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Abstract

With treebanks becoming available for more and more languages, their usage for the
development of natural language parser has become a topical issue in NLP. This paper
tries to give a new spin to this this stream of research, proposing a new direction in
corpus-based parsing. Contrary to competitive approaches, this approach does not
involve a chart parser which reassembles phrases extracted form a treebank. Instead,
parsing proceeds via the extraction of example trees from the treebank using fuzzy
pattern matching techniques. A set of adaptation rules modify the extracted example
trees so as to produce the best possible parse given the current set of examples.

1 Introduction

With more and more computerized corpora becoming available, the development of techniques
which allow to compile a corpus automatically into a running NLP-tool has been established,
together with the creation of such corpora, as a central issue in NLP. Corpora with syntac=
tic annotations are commonly referred to as treebanks and are developed for more and more
languages. One way to benefit from these treebanks is to compile them into parsers for that lan-
guage, which, as first attempts have shown, tend to outperform parsers working on hand-written
rules. Nevertheless, these grammar-derived parsers share with their hand-crafted counterparts
a number of drawbacks such as their inefficiency and unrecoverable generalizations. Trying to
avoid these drawbacks we investigate an alternative parsing strategy, using for training and
testing the Chinese CKIP-treebank (Chen et al., 1999).

2 Competitive Parsing Approaches

Since the first appearance of treebanks, there have been attempts to use these resources for
parsing. One way to do so is to convert the subtrees represented in the treebank into Stochas-
tic Phrase Structure Grammars (Charniak, 1996). Recent publications have shown that this
approach can be improved upon with respect to the efficiency (Brants, 2000) or the degree
of lexicalization (Collins, 1996; Charniak, 2000). Both directions hint to some basic problems
with this approach. As for the lexicalization, the basic model in (Charniak, 1996) contains no
lexemes: They are removed during the extraction of rules and parsing is performed not on a
sequence of words but on a sequence of part-of-speech tags. On the one hand such parsers
require a part-of-speech tagger, on the other hand, the lack of lexicalization is detrimental for
the parsing accuracy whenever relevant information cannot be expressed by the part-of-speech
(Bod, 1999; Streiter, 2000). Collins and Charniak however could show that lexical dependencies
can be handled in SPSGs in the form of of probabilities on head-dependents relations. The
limitations of this approach however are obvious as not even the head-dependents relations can
be described satisfyingly since there are headless structures, structures with multiple heads and
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structures containing at the same time syntactic and semantic heads. In addition, there are still
different lexical dependencies which are important for parsing (Doi, 1992; Streiter et al., 1999).

The absence of lexicalization is part of a more general problem, referred to as unrecoverable
generalizations. Such generalizations are manipulations of the training data which allow to
license unseen language events and are used instead of the original data. Experiments have shown
that unrecoverable generalizations reduce the performance of NLP-tools as natural languages
are mixtures of regular and irregular phenomena, the latter of which by no means need to be
frequent (Daelemans et al., 1999; Bod, 1999; Streiter, 2000). In addition to the deletion of
lexemes, breaking examples down into phrases also may introduce unrecoverable generalization
if the knowledge of the functioning of the phrase in a specific example is transformed into
probabilities on the functioning compiled over the whole corpus.

Corpus-derived lexicalized probabilistic Tree Adjoining Grammars (Chiang, 2000) share the
same flaws, although they have the advantage that the elementary trees can span a larger part of
the sentence and introduce thus less unrecoverable generalizations. It is thus not surprising that
TAGs may outperform SPSG (Bikel and Chiang, 2000). However, the greater context sensitivity
of TAGs may make them run slower than SPSG.

Data Oriented Parsing approaches (Bod, 1992; Bod,
1998) do not share the flaw of unrecoverable generaliza-
tions: Language examples are decomposed into all sub-
components, including trees with and without lexemes,
with and without their features in all possible combina-
tions. During parsing, all (or many) re-compositions are
computed and the most frequently produced parse tree
is selected as final parse. This approach has the great
advantage that large lexicalized trees are retained and
that each generalization is accompanied by the original
data. However, as with hundreds of thousands of over-
lapping rules and with all (many) possible parses (even
identical) computed, the approach is extremely ineffi-
cient (Manning, 1999).

3 Basic Outline of the Parser

In order to avoid the flaws of unrecoverable generalizations and the low efficiency, we attempted
not to rely on a classic parsing algorithm, but to employ the k-nearest neighbor classifier, an
approach underlying paradigms as Example-Based Machine Translation, Translation Memories
and Case-Based Reasoning: According to this paradigm, a new problem is approached by re-
trieving similar problem formulation from a data-base together with their associated solutions.
Retrieved old solutions are then adapted to the new problem formulation.
Transferring this approach to the task of parsing, the problem formulation is an input sentence
to be parsed and the problem solutions are stored example trees. In the current implementation
we use two main strategies in order to relate an unseen input sentence to a store example tree:
generalizations and fuzzy matching. The adaptation consists in modifying the retrieved example
trees there where they do not match the input sentence.

Generalizations are compilation-time operations on the examples which license unseen lan-
guage events. Generalization may consist of inductions, i.e. replacing tokens by types (Brown,
1999a; Carl, 1999), or abductions, i.e. creating examples different from the given examples (Bod,
1992). Due to the off-line operation, the example trees can be examined and generalized quite
accurately. This may cause the compilation to slow down. However, the generalizations may

Figure 1: Efficiency (x-axis)
versus recoverability of general-
izations (y-axis), a hypothetic
classification of competitive
corpus-based parsing approaches.
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. (Brants, 2000)
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become part of the indexing system and, as a consequence, matches can be performed efficiently.
We use generalizations to handle unseen structures.

Fuzzy Matches license unattested input on-line. This causes the matching process to be more
complex and slower. In addition, unlike for generalizations, the internal structure of the example
to be retrieved is not necessarily fully available (there may be too many of them to be checked
on-line) and the decision on the licensing of unseen events has to be made on the basis of the
less informative but easily accessible properties of input and example. Fuzzy Matches however
offer a greater flexibility in the matching of unseen labels, as could be shown by comparing
generalizations and fuzzy matches of syntactic categories in a parsing task (Streiter, 1999). We
can expect the same advantages with respect to the handling of lexical relations: Generalizations
have to specify off-line which relations have to be modeled. Fuzzy matches do not require such
a model and license the input due to all occurring lexical similarities. A model however can be
helpful in order to prefer one match over another.

4 The Parser

The parser consists of two main modules, a training module and a parsing module. Both are
implemented as independently operating TCP/IP servers which access identical databases. Due
to the nature of the parser, the training module can update the databases while simultaneously
the parsing server is serving parsing clients.

4.1 Training

The training consists of two successive runs through the treebank which aim at the (i) collection
of basic statistical data for the adaptation, (ii) the generalizations of the examples, (iii) the
calculation of information weights and the (iv) indexing of the examples. This latter includes
(a) the collection of data for the guessing of the parsing axiom, (b) the collection of data for the
keywording and (c) the calculation of index positions. The working of the training module will
be illustrated with the help of the example tree in Fig. 2.

Figure 2: Example tree to be trained: he think older_brother certainly can speak.

S (exper : Nep :tal , Head:VE2:xiang3,goal:S(

agent : Nap : gelge , epist :Dbaa: yi2ding4 , epist :Dbaa : hui4 , Head : VE2 : shuo 1) )

4.1.1 Adaptation Data

Basic statistical data are compiled from the treebank aiming at the support of simple adapta-
tion strategies (the structural adaptations referred to below). These are conditional probabilities
on the semantic role and part-of-speech given a set of possibly contexts. Illustrated with the
first word of the running example in Fig. 2, the following conditional probabilities are calcu-
lated: I) (exper I tal ,left_to_VE2), P(Nep I tal ,left_to_VE2), P(exper I Nep, left_to_VE2),
P (Nep I exper , left_to_VE2)

4.1.2 Generalization of Examples
In previously conducted experiments we have found that best results can be achieved when

combining the advantages of generalizations and fuzzy matches. The generalizations we perform
in the current model create examples with unseen structures with the help of two operation.
First, the operation SUB adds all subtrees contained in the original example trees to the set of
example trees, i.e. all NPs, VPs, PPs etc are stored as independent tree. The second operation
DROP removes optional words and phrases from the examples in all possible combinations.

1
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Each newly created example is added to the set of examples as illustrated in Fig. 3. As one
original example may yield thousand of differently structured example trees, we restrict this
generalization with a stop-value. Currently an average of 20 additional trees are generated from
one example tree. Together with the trees we store their distance from the original tree in order
to estimate their trustworthiness.

Figure 3: Abduction of new examples during compilation via the operations SUB and DROP.
The distance A to the original example is used to calculate their trustworthiness.

original:S(ta xiang gege yiding hui shuo):A = 0
	

SUB(0):S(gege yiding hui shuo).0 = 1
DROP(0):S(ta xiang yiding hui shuo):A = 2

	
DROP(1):S(yiding hui shuo)):0 = 7

DROP(0):S(ta xiang gege yiding shuo):A = 3
	

DROP(1):S(gege yiding shuo):A = 8
DROP(0):S(ta xiang gege hui shuo):0 = 4 , (... 	 DROP(1):S(gege hui shuo):A = 9 , (...

4.1.3 Indexing of the Example Trees
All example trees (the original and the generalized trees) are indexed such that an efficient

fuzzy match can be performed between the huge set of examples and the input sentence.

Inverted Indices The indexing technique we use is the so-called Inverted List Index. An
Inverted List Index uses the content of the database/record as index. These indices point
back to the list of databases/records they occurred in. Using Inverted List Indices allows to
manipulate the references to the records (e.g set operations over lists, estimation of the relevance
of list members etc. .. ) without touching the records themselves. In NLP-related domains, this
technique is used for full-text indexing or for the indexing of sentences in EBMT (Brown, 1999b).
In our implementation, the word-related indices (these are the the lexemes as tal and the parts-.
of-speech as Nhaa) point to the list of all those example trees these indices have occurred in.
While the calculation of the intersection of the list of all indices of an input sentence gives
the exact matching example (possibly empty), finding the list members with most matches
implements a fuzzy match. It is this latter strategy we follow here.

Parsing Axiom The inverted indices (the lexeme and the part-of-speech) are further specified
by the parsing axiom. The index is thus <tal,S> instead of simply tal. These parsing axioms
can be taken easily during compilation from the example trees. This however implies for the
later parsing that the axiom has to be known in order to build up correct indices. Therefor, we
store during the compilation the sequences of the parts-of-speech of those example trees which
are not sentences (S is the default axiom). In case of ambiguities, the last part-of-speech is
iteratively replaced by the lexeme until the sequence becomes unambiguous. For a NP, we may
store a sequence like VH11,DE,Nap=>NP or, in case of ambiguities, VH11,DE,gelge=>NP.

Keyworded Indices As we intend to build a parser which is not affected by the fact that
hundreds of thousands of example trees are searched through, we implemented an indexing
system that increases with the size of the training data. At this aims we employ sets of key-
words which are distinctive for a small number of structures. The key-words of a sentence are
those words of the sentence which have frequently co-occurred at the top-level of a number of
example sentences with the same axiom. Thus, the sentence zhe4 shi4 tal de ma may obtain
the keywords "=shi=ma", provided "=shi=ma" occurred with a frequence above a threshold in
example sentences with the same axiom. Here, "=" refers to a position which can be filled by
one or more words.

As the words of a sentence cannot be checked efficiently in all combinations in order to find
the keywords, we apply the following algorithm. First, we count how often a word occurs at the
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top-level of structures with the axiom Y. Then we cyclically remove the least frequent word of
a sentence (for the axiom Y) and check whether the remaining words occurred in this order in
a frequence above the threshold for this axiom. If so, the indices are enriched by the obtained
keywords, if not, one more word is removed.

The additional indexing improves the performance (not only in time) if the search-space is
limited correctly, similarly to document clustering in Information Retrieval (Rijsbergen, 1979),
or the parsing experiments reported in (Kim, 1995). However, this technique is not error-free.
As we do not know before parsing which words of the input sentence will actually appear at the
top-level and are thus legitimate candidates of keywords, only the counting of the frequencies for
a given axiom during compilation is done on the top-level. Based on these frequencies, example
trees (during compilation) and input sentences (during parsing) are keyworded in the same way
based on their surface form, risking keywords which are not at the top-level.

Figure 4: Inverted List Indices for some words of the example tree in Fig. 2. The quadruples
<index,axiom,keywords,position> point to the <list of <tree-reference,weight>-tuples >.

<Nep,S,=shuol,=1> => <<347,1/6> <515,1/8> <899,1/26>>
<tal,S,=shuol,=1> => <<347,1/6> <699,1/14>>
( . . . )
<gelge,S,=shuol, = 1> => <<347,1/24>>

<Nap,S,=shuol,=1> => <<347,1/24> <899,1/25>>
( . . . )
<shuol,S,=shuol,1> => «347,1/24> <456,1/72> <457,1/80> <568,1/34> <644,1/75>>

Positioned Indices Inverted List Indices as we use them here to retrieve example trees are
in principle position-independent and as such an good indexing mechanism for free word-order
languages like Russian (although the words of different phrasal levels should not be confused).
Word order in Chinese is less free and therefor Chinese may not be well suited for a position-less
indexing. In addition, position-less matching requires complex adaptation strategies which have
not been investigated until now. Therefor we constrain the position of the indices by reference
to the keywords. Thus "=" refers to a position between the beginning and the end of a sentence
when no keywords are found, " =1" refers to a position between the beginning of a sentence and
the first keyword, "1=2" refers to a position between the first and second keyword and "1" refers
to the position of the first keyword. With a growing number of examples, the keywording and
the positioning becomes automatically more specific.

4.1.4 Deriving Weights
As during parsing many similar example trees may be retrieved (only the minimum is limited

by the threshold defined above), criteria for the selection of the best example tree are required.
We therefor assign weights to the lexemes and part-of-speech of each word of an example tree
which indicate their importance for this structure. The weights we calculated are first added
to the inverted indices (see Fig. 4) and secondly compiled into the example trees (for a more
fine-graded evaluation during the alignment described in Section 4.2.2). Due to the keywording
which already identifies the most crucial words of a sentence, the further assignment of weights
can remain very simple: We assume every sentence to have approximately the same total weight
close to 1. An additional weight is given to longer sentences as short sentence are easily matched.
The distance A from the original tree is used in order to calculate the trustworthiness of the
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weight_o f _tree =
1 + log(A)

1 + log(sentence_length
(1)

shuol

hui4

tal

Figure 6: The alignment of input
sentence and example tree us-
ing dynamic programming. The
score is more precise than that
obtained from the NN-retrieval.

tal
yi2ding4

hui4
jiang3

examples (cf. Fig. 3). The weight of one level is distributed equally over the daughters of that
level with lexemes and parts-of-speech obtaining the same weight.

Figure 5: The weight of a tree is included in a stored example trees. The 3 daughters of the main
phrase obtain each 3 which has to be distributed equally among lexeme and the part-of-speech.
The weight 3of a phrasal daughter is distributed equally over the grand-children.

S(exper:Nep:1/6:tal:1/6,Head:VE2:1/6:xiang3:1/6,goal:S(
agent:Nap:1/24:ge1ge:1/24,epist:Dbaa:1/24:yi2ding4:1/24,
epist:Dbaa:1/24:hui4:1/24,Head:VE2:1/24:shuo1:1/24))

4.2 Parsing

4.2.1 Fuzzy Nearest Neighbor Retrieval

Parsing starts with a lexicon look-up. The sequence of lexemes and possible parts-of-speech
allows to look up the axiom (cf. Section 4.1.3). Co-occurrences of lexemes for this axiom above
the threshold identify the keywords in the same way as during compilation. The keywords allow
for a positioning of the indices as during the compilation phase (the left side of Fig. 4). With the
help of the resulting index the database is accessed and lists of tuples of < tree-reference, weight>
retrieved. The weights are summed up for every tree-reference. k tree-references which accumu-
late the highest sum of weights are retained for further processing. The retained k tree-references
are then used to retrieve the example trees.

4.2.2 Alignment

After the NN-Retrieval the k example trees and the in-
put sentence are aligned. This can be conceived of as
a refinement of the retrieval as with this limited set of
retrieved examples a more precise evaluation is possible.
As the input sentence may have more words than the ex-
ample sentence (we face a deletion), the best mapping
of the words of the input sentence and the positions in
the example tree has to be found. At this aims dynamic
programming strategies can be used: Imagine the words
of the input sentence to be plotted on the x-axis and the
slots in the example tree to be plotted on the y-axis. We
first determine the "envelope", i.e. all possible combina-
tions of x and y. Within this envelop every cell is filled
with a score.

This score combines the similarity of the indices of the example tree and the input sentence,
and the weight assigned to them. The alignment of the input sentence and the example tree
in Fig. 6 consists of finding the path through this lattice which accumulates the highest sum of
scores. By storing in a hash table partial best paths (e.g. the best path starting from (3,2) to
the end), not all possible paths have to be run through, but can be calculated by summing up
partial results (Viterbi-Algorithm). The last step of the alignment consists of the replacement

350



of the words of the best example tree by the words of the input sentence. This is the first
adaptation step. The parts-of-speech of the example tree are retained for the next processing
steps, as the new coupling of the words and the part-of-speech allows to identify mismatches.

4.2.3 Insertion of Unaligned Words
Unaligned words are inserted in a second adaptation step. By default deleted words are in-

serted into the deepest embedded structure, unless there is strong statistical relation to the
head-word of the highest level. If the word is correctly inserted at the deepest level, the deriva-
tional adaptation described in 4.2.4 can correct the position and encoding of this word.

4.2.4 Derivational Adaptations
This adaptation step is triggered by a mismatch, defined as a word of the input sentence which

is aligned to a part-of-speech in the example tree which has not be found with this word in the
learned corpus. Subtrees in which such mismatches occur are replaced with trees obtained by
the recursive application of the whole parsing procedure to the words of the subtree.

As the phrase to be re-parsed is shorter than
the input sentence, we are likely to obtain a
better match, unless the initial chunking is
wrong. The largest possible sub-tree is cho-
sen for re-parsing in order to have a large con-
text for the unmatched word and, secondly,
to correct possible errors in the surrounding
of the mismatch. Mismatches at the sentence
top level cannot be corrected by this adapta-
tion strategy. The last adaptation, the struc-
tural adaptation, is applied to these words.

Figure 7: Re-parsing of the subtree from a
to 'y, triggered by a mismatch in X.

a

4.2.5 Structural Adaptations	 re-parse

The final structural adaptations operate on single words. They handle erroneous word mis-
matches, unknown words and phenomena of type shifting. Structural adaptations are triggered
by the same unattested relations of input word and part-of-speech which also trigger the re-
parsing. If the word is unknown, the aligned part-of-speech is maintained as a kind of top-down
unknown word guessing. In the case of a mismatch, either the mismatch is maintained (the
shifting of a verb to a noun) or the mismatch is attempted to be corrected by assigning the
words most likely part-of-speech and semantic role (given the part-of-speech and the position
of the head-word, see Section 4.2.). If the aligned part-of-speech and the parts-of-speech found
in the learned corpus are similar, the example part-of-speech is replaced by the attested part-
of-speech. The semantic role of the example tree is maintained in that case (assuming that
it is compatible with the new part-of-speech). If the example part-of-speech is very different,
the most probable new part-of-speech and semantic role is searched for, using the probabilities
collected during compilation (Section 4.2).

5 Implementation

The outlined parsing approach has been been implemented in a Chinese parser called OCTO-
PUS, using for training and testing the treebank developed at the Academia Sinica in Taiwan
for Modern Mandarin Chinese (Chen et al., 1999). The annotation guidelines for the treebank
and a sample of 1000 trees can be found at http : figodel its sinica edu. tw/CKIP/. While
the semantic role labels are almost self-explaining, part-of-speech tags are more complex: Tags
starting with N refer to nouns, starting with V refer to verbs, starting with P refer to prepositions
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of	 the	 CKIP-treebank.

+--sum of information units

3 0 lexico-syntactic information units

3--D syntactic-semantic infonnation units

30000.0

Figure 9:	 A hypothetical hierarchy of increas-
ingly difficult evaluation units for parser evaluation.

complete identity
semantic relations (Streiter, 2000)
syntactic functions (Carroll et al., 1998)
dependency relations (Lin, 1995)
labeled parseval (Manning, 1997)
unlabeled parseval (Charniak, 1996)

vP(•••
leadnon-hd
head modifier

head time
vp(head:v:came,time:adv:sool

•

etc. Additional characters develop a finer classification e.g. VK 1 is a subset of VK which is a
subset of V. The current specifications comprise almost 200 part-of-speech tags, 45 phrasal labels
and 46 semantic role labels.

The parser is written in Perl and has been developed under Linux. With minor changes the
parser may run also under commercial operating systems. The parsing module and the learning
module are a multi-tasking servers which can be accessed via TCP/IP. A demo-system and a
download of a parsing-client can be found under http://rockey.iis.sinica.edu.tw/oliver/parser.

6 Evaluation

The evaluation of NLP-tools should serve two aims. First, it should help the researcher to develop
better NLP-tools. Secondly, the evaluation should allow for the comparison among tools and
approaches. However, the current standard evaluation approach which consist in testing on un-
seen 10% of a training corpus may serve neither of these Figure 8:	 The closure
aims, as it does not distinguish the system quality from the
representativeness of the training data for the testing data.
That this representativeness cannot be taken for granted
can be seen, for example, from the CKIP treebank we use
for training and testing (Chen et al., 1999). When plotting
the occurrence of new lexical-syntactic information units
(a word and it syntactic category) and syntactic-semantic
information units (stating that category X at the left/right
of the syntactic head-category Y has the semantic relation
Z) we can see easily that, even though the sum of these
information units is a very poor language model for Chi-
nese, at no time the training data can be representative
for the testing data. Therefor, additional evaluation tech-
niques are required which allow to abstract away from the
representativeness of the training data. By this, the strong
and weak sides of the NLP model can be identified more
clearly and the comparison of NLP tools across different
training data should become possible.

6.1 The Evaluated Units

In order to have an as
informative as possible
evaluation which allows
for the comparison among
parsers which reproduce
parses with a different
degree of annotation rich-
ness, we opt for a multiple
evaluation which applies
to most annotation levels
represented in Fig. 9. As
syntactic functions are not
annotated in the treebank we use for training, we evaluate the parser for the unlabeled parseval,
the labeled parseval, the dependency relations and the semantic role relations. The scores for
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syntactic functions may be interpolated using the above hierarchy. The evaluated units for the
example tree in Fig.2 are given below.

Figure 10: Examples of evaluated units for Tree2.

unlabeled parseval (ta...shuo), (gege...shuo)
labeled parseval S(ta...shuo), S(gege...shuo)
dependency relations xiang->ta, xiang->shuo, shuo->gege, shuo->yiding, shuo- hui
semantic role relations xiang-exper->ta, xiang-goal->shuo, shuo-agent->gege,

shuo-epist->yiding, shuo-epist->hui
identity S(exper:Nep:ta,Head:VE2:xiang,goal:S(agent:Nap:gege,=

epist:Dbaa:yiding,epist:Dbaa:hui,Head:VE2:shuo))

6.2 The Basic Measures

Dividing the number of correctly identified evaluated units by the number of evaluated units in
the reference corpus, we obtain the recall. Dividing the number of correctly identified evaluated
units by the number of evaluated units in the parsing output we obtain the precision. Both
scores are combined into the f-score via the following formula.

precision• recall
f-score = 2 • 	

recall + precision

6.3 Secondary Measures

From the basic measures (recall, precision and f-score) we derive secondary measures by running
the parser on different sorts of test corpora. These secondary measures are the coverage, the
generality and the reliability.

6.4 Coverage

NLP-tools derived from corpora share a number of properties which may make them preferable to
their rule-based counterparts. Among them, their low development costs, their maintainability,
their tunability to a subject domain, their robustness and often, but not necessarily, their quality
in output. These advantages may be traded for the coverage, defined either as "the range of
texts or text types a (...) system can handle without deteriorating its performance" (Carl et
al., 2000) or as "f-score with (...) unlearned test corpora" (Streiter, 2000). This limitation in
coverage is due to the fact that for all corpus-derived tools the training corpus Sex is only a
subset of all possible realizations SLt in language 1. As has been pointed out, this evaluation
technique does not allow to determine the qualities of the corpus-based system as it includes
the representativeness of Se x for SLt . Nevertheless we shall report on the 'traditional' coverage,
defined as f-score on SL t — S	 following
2.000 sentences.

6.5 Reliability

Beside the coverage of a system we evaluate the reliability, defined as f-score on Sex . The
reliability determines the extend to which instances of Sex may be reproduced successfully. This
is not a trivial task, even for corpus-based systems, due to retrieval strategies (Carl, 1999b)
or statistical biases (Bod, 2000). In fact we hypothesize that most SPSGs perform poorly on
this task and followers of this approach may therefor contest the usefulness of this evaluation.
The necessity for a high reliability in a closed domain setting however cannot be denied. But
even in an open domain setting. the reliability directly influences the coverage, as experimental

(2)
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Figure 11: The coverage, reliability and generality of the parser expressed in recall, precision
and f-score. The input sentences are not tagged for the part-of-speech.

coverage (10K/2K) reliability (3K/4K) generality (10K/2K)
recall prec. f-sc. recall prec. f-sc. recall prec. f-sc.

identity 0.27 0.27 0.27 0.994 0.994 0.994 0.51 0.51 0.51
semantic roles 0.41 0.41 0.41 0.999 0.999 0.999 0.54 0.54 0.54
dependencies 0.48 0.48  0.48 0.999 0.999 0.999 0.60 0.60 0.60

labeled parseval 0.57 0.60 0.59 0.999 0.999 - 0.999 0.72 0.73 0.73
unlabeled parseval 0.63 0.67 0.65 0.999 1 0.999 0.78 0.79  0.78

data in (Daelemans et al., 1999; Streiter, 2000; Bod, 2000) show. While (Daelemans et al.,
1999; Streiter, 2000) argue for a causal relation between the performance on Se x (cause) and
Slot (result), (Bod, 2000) notices this relation only en passant. An additional advantage of
the testing of the reliability relies in the possibility for the system developer to check the well-
functioning of the parser, as it may be otherwise difficult to distinguish bad parses resulting
from bad or missing examples from bad parses resulting from a system error.

In order to test the reliability of the parser, we trained 4.000 sentences and parsed the first
3.000 sentences of the training corpus. As the results show, the parser has almost 100% relia-
bility. Among the sentences which have been parsed incorrectly, about 10% are due to different
annotations of sentences occurring more than once. 90% of the errors are accounted for by the
fact that the treebank contains unary projections. In such cases, the parser has no means to
make a well-motivated choice among the different projections, e.g. chose between v (v , v) or
vp(v(v,v)).

6.6 Generality

As a third system property we define the generality of a system as f-scores on Smi od- Srn
i od

is is a subset of Scot and a superset of S. SLd contains those unseen language events which
are conform to a language model instantiated by the data of S. The language model we use
here is the same we used to define the closure of the treebank above in Sec. 5. Sel xe thus contains
those language events we can reasonably expect a system to handle. However even on this task
parser do not perform well for two reasons. Either a parser is lazy (as for example OCTOPUS)
and enriches the internal language model not with all possible combinatorial power. OCTOPUS
for example can not necessarily analyze the sentence he came home after having seen he came
and came home. Lazy parsers may handle this and other sentences, but not necessarily the
information unit. Eager parsers transform every information unit in the corpus into a highly
potential information unit in the internal language model. As a consequence they have to handle
the ambiguities which arise during the analysis and may fail for this reason (Charniak, 1996).
When analyzing parsing errors on SC/nod - SL it is possible to identify whether these errors are
due to the eagerness (the structure is there but not selected) or the laziness (the structure is
not there) and to optimize the parser accordingly.

In order to show the generality of the parser, we trained 10.000 sentences and extracted from
the following 10.000 sentences 2.000 sentences which are covered by the simple language model
instantiated the the data from

7 Summary and Conclusion

We summarized current attempts of corpus-based parsing and criticized statistically-based parsers
for their inefficiency and unrecoverable generalizations. An alternative parsing approach has
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been developed for the parsing of Chinese, using recursive top-down fuzzy matches in order to
extracts example trees from a treebank.

The parsing results differ from those of statistically-based parsers. The high scores on reliabil-
ity and identity show that whenever there is an identical or similar example, the parser performs
almost perfectly. If not, the performance values drop rapidly. What may seem a disadvantage
includes the possibility of infinite trainability (that is what the reliability actually expresses).
Given that 30.000 trees are currently available for training and an amount of 80.000 trees is
aimed at, this property seems of utmost importance. Furthermore, as corpus-derived parsers
should support further treebank development, parsing errors may be corrected by the training
of a single example. A detailed study of this subject can be found in (Streiter, 2001).

For known or close to known language examples, the recall and precision are balanced. Only
for unseen language events, there is a bias which reveals a tendency to (incorrectly) prefer flat
structures. Currently, it is is not clear whether this is a result of the retrieval algorithm or of
the way deleted words are inserted.

We further hypothesize that the evaluation in terms of reliability and generality as conducted
here allows for a much better evaluation and tuning of a corpus-derived tool than the black-box
evaluation of in terms of coverage. This conforms to our experience made during the development
of OCTOPUS: Using the coverage to guide the system development leaves one with blind guesses
how to improve the parser. The other evaluation techniques point directly to mistakes or weak
points in the parser. For a related discussion cf. (Reinke, 2000).

Finally we express the conviction that the performance of the parser can be still improved
upon in a modular way on many points such as the axiom-guessing, the keyword-finding, the
assignment of weights, the conditions for re-parsing and, most important, the insertion of deleted
words. At the same time the whole approach may benefit from integrating new insights from
data mining, information retrieval and example-based Machine Translation.
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