under strong symmetry form suffers a 5% loss or so in IR
performance, we approximately reduce the SVD cost to half, which is more desired in some
circumstances.

Precision-Recall in MIR

o
-ri	

,v*.w.„ I

N Ma. •	 tb.

00.9	

.........6,_	 ..,,,...	 ..... .., ,r_„, 	 -t I 	 I
-.4

i_ –L.... . rii. *.
I0	 4,,,0...	

,	 I	 I	 I
a,	 4. MN NM WM we 41. :11:1411611.,,,,,,,,,..

__, .- ._.,$),_ .. ......,,	 I--	 __0.8 ... 	 ,,	 --....-......„,,,
''''r**-4,-,

	 -....,„,,

r

LSI (binary weighting)
----- Simplified LSI (binary weighting)

..,,,, LSI (TF weighting)
---- Simplified LSI (TF weighting)

0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1.0
Recall

Figure 1 Precision-Recall for Multi-linguistic IR
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Comparison of CPU Time Cost in SVD

— Simplified LSI (bilingual case)
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L	 i1"	
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I	 .......*•.** 	 I

	

........__L___,......r - — •	 1 0
0	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000

size of matrix

Figure 2 Reduction of CPU Time Using Simplified LSI

5	 Conclusions and Future Work

How to avoid or reduce the SVD cost is the major problem of LSI approach, especially for
multi-linguistic IR. Theoretically when the term-by-document matrices of training corpus are in either
of two symmetry forms
(1) weak form: the similarity between documents in one language is the same with those of the

matching documents in other languages
(2) strong form: the vectors representing matching documents in different languages are the same

but they can be arranged in arbitrary order to compose the term-by-document matrix
LSI approach can be simplified by reducing the sizes of matrices for SVD analysis. To enhance the
symmetry for real data, we propose two ways — word clustering and binary weighting. Our experiment
suggests they are two feasible ways to enhance the strong form symmetry to some extent for a
reasonable IR performance. But how to reach the weak symmetry form, which is more generalized and
hence seems more promising in practical use, needs further research.
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