
A Simple Syntax for Complex Semantics

Kiyong Lee
Department of Linguistics, Korea University

Seoul, 136-701 Korea
klee@korea.ac.kr

Abstract

As part of a long-ranged project that aims at establishing database-
theoretic semantics as a model of computational semantics, this
presentation focuses on the development of a syntactic component for
processeing strings of words or sentences to construct semantic data
structures. For design and modeling purposes, the present treatment
will be restricted to the analysis of some problematic constructions
of Korean involving semi-free word order, conjunction and temporal
anchoring, and adnominal modification and antecedent binding.

The present work heavily relies on Hausser's (1999, 2000) SLIM
theory for language that is based on surface compositionality, time-
linearity and two other conditions on natural language processing.
Time-linear syntax for natural language has been shown to be concep-
tually simple and computationally efficient. The associated semantics
is complex, however, because it must deal with situated language
involving interactive multi-agents. . Nevertheless, by processing input
word strings in a time-linear mode, the syntax can incrementally
construct the necessary semantic structures for relevant queries and
valid inferences.

The fragment of Korean syntax will be implemented in Malaga, a C-
type implementation language that was enriched for both programming
and debugging purposes and that was particluarly made suitable for
implementing in Left-Associative Grammar. This presentation will
show how the system of syntactic rules with constraining subrules
processes Korean sentences in a step-by-step time-linear manner to
incrementally construct semantic data structures that mainly specify
relations with their argument, temporal, and binding structures.

2

1 Introduction

The main purpose of this work is to lay a syntactic basis for computational

semantics. Despite the complexity of computational semantics, it is assumed

that its underlying syntax must be simple. A simple syntax is advocated

for complex semantics.

The task of computational semantics cannot be but complex because its

ultimate aim is to model how human-machine communications are carried

out by means of natural language. That of syntax can, however, be made

simple at both the structural and the procedural level. The proposed syn-

tactic module KoSyn, for instance, is implemented to be structurally simple,

only consisting of a set of concatenation rules with some constraining sub-

rules like valency check or parameter binding. It is also made procedurally

simple because it processes linguistic input in a time-linear manner and

builds up semantic data structures incrementally.

For this reason, the present talk will aim at showing how to minimalize

the task of syntax by constructing the Korean syntactic module called KoSyn

for testing and demonstration purposes. It is designed to generate a network

of semantic data structures without deriving intermediate syntactic trees

and also to represent them in a format that database-theoretic semantics can

recognize and manipulate for the purpose of interpretation, production, and

inference. This presentation will, however, be restricted to the discussion

of representational issues for semantics.

By analyzing a fragment of Korean, this presentation will show in detail

how KoSyn generates semantic structures for simple and conjoined sentences

and also for adnominal clauses. It will also show how valency checking

works for building argument structures, how nominal indexes are distributed

over conjoined sentences, how events are temporally anchored, and how

parameters are bound in adnominal constructions. All these processes are

shown to be carried out linearly without backtracking.

2 Framework

This presentation assumes, as was claimed by Hausser (1999, 2001) and

Lee (1999, 2000), that neither a naive set-theory or a Montagovian-type of

logical frameworks can serve as an adequate metatheoretic basis for modeling

the use of natural language.' Instead, they both agree that some system

of database construction and management theory must be adopted for

modeling the computational procedures of human-machine communications

that are carried out in real complex situations, thereby exchanging complex

information through contextually tokenized language.2

The syntactic module KoSyn is a part of the interface module of database-

theoretic semantics that constructs semantic data structures by processing

linguistic signals and their information. Before storing semantic and other

relevant data structures in a database, the interface module called LIPS
takes in linguistic signals and their associated information in various repre-

sentational forms, but converts them into a unique format that a database

management system DMBS can recognize and manipulate. On the conceptual

level, for instance, the relational model RDBMS can handle data structures

represented in a table form only. One of the tasks of the interface engine

LIPS is thus to provide an efficient procedure of representing linguistic

information in a suitably required format. One possible candiate for such

a format is a conventionally accepted feature structure format.3

2.1 Semantic Representation

Each atomic or basic sentence that consists of a verbal head and its

complements is normally interpreted as expressing a proposition or carrying

some prositional content. This content may then be partially represented

in a feature structure of the following form:

'Specifically, Hausser (2001) argues that neither a truth-conditional or a use-
conditional metalanguage-based semantics is suitable for constructing a computational
model of natural language communication. Lee (2000) also claims that a theoretically
well-founded database management system can be used as a model for constructing
a communication engine that controls and manages information flows by processing
language.

2Refer to Lee (1998) for the discussion of language situated in complex situations.
3 Ordinary RDBMS cannot recognize feature structures, but object-oriented models

can, since these models allow the embedding of tables into a larger table as attribute
values.

(1) Semantic Structure in a FS Form

(PHON: "string of words",

CAT: sentence,

SEM_struc: <[REL: <>,

ARG: <>,

SIT: [],

PRN:

COMP_stack: <>,

PAR_binding: <>,

NP_list: <>,

C_list: <>]

The feature structure as represented in (1) provides each string of words

PHON with information about its syntactic CATegory, SEMantic structure,

COMPlement stack, PARameter binding, a processed NP list, and a processed

Constituent list.

SEM_struc is then treated as taking a list of objects called proplets as

value, where each proplet minimally consists of REL , ARG , SIT , and PRN

and represents the content of an elementary proposition. 4 REL takes as

value a list of pieces of information provided by a predicate, ARG a list of its

arguments, and SIT a list of pieces of situational and temporal information.

The following is an example of a semantic data structure in a feature

structure form:

(2) Semantic Structure Illustrated

[PHON: "Mia loves me",

CAT: sentence,

SEM_strucf <[REL: <act, "love">,

ARG: <Cnp_index:1,

par_index: 1,

Role: agent,

4The term proplet was first coined by Hausser (1999) to represent the content of a
(partially) saturated functor-argument structure or an elementary propositoinal concept
token in a semantic database. Refer to Hausser (2001, 33ff, footnote 6) for the more
accurate use of the term.

GF: subj],

par_index: 2,

Role: theme,

GF: obj]>,

SIT: Cli_ imdex: <0>,

T_anchor: present],

PRN: 1]>,

COMP_stack: <>,

PAR_binding: <>,

NP_list: <[np_index: 1,

PHON: "Mia",

CAT: noun,

AGR: [Person: third,

Number: singular],

SEM: [REF: <named, "Mia">,

Typ_of_OBJ: human]],

Dap._index: 2,

PHON: "me"

CAT: noun,

AGR: [Person: first,

Number: singular,

Case: acc],

SEM: [REF: <speaker>,

Typ_of_OBJ: human]]>]

Here, the REL : <act , " love' > takes two arguments, par_index :1 and

par_index : 2 which are respectively linked to np_index :1 referring to Mia

and np_index : 2 referring to the speaker.This relation of love is also marked

by SIT values as being temporally anchored to the present situation.

The list of COMP_stack in (2) is empty because each of its elements

has been used up to saturate ARG by linking each par_index in ARG to

an NP_list. The list of PAR_binding is also empty because there is no

member of ARG with its par_index not anchored to some np_index.

2.2 Two Types of Lexicon

Syntax consists of two components: Lexicon and Rules. In Hausser's (1989)

Left-Associative Grammar, there are also two types of lexicon: one is a

basic lexicon and the other a derived expanded lexicon. The basic lexicon

consists of morpheme-like items with minimally specified necessary lexical

information. The derived expanded lexicon is generated by allomorphy

rules from the basic lexicon and contains both allomorphic variants and

derivational word forms with more enriched information.5

For example, the verb love can be listed at the basic lexicon, as in the

following format:

(3) Basic Lexicon

[PHON: "love",

CAT: verb,

VAL: <<subj,agent>,<obj,theme>>
SEM: [REL:<act, "love">]]

From this entry in the basic lexicon, we can generate the expanded

lexicon that contains the following derived lexical entry.

(4) Expanded Lexicon

[PHON : "loves",
CAT: verb,
Requires: [CAT: noun,

AGR_feat:[Person: third,
Number: singular]]

SEM: [REL: <act, "love">,
ARG: <[par_index: 1,

Role: agent,
GF: subj],

[par_index: 2,
Role: theme,
GF: obj]>,

SIT: [r_anchor: present]]]

5For detailed discussion, refer to Lee (1999).

This double-deck lexical system can treat not only inflectional morphol-

ogy, but also derivational morphology. For example, the Korean morpho-

logical system KoMor with its allomorphy rules can derive a verb 441-1-
sa.rang.ha.ta "love" from the basic noun entry 44 sa.rang "love"

and the verbal suffix '44 ha.ta "do". Here are two lexical entries: one

is basic and the other derived.

(5) Basic Entry

[Phon : "	 ,T,t"

Cat : noun,

Deriv: ha_acc,

Sem: [Content : <act , " ec,t _love">]]

(6) Derived Verb

malaga> ma	 V' tit 't

Analyses of
I. 1. eo. t. or 9-

1: [phon: " dt -t -r " ,

Segmentation: " 7/	 -r" ,

Cat : verb,

SEM: DEL: < -r T,r_love"> ,

ARG: < [Par : 1,

Role : subj ,

Case : nom] ,

[Par : 2,

Role : theme,

Case: acc] >] ,

Baseform: " -r 	,

VForm: terminal]

The derivational feature Deriv: ha_acc in the basic entry of the noun 4
sa.rang triggers the detailed specification of SEM features in the derived

form.

2.3 Linear Processing

In Left-Associative Grammar, both morphological and syntactic rules are

formulated in the same manner in Malaga, an acronym for a C-type im-

plementation language for programming and debuggins purposes. 6 Basic

conditions are placed on the grammar by the principles of surface com-

positionality and time-linearity and two other principles laid down by

Hausser's (1999) SLIM theory of language. These principles do not per-

mit any transformations or backtracking. They only allow (left-associative)

linear processing and incremental composition.?

The set of grammatical rules must also match the set of program state-

ments transparently at the level of implementation as well as at the level of

conceptual design. Hence, the implemented grammar must follow the SLIM

theory, processing strings of words or sentences linearly, while constructing

the SEM_struc of a proplet or a proposition incrementally.

The notion of constituent structure has any significance in linear process-

ing. The sentence Mia loves me, for instance, is not analyzed as having

any conventional phrase structure tree. Nor is it analyzed as having a VP

constituent. Instead, it is simply analyzed as a linearly concatenated string

((Mia loves) me) of three words. The sentence Mia really loves me also

undergoes the same linear processing. The topicalized sentence Me, Mia

really loves. again is analyzed in the same manner.

Linear processing is achieved by a set of rules and another set of subrules.

The main function of main rules is traffic control: these rules analyze input

strings and put them in an appropriate stack according their grammat-

ical functions. Nouns are mostly placed in COMP_stack and adverbs in

ADJUNCT_stack, while verbs tokenize SEM_struc by specifying each of its

underspecified or empty-valued features, REL, ARG, and SIT.

The subrules, on the other hand, function as constraints. One of the

subrules in English syntax may check the subject-verb agreement when the

noun Mia combines with the verb loves to form the string Mia loves.

6For the detailed description of the language and its use, refer to Beutel (2000).
"Refer to Nerbonne for the incremental processing in computational semantics. Note,

however, that he does not favor the left-associative approach by stating: "Since the
grammar is left-associative, the processing can also be incremental. This solution is
formally sound, but its linguistic assumptions are heterodox. . . ." (477)

Another subrule can check the case agreement when the string Mia loves

is to combine with the object noun me to produce the well-formed sentence

Mia loves me, while blocking the ill-formed string Mia loves I.

In the process, various non-tokenized gaps in the SEM_struc are filled

in. When the subject noun Mia combines with the verb loves, its first

argument is tokenized with the index of the noun Mia. The second argu-

ment is tokenized when the object noun me is introduced. This process

of tokenization is controlled by the subrule of valency check.

3 Analysis of Korean for Illustration

Since Korean is an agglutinative language, its nominal particles and ver-

bal endings carry important syntactic and semantic information. The case

particles, for instance, play an important role in forming a sentence by

conjoining a list of nominal complements with a verbal head, and the tense

endings in anchoring the temporal frame of a proposition conveyed by a

sentence. Focusing on the roles of case particles, the present presentation

will analyze a small fragment of Korean involving [1] word order and argu-

ment structure, [2] conjunction and parameter anchoring, and [3] adnominal

construction and parameter binding.8

Before starting the main analyses of Korean, the main mechanism of

KoSyn will be briefly illustrated with the copular construction, the aggluti-

native property of Korean is well demonstrated by the copular construction.

In Korean, the copula .i is not a verb by itself, but becomes a predicate

when it is combined with a noun and also with a terminal verbal ending.

The noun 131(1 mi.in "beauty, beautiful woman" may combine with the

copular suffix 01 .i and then with the terminal ending 4 to to form an

adjectival verb ul ed 014 mi.in.i.ta "be a beauty".

This analysis can be treated at the morphological level, as shown in the

following output by ma, morphological analysis through malaga:

8For anlayzing these constructions, I heavily rely on Chang (1993, 1996) as the
main reference sources.

1 0

(7) Derivation of a Predicative Noun

malaga> ma -r 7'19*

Analyses of " -1	 -r" :

1: [Phon. II 01 01 01 9. 11 ,

Segmentation: " '1 / °1 / -r",

Cat: adj

SEM: [REL: <characterized_as, "a beauty">,
ARG: < [Par : 1,

Role: subj,

Case: nom]>,

Type_of_Obj : human,

Tense: present] ,

Baseform: " °I ",

STyp: declarative,

VForm: terminal,

SLv: plain,

Mode: bse]

The concatenated string of ru c,•1/ 61 / is treated as having the SEMantic
structure with its REL and one argument with its Role : subj and Case : nom.

Now, this string called predicative noun can take a nominative-marked

noun as its subject, yielding a sentence like the following.

(8) Demo 0

malaga> sa '1 c't
	 0101

0 1 1"

Analyses of " D I 1-1 p i ti

1: [Phon : " D I 01.	 D I ot..1	 -r",

Cat: s,

SEM_struc: < (prop_index: 1,

REL: <human, characterized_as, "a beauty">,

ARG: < [np_index : 1,

Par: 1,

Role: subj,
Case: nom]>,

SIT: [T_index: <0>,

11

T_anchor: present,

T_state: nil,

SLv: nil] J> ,

comp_stack: <>,

vform_stack: <terminal>,

par_binding: <>,

np_list: <[np_index: 1,

Phon: I. D i Or „r„

Cat: noun,

SEM: [REF: <named, II 0 1 er_mia..>

Type_of_Obj: human] ,

Case: nom] >]

This analysis is obtained through the following procedure.

First, the noun ul 0171- mi.a.ka is introduced by the NPintroduction
rule with the following analysis:

(9) NP introduction

malaga> sa '1 or

Analyses of " D I nr" :

2: (Phon: " or nr"

SEM_struc : <>,

comp_stack: < [np_index: 1,Case: nom] > ,

vform_stack: <>,

par_binding: <>,

np_list: <[np_index: 1,

Phon : " °1	 ,

Cat : noun,

SEM: [REF: <named, " °I "r_Mia">,

Type_of_Obj : human] ,

Case : nom] > ,

constituent_list : <[Phon: "°1 °r ,r",

Cat : noun,

SEM: [REF <named, " °1 °r_Mia">,

Type_of_Obj : human] ,

Case: nom] >]

12

Here, comp_stack is filled in with the feature structure [np_index: 1,

Case : nom] provided by the introduction of the nominative-case marked

noun 1:1101-71- mi.a.ka.

Secondly, this noun combines with a verb which is being introduced

by the head rule. Then, the subrule valency_check checks if the feature

structure in comp_stack matches any of the arguments listed in ARG. Since

there is one argument whose Case value matches the feature Case: nom

in comp_stack, its Par: 1 is anchored to np_index: 1, thus referring to

Mia.

This procedure illustrates that, in KoSyn, the acceptable SEM_struc of

the copular construction 131 01-71- ed 014 "Mia is a beauty" is obtained

without constructing any intermediate constituent structure.

3.1 Word Order and Argument Structure

Korean is known to be a head-final language, thus allowing free word order

except that the head must occur at the end. 9 The following sentences

illustrate this relative free ordering.

(10) Free Word Order Illustrated

a. Di
mia-ka sa.kwa.lul mek.ess.ta

mia-NOM apple-ACC eat-PAST

"Mia ate an apple"

b. .1.-	 D i °I.	 -r
apple-ACC mia-NOM eat-PAST

Despite their difference in word order, these two sentences carry the

same propositional content, as analyzed by KoSyn.

91f the head is of a terminal form, then its complements or adjuncts may occur
after the head. For example, oilAr-1-, 1:1101-71-. yey.ppu.ta mia-ka "is-pretty, Mia".

13

(11) Demo

Analyses of " -r 1. 4 t

1: [Phon : " '1 01-	 `2	 ,

Cat: s,
SEM_struc: < [prop_index: 1,

REL: <action, " -t_eat ">,
ARG: <[np_index: 1,

Par: 1,
Role: agent,
Case: nom]

[np_index: 2,

Par: 2,

Role: theme,

Case: acc]>,

SIT: [T_index: <0>,

T_anchor: past,

T_state: nil,

plain]]>,

comp_stack: <>,

vform_stack: <terminal>,

par_binding: <>,

np_list: <[np_index: 1,

Phon: " °1 or	 ,
Cat : noun,
SEM: [REF: <named, " °I °r_Mia">,

Type_of_Obj : human] ,
Case: nom] ,

[np_index: 2,
Phon: "	 t
Cat : noun,
SEM: [REF: <charact erized_as, " 	 , "apple">,

Type_of_Obj : fruit] ,
Case: acC)>)

In the above analysis, the first argument which is tagged with Par : 1

and plays the agent role is anchored to np_index: 1, thereby referring

14

to Mia. The second argument, on the other hand, is tagged with Par: 2

and plays the theme role. It is then anchored to np_index: 1 and thus is

linked to a kind of fruit characterized as apple.

(12) Demo 2

Analyses of " JI LT t	 5:1, at"
1: [Phon: s . J-r

	 9;,	 .r..

Cat : s,

SEM_struc: <1prop_index: 1,

REL: <action,	 n_eat">,

ARG : <[np_index: 1,

Par: 2,

Role: theme,

Case: acc] ,

[np_index: 2,

Par: 1,

Role: agent,

Case: nom] >,

SIT: [T_index: <0>,

T_anchor: past,

T_state: nil,

plain]]>,

comp_stack: <>,

vform_stack: <terminal>,

par_binding: <>,

np_list: <[np_index: 1,

Phon: fl -r mrlk u , Cat : noun,

SEM: [REF: <characterized_as,

Type_of_Obj: fruit],

Case: acc],

[np_index: 2, •

Phon: "°19-1", Cat : noun,

SEM: [REF: <named, "°1°F_Mia">,

Type_of_Obj: human],

Case: nom]>]

I. 	 "apple">,

15

Here, the argument Par : 2 which plays the theme role is first anchored to

np_index : 1, namely apple and the argument Par : 1 with its Role : agent

is then anchoredd to np_index: 2, Mia. These two analyses show that

the order of anchoring arguments has changed, but that their propositonal

content has been preserved.

Despite the relative free word order in Korean, some of the so-called

double subject or double object constructions do not allow the scrambling

of two nouns each marked with a nominative case particle 01/71- .i/ka or

with an accusative case particle 41-2- .u1/1u1.1°

The following two sentences, for instance, are not synonymous.

(13) Switching Disallowed

a. °I Zi o °1 mi
mwul.i .el.um.i toy.ess.ta

water-NOM ice-NOM become-PAST

"water became ice"

b. l cff. °I I. °1	 -r

"ice became water"

It is shown that KoSyn analyzes these sentences correctly.

(14) Double Subject Construction: Analysis 1

Analyses of "	 't" :

1: [Phon : " gk 0 1 v. tg-	 .21	 -r",

Cat: s,

SEM_struc: <[prop_index: 1,

REL: <"1 n_become">,

ARG: <[np_index: 1,

Par: 1,

Role: subj,

Case: nom],

[np_index: 2,

Par: 2,

10For the discussion of these phenomena, refer to Chang (1993, 1996).

16

Role: theme,

Case: nom]>,

SIT: [T_index: <0>,

T_anchor: past,

T_state: nil,

SLv: plain]]>,

comp_stack: <>,

vform_stack: <terminal>,

par_binding: <>,

np_list: <[np_index: 1,

Phon: " °1" ,

Cat : noun,

SEM: (Content : <" i ", "water">) ,

Case: nom] ,

[np_index: 2,

Phon: " of (t- °1"

Cat : noun,

SEM: (Content: <" `.11	 ' , "ice">] ,

Case: nom]>]

(15) Double Subject Construction: Analysis 2

Analyses of " z 54. °1	 °1	 " :

1: [Phon : " ca>,1 %. -1	 °1	 -r",

Cat: s,

SEM_struc: < [prop_index : 1,

REL: <" -s1 ¶_become">,

ARG: <[np_index: 1,

Par: 1,

Role: subj,

Case: nom],

[np_index: 2,

Par: 2,

Role: theme,

Case: nom]>,

SIT: [T_index: <0>,

T_anchor: past,

T_state: nil,
SLv: plain]]>,

comp_stack: <>,

vform_stack: <terminal>,

par_binding: <>,

np_list : < [np_index : 1,

Phon: "	 ° 1 " ,

Cat : noun,

SEM: [Content : <" s o " , "ice">

Case : nom] ,

[np_index : 2,

Phon: " °1" ,

Cat : noun,

SEM: [Content : <" i " , "water">] ,

Case : nom]>]

These analyses show that each sentence is correctly analyzed. In the

first analysis, the argument with Role : subj is anchored to water and the

argument with Role : theme to ice, thus meaning that water became ice. In

the second analysis, other hand, the argument with Role : subj is anchored

to ice and then the argument with Role : theme to water, now meaning

that ice became water. Here, the switching of two nominative-marked nous

in these sentences has resulted in a difference in meaning.

3.2 Conjunction: Referential and Temporal Anchoring

The following simple conjoined sentence illustrates two issues: one involves

referential anchoring and the other temporal anchoring.

(16) Conjoined Sentence

°I c't	 't t ;1J f,2

mi.a.ka sa.kwa.lul mek.ko cass.ta
Mia-Nom apple-ACC eat-CONJ sleep-PAST-DECL
"Mia ate an apple and slept"

First, the subject of Viz} cass.ta "slept" is understood to be Mia, the

subject of the preceding conjunct. KoSyn anchors the subject parameter

18

of the verb V--c} cass.ta to Mia. Secondly, the verbal head TI..a mek.ko

"eat-CONJ" of the first conjunct is not tense-marked. But it will be shown

in KoSyn that its temporal index is anchored to the past. Here is a brief

analysis of the sentence.

(17) Anchoring

1: [Phon : " °1 Or	 -1- :at t 4 2 Mr 9. " ,

Cat: s,

SEM_struc: <[prop_index: 1,

REL: <action, " E:2; n_eat

ARG: <[np_index: 1,

Par: 1,

Role: agent;

Case: nom] ,

[np_index: 2,

Par: 2,

Role: theme,

Case: acc]>,

SIT: [T_index: <0>,

T_anchor: nil,

T_state: nil,

Six: nil]] ,

[prop_index: 2,

REL: <state, "fl- -r _sleep">,

ARG: <[np_index: 1,

Par: 1,

Role: agent,

Case: nom]>,

SIT: [T_index: <0, 1>,

T_anchor: past,

T_state: nil,

SLv: plain]]>,

comp_stack: <>,

vform_stack: <terminal>,

par_binding: <>,

np_list: <[np_index: 1,

19

Phon: " °I n	 ,
Cat : noun,

SEM: [REF: <named,

Type_of _Obj :

Case: nom] ,

[np_index: 2,

°I °Line>,

human] ,

Phon:	 .A.t.

Cat: noun,

SEM: [REF: <characterized_as, 	 "apple">,

Type_of_Obj: fruit],

Case: acd>]

First, note that SEM_struc now contains two proplets: one is marked

with prop_index : 1 and the other with prop_index : 2. In the first pro-

plet, REL : <action, " °-;1 n_eat " > holds between two arguments: one

argument with Role : agent is anchored to np_index : 1, Mia, and another

argument with. Role.: theme to np_index: 2, apple. In the second proplet,

the sole argument with Par : 1 is anchored to np_index : 1, Mia, who is

the subject of the first conjunct.

As for the temporal anchoring, the temporal index T_index: <0> in the

first proplet is not anchored. But in the second proplet, the temporal index

T_index : <0,1> is anchored to the past and the value of the temporal index

of the first proplet is contained in the temporal index value of the second

proplet. Hence, the temporal index of the first proplet is also anchored to

the past.

This analysis shows that both referential and temporal anchorings can

easily be handled in KoSyn. It should, however, be noted that temporal

anchoring is achieved not by some syntactic process, but by inference on

the feature structures of SIT in the two proplets.

3.3 Adnominal Modification and Parameter Binding

One type of adnominal modification in Korean corresponds to relativization

in English. Here is an example:

20

7" is

ecy 111'n1/4	 n1/4
'V a

(18) Relative Adnominal Modification

o or	 4:::+„ At or	 e_.
"T

mi.a.ka kim.ul sa.rang.ha.nun kyo.swu.lul sa.rang.han.ta

Mia-nom Kim-acc love prof-acc love

"Mia loves a professor who loves Kim"

This examples raises two issues: one issue concerns the binding of the

parametric Subject of the adnominal verb 4f-e-aRt and another concerns

the problem of avoiding backtracking when the nominative-marked noun

pi 01-4 is erroneously analyzed as the Subject of the adnominal verb A11-

'4-1= as is here.11

The following malaga analysis shows that these problems have been

solved in KoSyn.

(19) Malaga Analysis

Analyses of " -1 or	 sk 1" 7„-t

1:. [Phon : " °) or	 or
Cat: s,

SEM_struc: <[prop_index: 1,

SEM: <act, "1-!Lloven>,

ARG: <[np_index: 2,

Par: 2,

Role: theme,

Case: acc],

[Par: 1,

Role: subj,

Case: nom]>,

SIT: [T_index: <0>,

T_anchor: overlapping,

T_state: nil,

SLv: nil]],

[prop_index: 2,

SEM: <act, "11Llove">,

11 Such an analysis must be accepted if the antecedent is a factive noun, as in u) o}

71- 7,11- 4feeis1-1=-_ 01-8- "reason that Mia loves Kim".

tt 1"

21

ARG: <[np_index: 1,

Par: 1,

Role: subj,

Case: nom],

[np_index: 3,

Par: 2,

Role: theme,

Case: acc]>,

SIT: [T_index: <0, 1>,

T_anchor: present,

T_state: nil,

SLv: nil]]>,

comp_stack: <>,
vform_stack: <terminal>,

par_binding: <[prop_index: 1,

np_index: 3,

Par: 1,

Role: subj,

Case: nom]>,

np_list: <[np_index: 1,

Phon: upl-r-r",

Cat: noun,

SEM: [REF: <named,

Type_of_Obj:

Case: nom],

[np_index: 2,

"°1 °r_Mia">,

human] ,

Phon: o
yr

Cat: noun,

SEM: [Content: <named, "J_Kie>,

Type_of_Obj: human,

SFeat : KorName],

Case: acc],

[np_index: 3,

Phon: "2-41k",

Cat: noun,

SEM: [Content: <characterized_as, 112	 11
, "professor">,

Type_of_Obj: human] ,

Case: acc]>]

In this analysis, SEM_struc has two proplets: the proplet with prop_index : 1

is generated by the adnominal modifier 7.,j A11-4-1---± "that loves Kim"

and the other proplet with proplet_index 2 represents the content of

the main clause ul 01-71 . . .	 "Mia loves the professor

. .". In the first proplet, there is an unbound parameter marked with

Par : 1 and Role : subj. This cannot be bound till the antencedent

kyo.swu.lul "professor" is introduced. Hence, it is stored in the

list of par_binding, waiting to be bound. But here it is found bound to

np_index: 3 and then is linked to some element in NP_list that refers to

some professor.

In the second proplet, each of the two arguments is properly saturated.

The first argument with Role : subj is linked to np_index : 1, Mia, and

the second argument with Role : theme to np_index : 3, which refers to

some professor.

The iterated adnominal construction as in the following example is also

shown to be properly analyzed by KoSYn.second

(20) Exercise

malaga> sa 0 1 or	 t

Analyses of 1101 Or nr

1: [Phon: " °1

Cat: s,

SEM_struc: <prop_

REL:

ARG:

SIT:

t	 %.°1

t

index: 1,

<action, " (1);1 n_eat">,

<[np_index: 1,

Par: 1,

Role: agent,

Case: nom] ,

[Par: 2,

Role: theme,

Case: acc]>,

[T_index: <0>,

23

T_anchor: prior,

T_state: nil,

SLv: nil]],

[prop_index: 2,

REL: <"°11"-n_pretty">,

ARG: <[Par: 1,

Role: subj,

Case: nom]>,

SIT: [T_index: <0, I>,

T_anchor: overlapping,

T_state: nil,

SLv: nil]],

[prop_index: 3,

REL: <action, "c2;11'_eat">,

ARG: <[np_index: 2,

Par: 2,

Role: theme,

Case: acc],

[np_index: 3,

Par: 1,

Role: agent,

Case: nom]>,

SIT: [T_index: <0, 1, 2>,

T_anchor: past,

T_state: nil,

SLv: plain]]>,

comp_stack: <>,

vform_stack: <terminal>,

par_binding: <[prop_index: 1,

np_index: 2,

Par: 2,

Role: theme,

Case: acc],

[prop_index: 2,

np_index: 2,

Par: 1,

Role: subj ,

Case: nom] > ,

np_list : <[np_index: 1,

Phon: " D i or 1",
Cat: noun,

SEM: [REF: <named, " °r_Mia">,

Type_of _Obj : human] ,

Case: nom] ,

[np_index: 2,

Phon: "r Tri ,

Cat: noun,

SEM: [REF : <characterized_as , " -r	 , "apple">,

Type_of_Obj : fruit] ,

Case: acc] ,

[np_index: 3,

Phon: " ,s} '1" ,

Cat : noun,

SEM: [REF: <named, " _Yong">,

Type_of_Obj : human] ,

Case: nom]>]

The checking of referential anchorings in the above analysis is left for an

exercise. The temporal anchoring of the first adnominal clause, however,

needs some attention. The T_index : <0> in the first proplet is anchored

to be prior to other events. Furthermore, since other temporal indexes are

anchored to the past as shown in the final proplet, the event of the first

'proplet is interpreted as preceding the events of other proplets.

4 Conclusion

As shown in this presentation, many of the problems in Korean syntax can

be solved with a time-linear syntax that constructs semantic structures in

an incremental manner. But there still remain more problems unsolved.

Syntax still should remain simple without multiplicating rules and con-

straints. This optimism can be kept alive as long as one insists on the old

belief that the job of syntax is to create complex trees.

25

I do not, however, believe that a theory is a belief. I don't have a belief

in any theory, for there is no complete theory. If it were, it would be a

dogma and no longer be a part of science. No grammar can be complete

either. If it were, it would no longer be a part of linguistics and linguists

must retire, as I will be planning to do.

5 Acknowledgements

For drafting this presentation, I am very much indebted to Roland Hausser,

Suk-Jin Chang, and Jae-Woong Choe for their constructive and encouraging

comments and to Jungha Hong for his invaluable help in implementing the

Korean syntax K osyn5 . 6 based on Malaga5.6. I would like to thank all the

executive members of the Korean Society for Language and Information,

particularly Minhaeng Lee, Secretary of PACLIC16, and Ik-Hwan Lee, Chair

of its Programming Committee, for inviting me to enjoy the conference as

a keynote speaker. I also would like to thank my wife Ryun, who kept

awake serving me tea while I was trying to finish this draft till five o'clock

in the morning on Sunday at our country home.

References

[1] Beutel, Bjorn (2000), "Malaga Version 5.6: An Implementation Lan-

guage for Left-Associative Grammar" (unpublished), Erlangen: Uni-

versitat Erlangen-Nurnberg, Abteilung Computerlinguistik.

[2] Chang, Suk-Jin (1993), Information-Based Korean Grammar [written

in Korean], Seoul: Language and Information and Hanshin.

[3] Chang, Suk-Jin (1996), Korean, Amsterdam: John Benjamins.

[4] Hausser, Roland (1989). Computation of Language: An Essay on Syn-
tax, Semantics and Pragmatics in Natural Man-Machine Communica-
tion, Berlin: Springer-Verlag.

[5] Hausser, Roland (1999), Foundations of Computational Linguistics:
Man-Machine Communication in Natural Language, Berlin: Springer.

[6} Hausser, Roland (2001), "Database semantics for natural language,"

Artificial Intelligence 130(2001), 27-74.

26

[7] Lee, Kiyong (1998), Situation and Inforamtion: Situation Semantics,
Seoul: Taehaksa.

[8] Lee, Kiyong (1999), Computational Morphology [written in Korean],
Seoul: Korea University Press.

[9] Nerbonne, John (1996), "Computational Semantics - Linguistics and
Processing", in Shalom Lappin (ed.), The Handbook of Contemporary
Semantic Theory, 461-484, Oxford: Blackwell.

27

	PACLIC16-1-474-002.pdf
	PACLIC16-1-474-003.pdf
	PACLIC16-1-474-004.pdf
	PACLIC16-1-474-005.pdf
	PACLIC16-1-474-006.pdf
	PACLIC16-1-474-007.pdf
	PACLIC16-1-474-008.pdf
	PACLIC16-1-474-009.pdf
	PACLIC16-1-474-010.pdf
	PACLIC16-1-474-011.pdf
	PACLIC16-1-474-012.pdf
	PACLIC16-1-474-013.pdf
	PACLIC16-1-474-014.pdf
	PACLIC16-1-474-015.pdf
	PACLIC16-1-474-016.pdf
	PACLIC16-1-474-017.pdf
	PACLIC16-1-474-018.pdf
	PACLIC16-1-474-019.pdf
	PACLIC16-1-474-020.pdf
	PACLIC16-1-474-021.pdf
	PACLIC16-1-474-022.pdf
	PACLIC16-1-474-023.pdf
	PACLIC16-1-474-024.pdf
	PACLIC16-1-474-025.pdf
	PACLIC16-1-474-026.pdf
	PACLIC16-1-474-027.pdf

