
DEVELOPING DATABASE SEMANTICS
AS A COMPUTATIONAL MODEL*

Kiyong Lee

Department of Linguistics,
Korea University,

Seoul 136-701, KOREA

Email : klee@mail.korea.ac.kr

ABSTRACT

Both Hausser [1] and Lee [2][3] proposed Database Semantics as a computational model for natural
language semantics that makes use of a database management system, DBMS. As an extension of these
efforts, this paper aims at dealing with ways of representing linguistic descriptions in table forms because
all the data in a relational model of DBMS is conceived of being stored in table forms. It is claimed here
that, if an algorithm can be developed for converting linguistic representations like trees, logical formulas,
and attribute-value matrices into table forms, many available tools for natural language processing can be
efficiently utilized as part of interface or application programs for a relational database management
system, RDBMS.

1. INTRODUCTION

For business transactions or academic administration, a commercial database management system
(DBMS) like DB2, Oracle or Informix is widely used. Database Semantics is an attempt to adopt such a
system for doing semantics for ordinary language. Since an interpretation model or background is
necessary for processing linguistic information, Database Semantics can use as its model a database in a
DBMS that provides both lexical meaning and world knowledge information. Furthermore, a DBMS
constantly updates its database with new data, as fragments of a natural language like Korean or English
are processed through a linguistic processing system LIPS. Hence, Database Semantics can consistently
process even a larger fragment of discourse in natural language.

(1) A Model of Database Semantics

But, before developing Database Semantics as an application program into an RDBMS, the issue of
representation must be resolved at least in the logical or conceptual level. Unlike ordinary semantics,
Database Semantics as a computational model ultimately aims at a computational implementation. Hence,
it should be able to build a successful interface between the two different levels of linguistic description
and computational processing. As a result, representation comes to play an important role of bridging the

* This work was partially supported by the 1999 research grant from Korea Research Foundation. Here I
would like to thank anonymous referees for the PACLIC14 and all my colleagues who helped me to com-
plete this paper, especially, Suk-Jin Chang, Roland Hausser, Jae-Woong Choe, Masatoshi Kawamori and
my graduate assistants Jungha Hong and Seungchul Choe.

—231---

and computational processing. As a result, representation comes to play an important role of bridging the
gap between human and computer interactions. Linguistic descriptions are often represented in trees,
logical forms, or attribute-value matrix (AVM) structures.' On the other hand, a computer system like
RDBMS, which only knows a relational language like SQL, can conceptually recognize data stored in a
table form only. This paper will thus focus on ways of representing linguistic information in a table form
so that it can be recognized by an RDBMS.

The main task of this paper is then to discuss ways of converting linguistic representations like trees,
logical forms, and matrices into table forms. If an algorithm is developed for these conversions, then many
of the exiting parsers or interpreters can be directly incorporated into an RDBMS. Head-driven Phrase
Structure, Lexical-Functional, and Left-Associative grammars, for instance, produce the results of their
analysis represented in a sequence of Trie or AVM structures.

At the present, however, the presentation of such an algorithm is beyond the scope of this paper, for the
version of Database Semantics proposed in the framework of RDBMS is still in the nascent state of being
designed as a computational model. It is thus only hoped that fragmentary but concrete illustrations will be
given to show how linguistic analyses can be represented in table forms.

2. WHY A RELATIONAL MODEL?

Hausser [1] was the first to develop Database Semantics. By adopting a network model for DBMSs, he
proposed to construct a Word Bank, a lexical database consisting of word types and their tokens. By
navigating this Word Bank, propositional content can then be processed linearly or left-associatively by a
step-by-step manner. In a similar vein, Lee [2] also showed how a network model could be used to
represent various structural relations in natural language analysis, while assuming that it could be a
minimally sufficient model for processing natural language.

Lee [3], however, argued for some advantages of adopting a relational model possibly with object
extensions. First, the relational model has given a conceptual basis for implementing most of the currently
running commercial DBMSs like Oracle8i or Informix7.0.

Secondly, the relational model uses standardized SQL, a structured query language, for describing ways of
building database structures and managing them, thus making it possible to apply it to the construction of
a query system for natural language semantics.

Finally, its basic representational scheme at the logical or conceptual level is of a table form consisting of
attributes and their values like an attribute-value matrix for linguistic representation. In the relational
model, a database is a set of tables representing various relations among objects in a domain. This paper
thus proposes to adopt a relational model RDBMS for developing Database Semantics.

3. WHY DATABASE SEMANTICS?

There are at least two reasons for adopting a DBMS as a basis for doing semantics. First, natural language
generates a large amount of linguistic information with great complexity. Even a tiny fragment of text
contains a lot of data. Especially when it contains indexical or context-dependent expressions, even a short
sentence consisting of three or four words can theoretically create almost an infinite number of
interpretations. Consider the following sentence:

(2) I am happy today.

The original version of this paper discussed the tripartite representation of quantified sentences in AVM
structures and converting these matrices into table forms. But, due to the editorial constraint on the limita-
tion of space, the discussion of AVM structures has to be postponed for another occasion.

This string of words in English constitutes a well-formed sentence of English, meaning that, whoever the
speaker is, she or he is happy on the day of her or his making the statement. Hence, it can have an
indefinitely large number of interpretations depending on who the speaker is and also when or what day it
is spoken.

Let's consider another example. Suppose two lovers say to each other:

(3) I love you.

This sentence consists of only three simple words. But, depending on the context of its use, it can produce
infinitely many different interpretations. Here, neither I nor you refers to a fixed person. Even in a
situation where two persons, say Mia and Bill, say to each other I love you, each of the pronouns has two
different referents. The pronoun I once refers to Mia, while the pronoun you refers to Bill. And then the
pronoun I refers to Bill, whereas the pronoun you refers to Mia. Hence, a model in which their referents
are fixed cannot interpret sentences like (3).

By allowing a DBMS to keep updating its database, Database Semantics as a model-theoretic semantics
should be able to use the constantly updated set of data supplied from the database to interpret
contextually dependent statements or utterances. By appropriately partitioning the database into smaller
parts through DBMS, Database Semantics can get the effect of subdividing its interpretation model into
smaller sub-models so that the indexical expressions like I or you or even anaphoric pronouns like she or
he may have varying referents within a larger model.

Event statements have the same problem of varying reference. Indexical expressions like today or
yesterday have different referents as discourse situations vary. Then there are events that consist of smaller
events, some of which may overlap each other. While statements are being made continuously, their
interpretation model should be able to keep track of their sequential as well as overlapping relations,. This
task, Database Semantics is expected to perform efficiently by making a DBMS to control and manage its
database.

While using a database as its interpretation model, Database Semantics installs in it various lexical and
grammatical modules for processing natural language. The lexicon or word bank should be part of the
database. This lexicon may be of various types. It can, for instance, be a multi-lingual dictionary or may
contain a virtual dictionary temporarily built to deal with a given fragment of discourse.

The entire grammar consisting of both syntactic and semantic rules should also be installed in the same
database. There may be sets of constraints or principles governing the generation of well-formed sentences.
DBMS then manages and upgrades all these modules with new lexical items as well as newly required
grammatical rules and constraints, as a larger linguistic corpus is introduced into the system. By allocating
all these managing functions to DBMS, Database Semantics can make its module LIPS for linguistic
information processing simply function as an application interface between its users and DBMS.

4. TABLES

A relational DBMS is normally identified with tables.' A table is a very simple and rigid form of
representation, a triplet <Name, Attributes, Values> consisting of a name, a set of attributes or fields and
their corresponding values. Nevertheless, it can carry a lot of information with varying types. The
following is an example containing some personal information on professors:

2 More detailed discussions of the notion of table and its properties in an RDBMS can be found any
ordinary books on database management systems like [4], [5], [6], and [7].

(4
PROF_NO NAME INITIAL OFFICE_PHONE

01 Lee K. 3290-2171
02 Choe J. 3290-2172
03 Kang B. 3290-2173
04 Kang M. 3290-2174

The name of this table is PHONE BOOK. The table has four attributes: PROF NO, NAME, INITIAL,
and OFFICE_PHONE. Under each attribute, 4 different values are given with each of the four rows
forming a record. The first row, for instance, gives information on Lee's office phone number.

Tables in an RDBMS are characterized by their data and structural independence. The above table (4), for
instance, can easily be expanded by adding new data without destroying its basic structure.

PROF_NO NAME INITIAL OFFICE_PHONE
01 Lee K. 3290-2171
02 Choe J. 3290-2172_

03 Kang B. 3290-2173
04 Kang M. 3290-2174
05 Kim S. 3290-2175
06 You S. 3290-2176

This new table can be considered as being obtained by joining table (4) with table (6) containing
information on Kim and You.

I PROF_NO NAME INITIAL OFFICE_PHONE
05 Kim S. 3290-2175
06 You S. 3290-2176

Here, the attribute PROF_NO on each of the two tables (4), (5) and (6) uniquely identifies each row, thus
playing a role as a primary key for linking one table to the other or joining them into a new expanded table.

The notion of table is very simple as sketched here. It is purely a conceptual construct. This paper will,
however, show the expressive power of tables for linguistic description. For this purpose, the paper aims at
showing how seemingly complex-looking linguistic objects like Phrase Structure trees and logical
formulas can be converted into table forms.'

5. FROM TREES TO TABLES

One possible way of representing the constituent structure of a sentence is to use a tree form. The
following sentence (7), for example, may be analyzed into a phrase structure tree (8):

(7) Mia loves Kim.

(8)

NP:O1	 VP:02

N:011	 V:021
	

NP:022

N:0221

Mia	 loves	 Kim

3 The conversion of AVM structures into table forms is briefly discussed in [3].

(5)

(6)

This tree is understood as representing how sentence (8) is formed: it consists of a noun Mia, a verb loves,
and another noun Kim.

The same structural information can be represented in the following table form where the terminal nodes
Mia, loves, and Kim are marked with a dummy symbol t:

(9) Table name: TREE8
NODE_CODE MOTHER DAUGHTER1 DAUGHTER2

0 S NP VP
01 NP N
02 VP V NP

011 N t
021 V t
022 NP N

0221 N t

Here, a unique code number is assigned to each node from which one can obtain information on the
dominance and precedence relations among the nodes. The NODE_CODE 0, for instance, stands for the
root node labeled S, and the NODE CODEs 01 and 02 are its two daughters, NP and VP respectively. It is
again understood here that 0 dominates 01 and 02 and that 01 precedes 02. This is so because the number
of digits in each NODE_CODE is understood as representing its level in the tree and also the sequence of
numbers except for the one in the last digit in each NODE_CODE as representing the code of its mother.

In Phrase Structural Grammar, the terminal nodes Mia, loves, and Kim in a tree like (8) are first marked
with a dummy symbol like t, as in (9). It is then replaced by an appropriate lexical item selected from a
lexicon by the process of lexical insertion. This fact can also be easily captured in a sequence of tables
linked to each other. For this, we first construct a lexicon table like the following:

LEX_CODE CATEGORY WORD FORM

n_l N Kim

n2 N Mia

v_l V hates

v2 V loves

Secondly, the TREE table can be linked to the LEXICON table through the following bridging table:

NODE_CODE LEX_CODE

011 n_2

021 v2

0221 n_l

This is a very rigid table, for it only allows the selection of a single word for each pre-terminal node. But it
makes it possible to convey the exact amount of information as represented by tree (8).

For generation, we need a more flexible way of building tables and linking them to each other. From the
pre-terminal tree table (9), it should be possible to construct a table frame like the following:

(12) Table name: PARSING8
S_CODE I N I V I N

(10)

Here, we first expand the bridging table (11) by adding a few more possible links to it.

(13) Table Name: BRIDGING FOR GENERATION
NODE_CODE LEX_CODE

011 n_l

011 n_2

021 v_i

021 v2

0221 n_l

0221 n_2

On the basis of this bridging table, we can now complete the table frame (12) and obtain the following:

S_CODE N V N
1 Kim hates Mia
2 Mia hates Mia
3 Kim loves Kim
4 Mia loves Kim
5 Kim hates Mia
6 Mia hates Mia
7 Kim loves Kim
8 Mia loves Kim

This table gives a complete list of well-formed sentences that can be generated on the basis of the pre-
terminal tree table (9) and the bridging table for possible generation (13). The construction of this bridging
table (13), of course, depends on various co-occurrence restrictions.

It has been shown here how phrase structure information can be represented in a table form and also how
the processes of language analysis and generation can be captured by a sequence of tables with
appropriately constructed bridging tables. It should, however, be noted that the use of tables for
representing constituent structures should not be understood as claiming the adequacy of Phrase Structure
Grammar for linguistic description. It rather shows the possibility of accommodating a grammar system
that generates trees into an RDBMS as a genuine part of the LIPS of Database Semantics.

6. FROM LOGICAL FORMULAS TO TABLES

In formal semantics for natural language, sentences are first disambiguated through syntactic analysis and
then translated into a logical language like Intensional Logic for their model-theoretic interpretations. In
this section, I will show how logical formulas can be converted to tables, which represent the propositional
content of sentences in natural language.

6.1 SIMPLE SENTENCES

Simple sentences are normally translated into atomic formulas in a Predicate Logic-like language, which
consists of a relation and a set of its arguments. Suppose we have a simple sentence:

(15) Mia loves Kim.

This sentence can be translated into an atomic formula like the following:

(16) love'(mia', kim')

(14)

This formula consists of a relation love' and two arguments mia' and kim'.

This formula can easily be turned into a table consisting of four attributes, PROP_CODE, RELATION,
ARG1, and ARG2.

PROP_CODE RELATION ARG1 ARG2

1 love mia kim

The first row in this table is marked with PROP_CODE 1, containing information on the loving relation
between Mia and Kim.

To this table, other relations may be added.

PROP CODE RELATION ARG1 ARG2

1 love mia kim
2 love kim mia
3 sisters mia kim

Two more records or pieces of information are added to the table without changing its basic structural
frame.

By applying some inference engine to the above table, Database Semantics must be able to infer the
propositions expressed by the following two related sentences:

(19) a. Mia and Kim love each other.
b. They are sisters.

Table (18) is thus understood as representing the propositional content of both of the sentences in (19) as
well.

6.2 EMBEDDED SENTENCES

Sentence (20) contains an embedded sentence.

(20) Mia knows that Kim loves her.

Here, the embedded sentence Kim loves her plays its role as the Object of the verb knows.

This sentence may have a logical representation like the following:

(21) knows'(mia', loves'(kim', mia))

The predicate knows' takes two arguments: one is an individual constant mia' and the other a proposition
loves'(kim', mia').

By adopting Lee's equation-solving approach [8], this formula may be decomposed into two atomic
formulas as in:

(22) knows'(mia', p)
p = (loves'(kim', mia'))

(17)

(18)

The letter p is used here as a variable of the propositional type. It is equated in (22) to the proposition
loves'(kim', mia').

A more accurate way to represent the use of the pronoun her in sentence (20) is to represent it as a
variable because it may not necessarily refer to Mia. Only if some background is provided appropriately, it
can be equated to mia' and then refer to Mia. Otherwise, it is left unbound as a free variable.

By accepting such a treatment of pronouns as variables, translation (21) can be reformulated as in (23):

(23) knows'(mia', p)
p = (loves'(kim', x')
x = mia'

This translation consists of a set of an atomic formula and its related equations. One equation refers to the
content of the relation knows' and the other binds the variable x to mia'.

These formulas can also be converted to a table like the following:

(24) Table name: PROP_(23)
PROP_CODE RELATION ARG 1 ARG2

prop_ 1 knows' mia' p

prop_2 = p prop_3

prop_3 loves' kim' x

prop_4 = x mia'

Here the equation x=mia' is treated as part of the propositional content while its PROP_CODE is assigned
prop_4 in the table PROP_(23). But the information that is conveyed by this equation is not part of the
propositional content of sentence (20). It is rather part of the background for interpreting it. Hence, it
should be taken away from the table PROP_(23) and placed in a separate table for storing background
information.

(25) Table name: BACKGROUND
BG_CODE RELATION ARG 1 ARG2

bg_l x mia'

As is revised as in (26), the PROP table can link to the BACKGROUND table.

PROP_CODE RELATION ARG 1 ARG2 BG_CODE

prop_l knows' mia' p

prop_2 = p prop_3

prop_3 loves' kim' x bg_l

Table (26) is now linked to table (25) by relating the PROP_CODE prop_3 to the BG_CODE bg_1.

The table approach can distribute information into appropriately classified tables. But it can also link them
systematically, as the need arises. Consider another type of embedded sentences:

(27) Mia promised Kim to help her.

The logical form of this sentence may look like the following:

(28) PAST(promise'(mia', kim', help'(mia',kim')))

(26)

Through Lee's equation-solving approach [8], the above representation can be decomposed into the
following set of equations with a propositonal formula.

(29) PAST(promise'(mia', kim', p))
p = help'(x, y)
x= mia', y = kim'

The equation x=mia' is supported by the so-called EQI-NP constraint or some control mechanism
associated with the verb promise in English, while the equation y=kim' is introduced by some background
information that governs the use of pronouns.

In order to represent these pieces of information in a table form, we construct a PROP table first.

PROP_CODE TENSE RELATION ARG 1 ARG2 ARG3 BG_CODE CL_CODE

Prop_l past promise mia kim prop2

Prop_2 help x y bg_l 0 subject

We then need two tables, a table for BACKGROUND and a table for CONTROL.

BG_CODE RELATION ARG 1 ARG2

Bg_ 1 0 y kim'

CL_CODE RELATION ARG I ARG2

Subject x mia'

Table (30) is linked to tables (31) and (32) through the keys supplied by PROP_CODE, BG_CODE, and
CL CODE in these tables.

6.3 EVENT-RELATED STATEMENTS

In natural language, each verb must carry information on tense. In a coordinate or complex sentence, some
verbs may lack any overt tense marking, as with the verb marry in the following sentence:

(33) Bill promised Mia to marry her.

Here the event of marrying is understood to take place not before, but after the promise was made. This
interpretation is possible because any promised event must occur later than the time of making the promise
itself. Consider the following pair of sentences:

(34) a. Bill promised that he married her.
b. Bill promised that he would marry her.

Both sentences are syntactically acceptable. Unlike (34b), however, sentence (34a) cannot be properly
interpreted semantically.

(30

(3 1

(32

By borrowing the representation scheme of neo-Davidsonian Event Semantics, the content of sentence
(33) and its background may be captured as in:

The value temp_2 of T_CODE shows that el precedes e2.

The third row prop_3 in the PROP table requires an expanded table for BACKGROUND.

(38)
BG_CODE RELATION ARG 1 ARG2

bg_9 y mia'

bg_ 10 = y kim'

(35) promise'(e„ bill', mia', p)
p = marry'(e2 , x, y)
PAST({ei})
precedes'(ei,e2)
x = bill', y = mia'

Here are two events, e l and e2 : one is an event of Bill's making a promise to Mia, and another, an event of
marrying. The event e l is a past event. Hence, it is represented as part of the interval PAST. The predicate
promise' relates two events or actions by arranging the temporal sequence of their occurrences. The
formula precedes'(e„e2) states that the event of promising occurs before the event of the promised event
or action.

Two equations for checking coreference are again introduced here. Since the verb promise is a subject-
control verb, the invisible subject of the infinitival clause is understood to be the same as the main subject.
The equation x = bill' expresses this fact. The second equation y = mia' again depends on presumable
background information, which thus makes it possible to interpret the pronoun her as referring to Mia.

The semantic information represented by formulas in (35) will be stored separately in four different tables
for PROP, TEMP_REL, CONTROL, and BACKGROUND information. The PROP table will contain the
following set of data:

P_CODE REL EVENT ARG 1 ARG2 ARG3 BG_CODE CL CODE T_CODE

prop_ 1 PAST e 1

prop_2 promise' e I bill' mia' prop_3 temp_2

prop_3 marry' e2 x y bg_9 equi-np

The PROP table contains three propositions, propi, prop_2, and prop_3. The first row prop_i simply
states that the main event of promising occurred in the PAST. The second row represents the main content
of sentence (33), but a part of it refers to the third row prop_3. Furthermore, it contains information on
T_CODE. Its value temp_2 then relates the PROP table to the TEMP_REL table that tells how the two
events are temporally related to each other.

T_CODE REL ARG 1 ARG2

temp_ 1 overlaps e 1 e2

temp_2 precedes e 1 e2

temp_3 follows e2 e1

(36)

(37)

On the basis of this BACKGROUND table, the variable y marked with the value bg_9 of BG_CODE is
equated to mia'.

The third row also contains information on CL CODE. This again tells the invisible subject of the
infinitival complement of the verb promise is controlled to be coreferential with the main subject Bill.

In this section, it has been shown how the propositional content of simple and complex sentences and their
related background or control information can be represented in table forms and also how these tables can
be linked to one another to share some information. As should be noted again, these representations are
only conceptual constructs. Hence, further refinements may become necessary at the physical level of
implementation.

7. CONCLUDING REMARKS

A version of Database Semantics proposed here is based on an RDBMS. It is first characterized by the
representation of data in table forms and secondly by a relational query language SQL. In this paper,
nothing is discussed on the use of SQL for developing a query system of NL understanding or generation.
Instead, efforts were made to discuss the use of tables for linguistic description.

The use of tables in linguistics is not totally unknown. Ordinary grammar books and dictionaries contain
tables of verbal inflections and nominal declensions. Allomorphic variations and irregular and exceptional
word forms are often listed in table forms. In computational work, too, we find a technique like Chart
Parsing that uses tables. The use of tables in Database Semantics may be understood as a formal way of
extending such traditional use to NL semantics.

The use of tables in Database Semantics is simply a consequence of adopting a relational DBMS. In an
RDBMS, data is conceptually viewed as being stored in table forms. Although they are pure conceptual
constructs, tables are meta-theoretic objects to which mathematically explicit operations can apply. Hence,
to build a theoretically adequate version of Computational Semantics, a design mechanism based on such
constructs may be of great use.

The use of tables in currently running commercial RDBMSs is very much restricted. It can, however, gain
a more expressive power for linguistic description through object extensions and further implementation.
Different types of data or records are exchanged or augmented through primary or foreign keys that are
specified in tables and also as part of linking rules. If such a manner of linking from row to row can be
extended to a new manner of linking from table to table, then it must be a greatly desirable improvement.
For linguistic analysis often requires globally linked blocks of information.

8. REFERENCES

[1] Roland Hausser. Foundations of Computational Linguistics: Man-Machine Communication in Natural
Language, Berlin: Springer-Verlag, 1999.

[2] Kiyong Lee. "Computational Linguistics" [written in Korean], in Beom-mo Kang et al., Formal
Semantics and Description of Korean [written in Korean], pp. 498-551, Seoul: Hanshin, 1999.

[3] Kiyong Lee. "Language and Representation: A Basis of Database Semantics" [written in Korean],

Proceedings of the Eleventh Conference on Hangul and the Korean Language Information Processing,

pp. 297-303, 1999.

[4] C.J. Date and Hugh Darwen. Foundation for Object/Relational Databases: The Third Manifesto,
Reading, MA: Addison-Wesley, 1998.

[5] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems, 2nd edition, Reading,
MA: Addison-Wesley, 1994.

[6] Raghu Ramakrishnan, Database Management Systems, Boston: McGraw-Hill, 1998.
[7] Peter Rob, and Carlos Coronel. Database Systems: Design, Implementation, and Management, New

York: Course Technology, a Division of International Thomason Publishing, 1997.
[8] Kiyong Lee. "Computing Information by Equation Solving", in Chungmin Lee and Beom-mo Kang

(eds.), Language, Information, and Computation, pp. 14-26, Seoul: Taehaksa, 1993.

-242-

	PACLIC14-contents-231.pdf
	PACLIC14-contents-232.pdf
	PACLIC14-contents-233.pdf
	PACLIC14-contents-234.pdf
	PACLIC14-contents-235.pdf
	PACLIC14-contents-236.pdf
	PACLIC14-contents-237.pdf
	PACLIC14-contents-238.pdf
	PACLIC14-contents-239.pdf
	PACLIC14-contents-240.pdf
	PACLIC14-contents-241.pdf
	PACLIC14-contents-242.pdf

