
Some Principles of Automated Natural Language Information
Extraction

Gregers Koch
Department of Computer Science, Copenhagen University

DIKU, Universitetsparken 1, DK-2100
Copenhagen, Denmark

Abstract

Here is presented and discussed some principles for extracting the semantic or infor-
mational content of texts formulated in natural language. More precisely, as a study
of computational semantics and information science we describe a method of logical
translation that seems to constitute a kind of semantic analysis, but it may also be
considered a kind of information extraction. We discuss the translation from Dataflow
Structures partly to parser programs and partly to informational content. The meth-
ods are independent of any particular semantic theory and seem to fit nicely with a
variety of available semantic theories.

1 Introduction

Here is presented and discussed some principles for extracting the semantic or informational
content of texts formulated in natural language. More precisely, as a study of computational
semantics and information science we describe a couple of methods of logical translation that
may be considered a kind of information extraction. We discuss the translation from dataflow
structures partly to parser programs or logic grammars and partly to informational content.
The methods are independent of any particular semantic theory and seem to fit nicely with a
variety of available semantic theories.

Information is a concept of crucial importance in any conceivable scientific endeavour. Also
the modeling of information or semantic representation is becoming more and more important,
not least in information systems. Databases, knowledge bases as well as knowledge management
systems are continually growing. Modeling helps to understand, explain, predict, and reason
on information manipulated in the systems, and to understand the role and function of com-
ponents of the systems. Modeling can be made with many different purposes in mind and at
different levels. It can be made by emphasising the users' conceptual understanding. It can be
made on a domain level on which the application domain is described, on an algorithmic level,
or on a representational level. Here the interest is focused on modeling of information on a
representational level to obtain sensible semantic representations and in particular on the flow
of information between the vertices of a structure describing a natural language utterance.

We are in the habit of considering the syntactic phenomena, and especially those concerning
parsing, as essentially well understood and highly computational. Quite the opposite seems
to be the case with semantics. We shall argue that certain central semantic phenomena (here
termed logico-semantic) can be equally well understood and computational. So, in this rather
limited sense we may claim that the semantic problem has been solved (meaning that there
exists a computational solution). This paper contains a brief discussion and sketches a solution.
A more comprehensive discussion may be found elsewhere.

121

The method presented will produce one single logico-semantic formula for each textual input.
In case more solutions are required (and hence ambiguity is present) it is certainly possible to
build together the resulting individual logic grammars.

Here we are exclusively concerned with parsing or textual analysis. Analogous considerations
can be made concerning textual synthesis or generation (Kawaguchi, 1997).

We shall discuss a new method for extracting the informational content of (brief) texts formu-
lated in natural language (NL). It makes sense to consider information extraction from NL texts
to be essentially the same task as building simple kinds of information models when parsing the
texts. Here we present a method that is distinguished by extreme simplicity and robustness.
The simplicity makes programming of the method feasible, and so a kind of automatic program
synthesis is obtained. The robustness causes wide applicability, and so the method has a high
degree of generality (Koch, 1991), (Koch, 1994a),(Koch, 1994b),(Koch, 1997),(Koch, 2000a),
(Koch, 2000b),(Koch, 2000c).

2 From Dataflow to Parser Programs

It is necessary to put certain restrictions on the information flow in the attributes of a syntactic
tree produced by a logic grammar, in order to consider it well-formed.

Most importantly, a consistency criterion is required: multiple instances of a rule should give
rise to the same information flow locally inside the instance.

Furthermore, we require the following:
- The information flow must follow the tree structure in the sense that information may flow

directly from the parent's attributes to the children's attributes or vice versa, and among the
attributes of the siblings.

- The starting point of the information flow has to be a terminal word in the grammar or a
vertex where a new variable is created.

- The result attribute in the distinguished vertex of the syntax tree (the root or sentential
vertex) is the terminal vertex of the information flow.

- There must be a path in the information flow from each starting point to the terminal vertex.
Hence, there is no general requirement (though it may well be the case) that every attribute

in every vertex should be connected to the terminal vertex of the information flow.
An input text is called exhaustive if it exhausts the grammar in the sense that the syntax tree

of the text contains at least one application of each syntactic production rule in the grammar
(and if it contains at least one instance of each lexical category).

When we construct a parser by means of definite clause grammars (DCGs) (Covington, 1994)
or other logic grammars (Abramson and Dahl, 1989),
(Deransart and Maluszynski, 1993) including the generation of a representation from a formal-
ized logico-semantic theory, it is of course a necessary condition that the information flow in the
attributes of the syntax tree corresponding to an exhaustive input text is a well-formed flow.

As an example, let us analyze the following English sentence.
"Every Swede tries to find a submarine" .
Within the limits of a modestly extended first-order predicate calculus we may assign to the

sentence the following three interpretations or logico-semantic representations:

9y[submarine(y) A Vx[swede(x) try(x, find(x, y)

Vx[swede(x)	 3y[subrnarine(y) A try(x, find(x, y))}]

Vx[swede(x)	 try(x,3y[submarine(y) A find(x, y)]]

122

An absolutely central problem of semantics (here called the logico-semantic problem) is to
assign to each input text from the appropriate linguistic universe one or several formalized se-
mantic representations. As formalizations we shall consider here for instance logical formulae
belonging to some particular logical calculus (like definite clauses or Horn clauses, first-order
predicate logic, some extended first-order predicate logics, the lambda calculi, Montagovian in-
tensional logics, situation theories, and Hans Kamp's Discourse Representation Theory) (Kamp
and Reyle, 1993),(Coles, 1996),(Schank, 1982), (Devlin, 1991).

We shall discuss the problem of constructing a computational version of this assignment by
displaying an analysis of the information flow in logic grammars. This leads to a rigorous method
for the construction of a wide variety of logico-semantic assignments.

For instance, we may analyze the example sentence with respect to the third interpretation.
We choose a syntax in such a way that the sentence constitutes an exhaustive example. For

instance, we may choose the following syntax:

S -> NP VP.
NP -> D N.
VP -> VPVP to VP I TV NP.
D -> a I every.

Notice that the determiners (D) "a" and "every" are here considered syncategorematic words
(that is, they belong to the grammar rather than to the lexicon). We may make a guess as to
what attributes should be available for each of the syntactic categories (S, NP, VP, VPVP, TV,
N, and D). In case of mistakes, the construction of the information flow in the example will
guide us into correction.

Res in S
Subj, Res in N, VP
Subj, Obj, Res in TV, Vpvp
Subj, Conc, Res in NP,
Subj , Restr, Scope, Res in D.

Here, Res designates the result attribute, Subj designates the focus or subject attribute, Obj
designates the object attribute, and Prem and Conc are auxiliary attributes designating premise
and conclusion, respectively. Of course, the actual choice of attribute names is immaterial. With
this background we should be able to construct a well-formed information flow in the syntax tree
belonging to the selected English input sentence and with respect to the intended interpretation.

Hence, by means of the constructed information flow we obtain the following result:

Res = Sem(every)(Subj,Prem,Conc)
= Sem(every)(Subj,Prem,try(Subj,Obj))
= Sem(every)(Subj,Prem,try(Subj,Sem(a)(Subj1,Preml,Conc1)))
= Sem(every)(Subj,Prem,

try(Subj,Sem(a)(Subjl,Preml,find(Subj,Subj1))))
= Sem(every)(Subj,swede(Subj),

try(Subj,Sem(a)(Subj1,
submarine(Subj1),find(Subj,Subj1)))).

From the information flow, we may extract the following logic grammar describing the lan-
guage fragment:

123

S (Res) --> NP (Subj , Conc ,Res) , VP (Subj ,Conc) .
NP (Subj , Conc , Res) --> D (Subj ,Prem, Conc , Res) , N (Subj ,Prem) .
VP (Subj ,Res) --> VPVP (Subj , Obj ,Res) , [to] , Vp (Subj , Obj) .
D (Subj ,Prem, Conc , Sem (x) (Subj ,Prem, Conc) --> [x]

provided that x in {a, every} .
VP(Subj ,Res) --> TV(Subj,Obj,Conc),NP(Obj,Conc,Res).

The corresponding lexical entries are

	

N (Subj , x (Subj)))) --> [x] 	provided that x in N .
TV (Subj , Obj , x (Subj , Obj)) --> [x] 	 provided that x in Tv.
VPVP (Subj , Obj , x (Subj , Obj)) --> [x] provided that x in Vpvp .

3 From Dataflow to Informational Content

We want to argue that the rigorous method described above may be implemented in a com-
putational fashion (that is, it is fully computable). This can be done by sketching a heuristic
algorithm which generates from a single exhaustive example of an input text and its correspond-
ing intended logico-semantic representation, a logic program that translates every text from the
source language into the corresponding logico-semantic representation. The heuristic algorithm
should try to analyse the logico-semantic representation of the exhaustive textual input in or-
der to build a model of the relevant information flow in the corresponding syntax tree with
attributes.

Let us illustrate the method by showing how another tiny little text will be treated. The text
we choose consists of four words only:

"Peter eats an apple"
Step 2 is the choice of a syntactic description. Here we select an utterly traditional context-free

description like

S -> NP VP .
NP -> PN I D N.
VP -> TV NP.

where S, NP, VP, PN, D, N, and TV designate sentence, noun phrase, verb phrase, proper name,
determiner, noun, and transitive verb, respectively.

Step 3 (the analysis of information flow) is more complicated. Due to the fact that our syntax
is context-free, it is possible to construct a syntactic tree for any well-formed text, so it makes
sense to try to augment such a tree with further relevant information. In our little example the
tree structure is

NP	 PN -- Peter

TV	 eats

\	 /	 an
VP

	

\	 /
NP

N -- apple

124

We shall illustrate the analysis by hinting at the resulting two nodes labelled NP and the one
node labelled D.

The first NP node will be like this

-	 I-

I	 IT

NP (X , 0 , 0)

-

I v___

Here the node will be augmented with three arguments. The first argument is initialized to a new
variable X that in turn will obtain a value from below (presumably the constant value 'peter').
The other two arguments will obtain the same value, as the value of the second argument is
locally transported to the third argument as its value.

The second NP node will also get three arguments. The first argument is initialized to a new
variable Y, and this (uninitialized) variable will be transported in the dataflow both upwards
and downwards in two different directions (presumably to the daughter nodes, the D node and
the N node). Hence we are getting something like

1

The D node will obtain the following local dataflow:

1	 1

v v v

D(0 , 0 , 0 , 0)

v---v---v--- I

This means that the three first arguments will get their value from above and those values will
be combined to give a value for initialization of the fourth argument.

Step 4:
From the syntax structure augmented with the dataflow, we can easily synthesize a parser

program, here in the form of a definite clause grammar (DCG):

SC Z	 --> NP(X, Y, Z), VP(X, Y).

NP(X, Y, Z) --> PN(X).

NP(X, Z, W) --> D(X, Y, Z, W) , N(X, Y).

VP(X,	 --> TV(X, Y, Z), NP(Y, Z, W).

125

Step 5:
It becomes an entire parser when we supply some relevant lexical information like this:

PN(peter)	 --> [Peter].
TV(X, Y, eats(X,Y))	 --> [eats].
D(X, Y, Z, exists(X,Y & Z)) --> [an].
N(X, apple(X))	 --> [apple].

Step 6 (symbolic execution):
This step amounts to keeping track of each argument when evaluating and along the way

change the variable names to avoid confusion (we change the name conventions so that all
variables have unique names and global scopes).

(Z)

..........

..I.

NP (X, Y, Z)
I
I_ PN (X) &Y= Z

I
I__ Peter & X = peter

VP (X, Y)

__ TV (X, Yl, Z1)
i
I__ eats	 & Z1 = eats(X,Y1)

__ NP (Yl, Z1, Y)

I__ D (Y1, Y2, Z1, Y)
I	 I

I
	

I__ an	 & Y = exists(Y1,Y2 & Z1)
I
I._ N (Yl, Y2)

1
I__ apple & Y2 = apple (Y1)

Step 7:
All the possible symbolic equations are the following:

Y = Z
X = peter
Z1 = eats(X,Y1)
Y = exists(Y1,Y2 & Z1)
Y2 = apple(Y1)

126

Step 8:
This system of equations is easily solved with respect to the variable Z:

Z = Y
= exists(Y1,Y2 & Z1)
= exists(Y1,Y2 & eats(X,Y1))
= exists(Y1,apple(Y1) & eats(peter,Y1))

So this formula is the suggestion for the semantic representation obtained by a rigoristic and
partly automated synthesis, through analysis of the information flow.

By means of some examples we can demonstrate that this method covers both simple logico-
semantic representation theories in (extended) first-order logic and lambda calculatoric logico-
semantic theories, and also Montagovian intensional logic and Situation Semantics (Devlin,
1991),(Koch, 1993),(Koch, 1999),(Loukanova, 1996).

References

Kamp, H. and Reyle U. From Discourse to Logic. Kluwer, Amsterdam, 1993.

H. Abramson and V. Dahl, Logic Grammar, (Springer, 1989).

C. G. Brown and G. Koch, eds., Natural Language Understanding and Logic Programming, III, (North-
Holland, Amsterdam, 1991).

Coles, ed., Survey of Language Technology, report, 1996.

M.A. Covington, Natural Language Processing for Prolog Programmers, (Prentice Hall, Englewood Cliffs,
1994).

P. Deransart and J. Maluszynski, A Grammatical View of Logic Programming, (MIT Press, 1993).

K. Devlin, Logic and Information, Cambridge University Press, 1991.

E. Kawaguchi et al., Toward Development of Multimedia Database System for Conversational Natural
Language, 69-84, in (Kangassalo et al., 1997).

G. Koch, A method of automated semantic parser generation with an application to language technology,
103-108, in (Kawaguchi et al., 2000a).

G. Koch, A method for making computational sense of situation semantics, 308-317, A. Gelbukh, ed.,
CICLing'2000, Proceedings, Institute Politecnico Nacional, Mexico City, 2000b.

G. Koch, Some perspectives on induction in discourse representation, 318-327, A. Gelbukh, ed., CI-
CLing '2000 , Proceedings, Institute Politecnico Nacional, Mexico City, 2000c.

G. Koch, Discourse Representation Theory and induction, 401-403, H. Bunt and E. Thijsse, eds., Pro-
ceedings of the Third International Workshop on Computational Semantics (IWCS-3), Holland 1999.

G. Koch, Semantic analysis of a scientific abstract using a rigoristic approach, 361-370, in (Kangassalo
et al., 1997).

G. Koch, An inductive method for automated natural language parser generation, 373-380, P. Jorrand and
V. Sgurev, eds., Artificial Intelligence: Methodology, Systems, Applications, World Scientific, 1994a.

Koch, G. Montague's PTQ as a Case of Advanced Text Comprehension, in Information Modelling and
Knowledge Bases IV, eds. H. Kangassalo et al. (I0S, Amsterdam, 1993), 377-387.

127

R. Schank, Dynamic Memory, Cambridge University Press, 1982.

H. Kangassalo et al., eds. Information Modelling and Knowledge Bases VIII, IOS, 1997.

E. Kawaguchi et al., eds., Information Modelling and Knowledge Bases XI, IOS, 2000.

G. Koch, Linguistic data-flow structures, 293-308, in (Brown and Koch, 1991).

G. Koch, A discussion of semantic abstraction, 350-356, in Information Modelling and Knowledge Bases
V, H. Jaakkola et al., eds., IOS Press, Amsterdam, 1994b.

R. Loukanova, Solving Natural Language Ambiguities in Situation Semantics, 7-16, Bits and Bytes,
Proceedings from the 5th Danish Computational Linguistics Meeting, University of Odense, Denmark,
1996.

128

	PACLIC15-121.pdf
	PACLIC15-122.pdf
	PACLIC15-123.pdf
	PACLIC15-124.pdf
	PACLIC15-125.pdf
	PACLIC15-126.pdf
	PACLIC15-127.pdf
	PACLIC15-128.pdf

