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1.0 T e c h n i c a l  A p p r o a c h  

Overview: During Phase I of the TIPSTER program, 
HNC developed a unique approach to machine learning of 
similarity of meaning. This approach, embodied in a 
system called "MatchPlus", exploits this learned 
similarity of meaning for concept-based text retrieval, 
routing and visualization of textual information. 
MatchPlus uses an information representation scheme 
called "context vectors" to encode similarity of usage. 
Key attributes of the context vector approach are as 
follows: 

Words, documents, and queries are represented by 
context vectors. A context vector encodes a 
representation of the meaning of a word, query, or 
document as a high-dimension, fixed length, real 
vector. 

Elements of the context vector, called "features", 
define a "meaning space" used for classification and 
retrieval of documents. The selection of features is 
automatically determined by the system and defines 
the "frame of reference" for the formation of the 
context vectors. The direction of the context vector 
provides an encoding of the meaning of the 
associated text. 

A context vector is assigned to each unique word and 
phrase in the system lexicon during system 
initialization. Word and phrase context vectors are 
then learned from free text based on the context of 
their occurrences in the training text using a 
constrained self organization technique. This 
learning is fully automatic: no external knowledge 
bases, dictionaries or thesauri are needed for learning 
the vectors. 

Once trained, vectors for words with similar usage in 
the training text (for example NASA and Space 
Shuttle) will point in approximately the same 
direction. Vectors for words with unrelated usage 
(like NASA and peanut) will be approximately 
orthogonal. The degree of similarity of usage is 
analogous to similarity of direction. 

Word and phrase context vectors are used to form 
context vectors for documents a n d  queries. 
Document and query context vectors are computed as 
the weighted sum of the context vectors associated 
with stems and phrases in the document or query. 
Long documents may be split and represented by 
several vectors. Document context vectors are 
normalized to prevent long documents from being 
favored over short documents. When complete, each 
document's context vector contains an estimate of the 
meaning of the document relative to the current 
feature set. 

The context vector representation scheme offers a number 
of advantages. Documents can be classified (clustered), 
retrieved, and routed by computing conventional 
geometric distances. This is because documents that have 
similar context vectors (i.e., point in roughly the same 
direction) will have similar information content. Simple 
Euclidean distance measurements between sets of context 
vectors are a measure of similarity of meaning. 
Additionally, since all tokens in the system (words, 
queries, and documents) have the same vector 
representation, these comparisons of similarity can be 
carried out at any level of detail: word, sentence, 
paragraph, document, or set of documents. This provides 
a mechanism for automatically finding high relevance 
"hot spots" within a document. The hot spot detection 
feature is referred to as "highlighting". Highlighting can 
be performed at both the paragraph-within-a-document 
and word-within-a-paragraph levels. 
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Document retrieval is performed by simply finding 
documents having context vectors that are close to the 
query context vector. A document's relevance to the 
query is determined by comparing the dot product of the 
query context vector with that of the document's context 
vector. A large dot product implies strong relevance to 
the query. The documents in the retrieval list are ranked 
according to the magnitude of the dot products. 

Routing is performed in a similar fashion. The context 
vector for each incoming document is compared to the 
context vector of each routing query, and if the dot 
product exceeds the similarity threshold, the document is 
routed to the user(s) associated with that query. 

Context vectors can be used alone or in combination with 
a Boolean filter, thus the name "MatchPlus". Using a 
compound query approach, MatchPlus can augment and 
enhance existing Boolean search systems because the 
most relevant documents are at the top of the retrieval 
list. In this mode, MatchPlus will provide relevance- 
ranked documents within the set of documents that meet 
the Boolean filter criterion, thus helping to reduce 
information overload common to Boolean-based systems. 

Features: The key features of the MatchPlus approach 
from a user's perspective are as follows: 

Documents are retrieved based on meaning rather 
than word match and are ranked based on relevance 
to the query. MatchPlus will find related documents 
even if the key word is not present in those 
documents. 

• The unified representation approach allows the entire 
text of documents to be used as a search query. 

Adaptive learning by steering (refining) the query 
context vector using relevance feedback can quickly 
improve the quality of a query. 

• The system learns similarity of meaning from usage 
and can track the evolving meaning of terms. 

• Easy-to-use graphical query interface is based on X 
Windows/MOTIF. 

Architecture: Key attributes of the current MatchPlus 
system architecture are: 

Allows operation on very large corpora (in excess of 
107 documents) in networked and/or distributed 
processing environments. Allows heterogeneous 
corpus contents and formats. 

Supports Boolean, context, and relevance feedback 
query modes, and can be integrated with existing 
"key word" match systems to provide performance 
improvements and relevance rankings. 

• Extendible and hardware-independent architecture 
that provides easy-to-use graphical user interface. 

Summary of Conclusions: The research conducted during 
Phase I of the TIPSTER program has resulted in the following 
conclusions: 

• The context vector approach to text representation is 
viable. 

Matchplus, which exploits the concept of "similarity 
of use", is fully automatic. Demonstration of 
MatchPlus's ability to learn "similarity of use" has 
been demonstrated in the legal, medical and scientific 
domain as well as in foreign languages such as 
Spanish and Japanese. 

MatchPlus's vector representation provides a 
detailed explanation capability that can be utilized to 
answer basic informational questions such as: 

1. Why was this document retrieved? 

2. What section of the document is most 
relevant? 

3. What is the commonalty with this group of 
documents? 

. What is the relationship of this concept with 
the rest of the text and what, if any, are the 
senses in which it is used? 

5. Has this concept changed or has it been used 
in a different context over time? 

Next Steps: To fully exploit the context vector 
representation further research is required in these general 
a r e  as :  

• Use of context vectors in non-text domains such as 
images. 

Refinement of the clustering technique to improve 
retrieval and routing performance and speed as well 
as automated subject indexing, visualization, and 
word sense disambiguation. 

• Continued participation in TREC evaluations and 
continued in-house retrieval and routing testing in an 
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effort to understand how MatchPlus's concept 
retrieval system can be improved for information 
retrieval and routing. 

Related Research: The MatchPlus context vector 
approach appears to be directly extensible to text in all 
languages and domains. Concepts for further extending 
the approach to provide content-addressable access for 
image, video, sound, and sensor data have also been 
developed. Rome Labs (USAF) funded further 
development of the HNC context vector-based approach 
as part of the Automated Librarian SBIR contract. Phase 
II of this SBIR, called Image Content Addressable 
Retrieval System (ICARS) will extend the context vector 
approach to the image domain. The context vector 
representation can also provide a vehicle for visualization 
of the information content of free text. Any word or set 
of words has a vector representation. As such, graphical 
representations of information content can be achieved 
based on the context vector representation. HNC is 
currently developing a text information visualization 
system as part of non-TIPSTER, ORD-sponsored 
activities. When complete, this system, called 
DOCUVERSE, will have the capability to perform icon- 
based browsing of text as well as graphically displayed 
directed queries. 

Current Deployment Status: Preliminary prototype test 
versions of MatchPlus have been in use at Wright- 
Patterson AFB (FASTC) for over one year. MatchPlus is 
also being evaluated at USAIA (FSTC) and other 
agencies for analysis of classified data. HNC has 
received a contract to develop a prototype MatchPlus 
system for a large legal publishing firm. Current plans 
call for the evaluation of MatchPlus as part of the US 
Patent and Trademark Office Automated Patent System 
upgrade effort. The current implementation of the 
MatchPlusITIPSTER system is based on the C language 
and uses X Windows/MOTIF as the graphical user 
interface. 

I.I Processing Flow and Key Modules 

I .I .I  MatchPlus Functional Overview 

HNC's approach to the TIPSTER text retrieval and 
routing problem is called "MatchPlus". MatchPlus is a 
neural network-based approach to the problem of free text 
retrieval, classification and routing. The key technical 
feature of MatchPlus is the representation of words, 
documents, and queries by "context vectors". A context 

vector encodes a representation of the meaning of a word, 
query or document as a high-dimension, fixed length, real 
vector. Context vectors for new words are "learned" from 
the text corpus using a process called "bootstrapping". 
Using the bootstrapping technique, MatchPlus learns the 
usage of words and meanings of documents that contain 
those words by using only the text corpus. 

Once bootstrapping is complete, the resulting word 
context vectors are then used to form a "document context 
vector" for each document in the corpus. Document 
context vectors are computed as the weighted sum of the 
context vectors associated with stems and word groups in 
the document. 

Documents can be classified, retrieved and routed by 
computing conventional geometric distances. Simple 
Euclidean distance between sets of context vectors are a 
measure of similarity of meaning. Thus, document 
retrieval is performed by simply finding documents that 
are "close" to the query context vector. Document 
relevance to the query is assessed via a dot product of the 
query context vector with each document context vector. 
Large dot products imply strong relevance to the query. 
The retrieval list is ranked according to magnitude of the 
dot product. 

Routing is performed in a similar fashion. Context 
vectors are computed for incoming documents and 
compared to each routing query. If the dot product 
exceeds the similarity threshold, the document is routed 
to the user(s) associated with that query. 

Context vector similarity assessment techniques can be 
used alone or in combination with a "Boolean filter", thus 
the name "MatchPlus". Using a compound query 
approach, MatchPlus can augment and enhance existing 
Boolean search systems since the most relevant 
documents are at the top of the retrieval list. In this 
mode, MatchPlus will provide relevance-ranked 
documents within the set of documents that meet the 
Boolean filter criterion, thus helping to reduce 
"information overload" common to Boolean-based 
systems. 

The key attributes of the MatchPlus system architecture 
a r e :  

• Design accommodates very large corpus (more than 1 
million documents). 

• Architecture supports operation in a distributed CPU 
environment. 
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• Provisions for heterogeneous format corpus built into 
system. 

• X Windows/MOTIF GUI under Sun/OS. 

The sections below provide a more in-depth examination 
of the MatchPlus system. This discussion will "walk- 
through" the operation of the system in each high level 
mode and will trace the processing that occurs to a query 
when a retrieval is performed. 

1.1.2 MatchPlus Operating Modes 

The MatchPlus system operates in three main modes: 

• System Generation 

• Retrieval 

• Routing 

The system generation mode provides initialization and 
maintenance capabilities and is used to "teach" the system 
the meanings of words given a training corpus of text. 
Once the meanings of the stem words have been derived, 
these are used to compute document context vectors. 

Retrieval mode allows the user to enter queries to the 
MatchPlus system and find documents that meet the 
query specification(s). 

Routing mode, as the name implies, provided routing 
services for incoming documents. In a sense, routing is 
the inverse of retrieval. In retrieval, there is one query 
and many documents that might apply to the query. In 
routing, there is one document and many routing queries 
that may apply to the document. 

In order to provide a better basis for understanding the 
operation of the MatchPlus system, the key data 
structures used by the MatchPlus system will be described 
prior to the detailed explanation of the operating modes. 

1.1.3 Key Data Structures and Control Files 

An object oriented design was utilized during the design 
of the MatchPlus architecture. Therefore, to gain a better 
understanding of the operation of the system, a 
description of these data objects is required. MatchPlus 
makes use of several "key" data structures. These 
structures are key in the sense that many software 
components use the information contained within these 

structures. These data structures are described below. In 
an effort to standardize and reuse software components, 
"access routines" and "standard packages" have been 
developed. These packages provide a common format 
interface to widely used facilities such as hash tables, 
linked lists, etc. Since these data structures are 
conventional data structures and are not TIPSTER 
specific, they will not be discussed.. .  

1.1.3.1 Corpus Description Data Structure 

The corpus description (CD) data structure, as it's name 
implies, carries information about where documents that 
comprise the corpus are located, how they are formatted, 
etc. The CD is used to compress the amount of  
information that is required to completely describe the 
corpus of text to the system. In general, there are no 
restrictions about the number of documents per file, the 
number of files per directory or the number of  directories 
that comprise the corpus. The only restriction is that one 
document cannot span a file. A schematic of  the CD is 
shown in Figures 1A and lB. As can be seen from the 
figure, the CD contains a number of  sub-objects. These 
sub-objects are: 

The root object is of type "tCorpus" and contains a 
series of  base addresses and lengths of  each of the 
other object arrays. Additionally, it also contains the 
number of elements (dimension) of the context 
vectors used by the system. 

The array of objects of type "tDocDescr" contain 
information about each specific document in the 
corpus. This information includes the (internal) 
document ID, start FSEEK address, length in bytes, a 
code for the file that contains the document, a status 
and a pointer to the document context vector. There 
is one object of type tDocDescr for each document in 
the corpus. 

The array of objects of type "tFileDescr" contains 
information about the files that comprise the corpus. 
There is one object for each file. This object 
contains information such as which host in a network 
contains the file, a code for the fully qualified Unix 
path for the file, a pointer to the file name, a tag to 
indicate how the file will be deformatted and pointers 
to the deformatting functions and/or deformatting 
script file name. Using this scheme, all documents in 
a file must have the same format. However, each file 
in the corpus can have a different format if desired. 

7 2  



ICorpus 

#Documents 

pDocDescrStart ~ '  

#Files 

pFileDesoStart tF 

#Hosts 

pHostListStart 0 "  

#Paths 

pPathListStart 

#Elements in CV 

. • . . • "  tDodgescr 

cDocld (tic 
iFileld. 

tFi leI~:r 

cFilelD 

tHoslList 

~ 1  pS~-IostO 
pSzHostt 

! 

cDocOffset 
dgoctength 
cDocStatus 
pDocPortCV 

< Repealed Once 
For Eadl 

Document > 

! 

cDodd 
iFileld 
cDocOffset 
dgocLength 
cDoc.Statu s 

iHostld 
iPathld (1~ 

[ pSzfileName • 

I1~ ~ p S z S ~ p t R l e N a m e O  

(Need PaBe) | 
e 

pDocPortCV 0" 

cFilelD 
iHosUd 
iPathld 
)SzRleName 0" 
cDeformatTa8 
pProcDeforrnat • 
pSzSoipffileName • 

• pSzHost#1-k)sts 

tPathList 

I pSzPath0 
pSzPathl 

I pSzPath#paths 

Dekxning 
Procedure 

Defonmtting 
Script Ale 

Figure 1A. Corpus Description Data Structure 

Pointed to by tDocPartCV 
tD°cDescr • ~ /  iTreel3ucketld [ tCV 

' _ 1 , -  / " i  , ent, 
• Unkedlstof / pCVArray IIF~ I Element2 

tO/Element [_ 
objects. ~ ~  pNextCVElement J i 

• End of ist (k [ Element N 
asn,~ed by NNN ~ I 

<null> pointer. • 

• One obiect in 
list fox each I:X:X't 
of ckx:umenL 

iTreeBucketld 
cDocPartOffset 
cDocPanLength 
pCVArray 
< null > 

 iE, oo,0 i Element 1 
Element 2 

l 

I E, ne.tN I 

• lbere is at least one 
tl~PartCV obiect for 
each document 

• Depending on tbe 
document lenglh there 
may be multiple context 
vectors per document. 

• Diagram to left depicts 
data structure for a dngle 
document with multiple 
conte~a vectors. 

• Number of dements in 
the context vector is listed 
in the tCorpus structure 

Figure lB. Corpus Description Data Structure (cont.). 

7 3  



The array of objects of type "tHostList" contains a 
list of character strings with the host ID. This feature 
would only be required in a distributed 
implementation. 

The "tPathList" object is an array of character stnngs 
that contain the paths to each data file in the corpus. 
Using this approach all files could reside in the same 
directory. Alternatively, they could each reside in a 
separate directory or some intermediate combination. 

1.1.3.2 Stem Information Data Structure 

The Stemlnfo (SI) data structure contains information 
about the stem words that comprise the corpus and is 
shown in Figure 2. Access through the SI data structure is 
via the HNC-common "hashing package". In addition to 
a standard hashing function, this package provides a key 
capability: caching. The hashing package has a provision 
to allow the hashed objects to be either memory resident 
or "cached". If the objects are to be cached, a compile 
time parameter allows the user to determine how many 
objects will be kept in memory. This provision allows the 
application to control the amount of virtual memory used 
during execution. This is a key capability, since Sun/OS 
has a fixed upper bound of 500 Mb for virtual memory 
usage for a single task. Without the caching capability, 
MatchPlus would consume well over a gigabyte in virtual 
memory during the generation of the system! 

Like the CD data structure, SI is composed of a series of 
sub-objects. These sub-objects are: 

The root object is of type "tStemlnfoDescr" and 
contains a pointer to the hash description object and 
the total number of unique stems found in the corpus. 

The "tHashDescr" object contains information about 
the hashing function that provides access to the 
individual stems. This information includes a pointer 
to the hash table, page sizes and status flags, a 
pointer to the hashing key comparison function and 
paging control function and a pointer to the hash 
table itself. 

The hash table is of type "tStemHashTable" and 
consists of an array of pointers to the stem 
description objects. 

The information about each stem is contained in the 
"tStemDescr" object and contains a pointer to the 
stem string, the stem status, a count of the number of 
documents that contain the stem (used for 
normalization), a pointer to the context vector for this 
stem and a pointer to the inverted index entries for 
this stem. 

The stem context vector, like all context vectors 
within MatchPlus, is of type "tCV". This is an array 
of floating point vector elements that encode the 
"meaning" of the stem as learned from the training 
corpus. 

The inverted index entries for each stem are 
contained in a linked list. The objects in the linked 
list are of type "tDocList" and are managed by the 
HNC-standard linked list package. The objects in the 
linked list contain the document ID and number of 
occurrences of the stem in that document. The 
document ID is used as an index in the CD data 
structure. 

I ~ I . k " ~ , A  " . . . . . . . . . . . . . . .  I : I !/ 

I :e=::, F/f, ' :=" ..... I - -"== - 
r -= - -d l  

. . . . . .  - -  . . . . . . .  - - ° , ~  

Figure 2. StemInfo Data Structure 
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# /* @(#)system op_info.file 1.4 6/11/92 */ 

# Note: the following is my current thought, if you have any Qs 
# please let me know, we can discuses about it 
# 6/1/92:PQ 
# This file will be updated by calling update_system_op_info_file0 
# previous_last_doc_num and total doc num will be updated by calling 
# update system_op_info_file in the end od Func. InitializeCorpusDescr 

# Retrieval: 
# 

retrieval 
1 
1000 

Start always FIRST_DOCINX3-IIDDEN 
End always last doe num 

# process key 
# Previous last doc number,dunng retrieval,it always 1 
# Last doe number in current corpus 

#Generate DocList operation range definition 
# Start doe number and end doe number will be updated 
# by calling InitializeCorpusDescr when system_op is (1) or (2) 
# (1) regenerate_system: 
# (2) add_more_docs : 
# (3) within_this_range: 
inverted index 
regenerate_system 
1 
1000 

Start = 1, End = last doc num 
Start = previous last doe num, End = last_doc_num 
Start = user_define, End = user_define 
# process key 
# regenerate_system,add_more_does or witMn_this range 
# Start of doe number 
# End of doe number 

Figure 3. System.Op.Info.File 

1.1.3.3 System Operational Info File 

The system operational information file (SOIF), shown in 
Figure 3, is not a data structure, but a simple flat ASCII 
file that controls system generation and maintenance 
operations. This file allows control of the range of 
operations performed by the system expressed using the 
internal document ID. Specifically, this file allows 
control of the range of documents used for: 

s Retrieval operations 

• Formation of the corpus description data structure 

• Generation of stem hash table entries and the 
associated stem information file 

• Bootstrapping 

• Generation of document context vectors 

In general, the only difference between a "new" system 
generation and an incremental update (maintenance) is 
the range of documents involved in the operation. 

1.1.4 System Generation Overview 

Generation of the MatchPlus system consists of four 
steps. If a "ground-zero" system build is being 
performed, all steps must be performed. For incremental 
builds and maintenance, step 2 may be omitted or 
performed on a subset of the whole corpus. These four 
steps are detailed below. 

• Initialize Primary Tables: This step initializes 
tables that are used as part of other operations. 
Specifically, this step performs the following actions: 

Allocates the Corpus Descnption data structure. 
Using control information provided by the SOIF 
and other files, this step writes the document 
start and length information into the Corpus 
Description structures. 
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Reads the stop word list file and generates and 
saves the stop word hash table. 

Reads the stemming exception list file and 
generates and saves the exception word hash 
table. 

Reads the stem word group file and generates 
and saves the stem word group hash table (not 
yet implemented). 

- Reads the core stem list and loads this data into 
the Stemlnfo data structure. 

Form Secondarv Tables: This step derives 
information from the training corpus as specified by 
the System.Op.Info.File. Actions performed in this 
step are: 

Load data into the Stemlnfo data structure. This 
operation consists of building the stem list and 
associated hash table, sorting the stem 
occurrence information and forming the inverted 
index. The resulting information in the Stemlnfo 
structure is saved to disk. 

Pre-bootstrap (if double bootstrapping is 
specified) or loading core stem context vectors 
into the Stemlnfo structure. 

Bootstrapping. This operation will make two 
complete passes through the corpus to determine 
the stem context vector for non-core words based 
on their usage in the training corpus. The 
resulting learned stem context vectors are stored 
in the Stemlnfo structure and then the completed 
StemInfo data structure is saved to disk. 

Compute Document Context Vectors: This operation 
forms context vectors for all documents in the corpus. 
Unlike the bootstrap operation where a subset of the 
corpus can be used for training and stem context 
vector generation, all documents that are to be 
retrieved must have a context vector calculated. 
Context vectors for documents are calculated from 
the context vectors of the stems that comprise the 
document. The resulting vector is normalized such 
that the system does not "favor" long documents over 
short ones. 

Generate Cluster Tree: This operation forms the 
document context vector cluster tree. This capability 
will result in a centroid-consistent cluster tree that is 
used to reduce document retrieval times. 

1 . 1 . 5  D o c u m e n t  R e t r i e v a l  

Document retrieval is implemented in two sets of  
processing steps and is shown in Figure 4. The first set of  
steps is initialization and consists of  the following: 

• Stemlnfo data structure is restored from disk (if not 
already memory resident). 

Stop word, exception word and word group hash 
tables are restored from disk (if not already memory 
resident). 

• Cluster tree is restored from disk (if not already 
memory resident). 

The second set of  processing steps is event driven 
operation and consists of  the following steps: 

Query processing is performed. The user may 
specify a topic to be automatically processed or may 
invoke interactive mode such that queries are entered 
via the X Windows GUI. 

Retrieval query processing module processes and 
parses the query into Boolean and context 
components. 

• Query components are saved to disk for possible later 
u s e .  

A query context vector is formed from the query 
components. Boolean and context terms are treated 
equally in this step. 

For the specified Boolean query terms, the inverted 
index is used to determine which documents contain 
these terms. A list of documents that meet the 
Boolean filter is formed. 

The query context vector is used in conjunction with 
the cluster tree to find context-relevant documents 
via the dot product operation. A ranked list is 
formed. 

The Boolean list and the context-relevant lists are 
merged and an aggregate list is formed. This list is 
sorted. 

When the user selects a document for display on the 
GUI, the document is deformatted (if needed) and 
displayed on the screen. 
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Figure 4. Document Retrieval 

1 .1 .6  D o c u m e n t  R o u t i n g  

Document routing is, in a sense, the inverse of retrieval. 
In retrieval, there is one query and may documents. In 
routing, there are many queries and one document. The 
process flow for document routing is shown in Figure 5. 
This flow shares many processing components with the 
retrieval flow. Routing is broken down into three main 
operations: 

Initialization; The initialization operation restores all 
data structures and tables as needed. This includes 
Corpus Description, StemInfo, and the stop word, 
exception word and word group hash tables. 

Ouerv Processing: This operation is divided into 
GUI and topic query processing. If interactive mode 
is selected, the GUI is used to assemble a routing 
query. If topic mode is selected, the specified topic 
text is read. Queries used for document retrieval can 

also be restored and used for routing. For the 
selected mode, the query is parsed into Boolean and 
context terms and a similarity threshold, to be used 
for route/no-route decisions. A routing context 
vector is then computed using both the Boolean and 
context terms. 'ntis query processing step is 
performed for each routing query to be used in the 
system. The routing information (context vector, 
Boolean terms and match threshold) is stored in a 
table along with the user ID of the route. 

Document Routing: For each document to be routed, 
the following steps are performed: 

If required, the document is deformatted into the 
MatchPlus-internal format. 

Document preprocessing is performed: stop 
words are removed, stemming exceptions are 
identified and stems are produced. 
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Figure S. Document Routing 

Additionally, a context vector for the 
preprocessed document is computed. 

For each routing query in the system: 

The preprocessed document is passed 
through the Boolean filter operation to see if 
the filter criteria is met for this routing 
query. 

The dot product of the routing query context 
vector and the document context vector is 
computed. 

The Boolean filter is passed or the dot 
product threshold is exceeded, then the 
document is routed to the user associated 
with this routing query. 

I f  specified, the document is added to the corpus, 
Corpus Description and Stemlnfo data structures. 

1.2 System Throughput  

Building the MatchPlus system can be broken down into 
three main areas: inverted index generation, learning of 
stem context vectors, and generation of document context 
vectors. The approximate times to build the system as 

well as the retrieval time are given in Table 1. The 
hardware is a Sun Sparc 10 with 512 megabytes of RAM. 

BUILD STAGE TIME 

Inverted Index Generation -10,000 documets an 
hour 

Stem Context Vector Learning -2000 documents an 
hour 

Generation of Document -25,000 documents an 
Vectors hour 

Retrieval -3000 documents per 
CPU second 

Table 1. System Build Times 

It should be noted that the stem context vector learning 
does not need to be applied to the entire data set. For the 
TIPSTER 24 month evaluation the system was only 
trained (i.e. learning of stem context vectors) on 80,000 
documents (approximately 40 hours). 

For the TIPSTER tests the use of a boolean filter greatly 
increased the retrieval speed. Instead of ranking the 
entire database using the document context vectors a 
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broad boolean filter would return a small subset (50,000- 
100,000 documents) which would then be ranked by 
context vector. Another approach the MatchPlus system 
utilizes to speed up retrievals is the use of clustering 
(refer to section 4.0 for a discussion of clustering). HNC 
has been successful in speeding up retrievals by a factor 
of 20 with no degradation in performance by utilizing 
document clusters. 

1.3 Key Innovations 

During Phase I of the TIPSTER project the HNC team, 
through its research and experimentation, has formed 
some highly significant conclusions. These conclusions 
not only encompass the main' objective of TIPSTER 
phase I, text retrieval and routing, but address much 
larger issues involving the processing of information. 
The major conclusions and innovations are as follows: 

Context vector approach to text information 
representation is viable. The assertion that a vector 
space model can be utilized to retrieve from large 
(gigabyte) heterogeneous databases has been proven. 
In addition the use of initial hand entered context 
vectors is unnecessary and in fact does NOT perform 
as well as a fully automatic approach. Unforeseen 
uses for context vectors have also been discovered. 
These include document clustering, word sense 
disambiguation, visualization, image retrieval, and 
automated hyperlinks in a hypertext environment. 

• Fully automated learning of similarity of usage has 
been demonstrated. Even very low frequency words 
(e.g. last names) are trained such that they are 
associated with logical "concepts". This is done 
automatically with no thesauri or knowledge base, 
only the relationships as they occur in the text are 
used. Beyond the obvious benefit for retrieving 
documents and investigating word relationships, 
other possible applications of "similarity of usage" is 
in the analysis of how particular concepts evolve and 
change over time. For example a person's name may 
always be mentioned with a certain company, but if 
new text were added in which the name appeared 
with a different company this change in relationship 
would trigger an alarm for an analyst. Refer to 
Figures 6 and 7 for examples of automated learning 
for specific words (referred to as "stem trees"). The 
text to the right of the bar graph is an example of the 
context in which a specific word is found in the text. 

• Context Vector representation is language 
independent. MatchPlus uses no language dependent 

knowledge basis (e.g. WordNet, thesauri). Small 
(10-20 meg) systems have been built both in Spanish 
and Kanji and the "learning" of similarity of use 
witnessed in English carried over to the other 
languages. 

Conventional neural networks can be effectively 
applied to context vector operations. In a routing 
environment basic networks can be trained and have 
shown to give a 20 % improvement over adhoc 
methods. Additionally, clustering algorithms have 
been utilized to perform automated word sense 
disambiguation and document clustering. Automated 
word sense disambiguation with context vectors has 
benefits beyond information retrieval such as 
machine translation. Document clustering also has 
further applications in visualization and automated 
subject indexing. 

Constrained learning law (bootstrapping) 
promotes learning stability. Constraining the 
geometry of the vector space can produce a stable 
solution independent of the number of training passes 
through the corpus. 

2. SYSTEM GOALS 

The primary goal of the HNC's MatchPluslTIPSTER 
effort was to apply advanced adaptive and neural network 
techniques to improve the state of the art in text retrieval 
and routing technology. More specifically HNC sought to 
design a vector space model for text that encodes a 
representation of similarity of meaning. To reach this 
goal HNC developed an adaptive technique to learn 
similarity of meaning for words using only free text as 
examples. Once the similarity of meaning was encoded 
in a vector representation the MatchPlus system needed 
to exploit the learned relationships to provide improved 
precision and recall over current techniques. In addition 
it was HNC's intent to apply neural network learning 
algorithms to automatically improve queries based on 
user feedback. 

The MatchPlusITIPSTER effort had a number of 
secondary goals. These included the development of a 
genetic representation for word similarity that could be 
exploited for other uses (e.g. visualization, key word 
extortion), use of a minimum of human knowledge for 
system generation and retrieval (e.g. dictionaries, 
thesauri), and the creation of a basis for multi-media and 
multi-language capabilities. 
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3. EVOLUTION OF THE SYSTEM 

At the start of the 2 year TIPSTER project HNC had 
nothing more than a preliminary prototype that embodied 
the conceptual idea for the use of context vectors for 
information retrieval. The original prototype was built on 
less than 500 documents. Throughout the TIPSTER 
program the original MatchPlus system underwent a 
significant amount of changes and enhancements. The 
goals of these changes and enhancements are explained in 
section 2. The evolution of the system was driven by 
both the performance on the TIPSTER data (i.e. recall 
and precision numbers) as well as a software design that 
enabled the processing of gigabytes of text such as the 
TIPSTER collection. Some of the major software design 
strategies implemented for processing large databases are 
listed as follows: 

• Caching algorithms to prevent the overflow of virtual 
memory. 

• File splitting for files that span more than a single 
disk 

Heap data structures to quickly get the top "N" 
documents from a collection of "M" documents given 
that "N" is much smaller than "M". 

• Internal memory management to prevent excessive 
memory allocation and memory freeing. 

• Use of clustering to prevent searches on the entire 
database. 

• Re-ordering of document vectors by cluster to reduce 
the number of disk seeks thus, speeding up retrieval. 

Changes and enhancements not related to the size of the 
data, but rather the goal of learning similarity of use in a 
vector representation and exploiting that representation 
were made in various areas. Those areas and the 
enhancements or changes made are as follows (for 
detailed results of the enhancements refer to section 4): 

1) Preprocessing 

• Addition of word phrases. 

• Use of a stemming exception list prevents words 
such as "army" from being stemmed to "arm") 

2) Bootstrapping 

• Use of a fully automated learning algorithm (i.e. 
the use of the manually entered core stem 
context vectors from the original system was 
replaced by a fully automated learning 
technique. 

• Use of a batch update for the training of stem 
context vectors. 

• Ability to transplant the learned relationships 
from one corpora to another and suffer no 
degradation in performance. 

• Ability to automatically disambiguate words 
given only free text examples. 

• Improvement over original stem context vector 
learning law that provides adjustable constraints 
and comes to stability. 

3) Generation of Document Context Vectors 

• Ability to cluster documents. 

4) Query Processing 

• Use of broad boolean filters 

• Automated parsing of the TIPSTER topics which 
provides optimum performance. 

• Relevance feedback to improve an original 
adhoc query. 

5) Routing 

• Use of perceptron learning to create a routing 
query given a set of relevance judgments 

6) Graphical User Interface 

• Word, paragraph and document highlighter to 
quickly get to the most relevant information. 

• Simplistic method for user relevance feedback 

* Automated subject index 

• Examination of learned relationships (i.e. stem 
trees) 

• Document headline display to quickly scan a set 
of retrievals 
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® Ability to process natural language queries. 

4. EXPERIMENTS & PERFORMANCE 

A number of research areas were identified as possible 
candidates for improvements in MatchPlus performance. 
These areas covered a wide range of processes including 
preprocessing, learning and query formation. HNC 
utilized the official retrieval results from the document 
detection runs sent in for the 12 month, 18 month and 24 
month evaluations. These evaluations consisted of a set 
of 150 topics and 3 CD-ROMs with about 1 gigabyte of 
document data each. The document data consisted of the 
Wall Street Journal, San Jose Mercury News, AP 
Newswire, Information from Computer Selected disks, 
Federal Register, U.S. Patents and short abstracts from the 
Department of Energy. These sources had a varied 
length, a varied writing style, a varied level of editing and 
a varied vocabulary. In addition to utilizing the official 
test collection, the HNC team created subsets of the 
TIPSTER corpus. These subsets contained exhaustive 
relevance judgments for each of the topics (either judged 
internally or judged by the TIPSTER relevance assessors) 
and varied in size. A 1,000 document corpus (~10 
megabytes), 10,000 document corpus (~60 megabytes), 
30,000 document corpus (-120 megabytes), and a 80,000 
document corpus (-320 megabytes) all containing 
selections from the AP Newswire, Wall Street Journal, 
Federal Registry and the Department of Energy were 
utilized for testing. In addition to the recall (number of 
relevant items retrieved / total number of relevant items 
in collection) and precision (number of relevant items 
retrieved / total number of items retrieved) numbers 
obtained from the evaluation code and the test collections 
mentioned above, HNC analyzed the quality of the 
learned relationships via the "stem trees" (refer to figures 
6 and 7). By evaluating the effectiveness of MatchPlus to 
learn similarity of use as well retrieval performance HNC 
was able to meet two goals: superior retrieval and routing 
performance and the ability to learn similarity of use. 

4.1 P r e p r o c e s s i n g  T e s t s  

Preprocessing consists of scanning each document for 
individual tokens. Each token (delineated by a space, tab, 
comma, etc.) is then stemmed (i.e. endings such as "ed" 
and "ing" are removed). Stemming serves the function of 
treating words such as "run" "runs" and "running" as the 
same stem (word) as well as greatly decreasing the size of 
the data structures. A stemming exception list is 
consulted (to remove stemming errors such as stemming 

"army" to "arm") as well as a stop word list. The stop 
word list removes frequently used word such as "and" and 
"the" that contribute little to the overall meaning of the 
text. 

The Use of word pairs (e.g. "white house") was 
investigated. The list was manually generated by 
presenting all two word combinations that were found in 
the text to an analyst who determined if it was a valid 
word pair. Our investigations found it was best to split 
the word pairs into their individual words. For example if 
"white house" was found in the corpus or the query there 
would be three different context vectors used for the 
calculations, one for "white" one for "house" and one for 
the word pair "white house". The use of word pairs in 
both the bootstrapping and the query processing gave an 
improvement of 10%-15%. 

Use of classical IR tools such as stop word lists and 
stemming improved performance. Eliminating stop 
words, stemming and stemming exception words caused a 
decrease in performance of 12%. 

Late in the project HNC was able to experiment with a 
head list from Compton's New Media. A sample of this 
list is in Table 2. 

take 
tall 

tangle 

took 
taller 

tangleweed 

taken 
tallest 
tangles 

taking 

tangled 

Table 2. Encyclopedia Britanica Head List 

Replacing the MatchPlus baseline stemmer (the Lovins 
stemmer) with the head list gave no improvement in 
retrieval performance. On the TIPSTER tests the head 
list did get equivalent performance to the baseline 
stemmer. It is interesting that the list did not help more. 
As seen in Table 2, the two words "took" and "take" are 
treated as a single word while the baseline stemmer 
(which simply removes suffixes) would treat these as 
different words. It seems that with the context vector 
approach if terms such as "take" and "took" are used in 
similar ways in the text the context vector learning 
approach will encode that, likewise, if they are used in 
dissimilar ways the context vectors for the two words will 
not point in the same direction. If in preprocessing, the 
two words are treated as a single word (e.g. take is the 
same as took) the context vector learning will never be 
given the chance to determine if in fact the two words are 
used in a similar fashion. 
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4 .2  B o o t s t r a p i n g  T e s t s  4 . 2 . 2  F r e e z i n g  C o r e  C o n t e x t  V e c t o r s  T e s t s  

Major effort was spent experimenting and researching the 
vector learning law. The main objectives were superior 
retrieval performance and the ability to automatically 
learn similarity of use for any domain and corpus size. 
The following are the major experimental areas and the 
conclusions reached. 

4 .2 .1  A u t o m a t i c  R e p r e s e n t a t i o n  T e s t s  

The key discovery of Phase I was the ability to 
automatically learn a vector representation for words 
using only free text examples. MatchPlus's original 
approach used a set of 940 core context vectors. Each 
core word was compared to a set of 80 features (words). 
On a scale from -5.0 to +5.0 the amount of "similarity" or 
"relation" was entered. For example if the core word 
were "protein" and the features were "agriculture", 
"DNA", etc. its feature vector might look like Table 3. 

Core Feature Feature Feature Feature etc. 
Word 1 2 3 4 

agriculture DNA electronics human .... 
protein 2.0 4.0 0.0 1.0 ..... 

man 0.0 2.0 0.0 4.0 ..... 

Table 3. Manually enter context vector for word 
"protein" 

An additional 200 random elements (floating point 
numbers) were augmented to the 80 manually entered 
features. All 280 feature elements were then modified 
according to the bootstrap aigorithm. To investigate the 
"benefit" of the manually entered core context vectors the 
features were replaced by random numbers, making the 
entire context vector (280 features) completely random. 
This approach gave a 3% to 6% improvement over the 
hand entered set on a subset of the TIPSTER corpus. 
The creation of hand entered vectors are time consuming, 
corpus dependent and language dependent. The full 
benefits of hand entry are certainly contingent on the set 
of core words and the set of features that are chosen. A 
more domain specific set of manual context vectors may 
be of some benefit but with the broad range of features 
and the heterogeneity of the tipster corpus, hand entry 
gives no apparent retrieval improvement. MatchPlus's 
ability to learn word relationships from random initial 
vectors without hand entered context vectors is a key 
discovery that enables the MatchPlus system to work in 
virtually any subject domain and any language. 

The motive for "freezing" (i.e. not allowing the hand 
entered context vectors to be modified during 
bootstrapping) was to prevent the collapsing of the vector 
space. The original bootstrapping algorithm modified 
word vectors such that each vector pointed in more or less 
the same direction. This collapsing phenomenon resulted 
in words and ultimately documents residing in a much 
restricted vector space. Individual words and documents 
were indistinguishable. The hypothesis was if the hand 
entered context vectors were sufficiently spread out and 
kept constant this would prevent the vectors from 
collapsing. Due to the limited number of hand entered 
vectors (940) and the observation that similarity of use 
encoded manually was drastically different from the 
similarity of use learned automatically during 
bootstrapping "freezing" hand entered context vectors did 
not prove successful. 

4 . 2 . 3  S t a g e d  B o o t s t r a p p i n g  T e s t s  

It was thought a staged approach to vector learning may 
improve performance. The conjecture was that words 
within a certain frequency range should be trained to 
stability, then use these vectors to train words within 
another frequency. The original bootstrapping algorithm 
made two passes through the entire corpus. On the first 
pass only words that appeared in corpus 3 times or more 
were modified. All remaining words were modified on 
the second iteration. Further experiments involved up to 
4 passes with varying frequency thresholds for stem 
modification on any single iteration. These experiments 
proved to give no significant change in performance. In 
fact, the current implementation performs two passes 
through the corpus modifying everything on each pass. 
Performance after one iteration is only slightly worse 
(2%-3%) than two iterations while a third iteration gives 
a slight improvement (2%-3%) and levels off with more 
than three passes through the corpus. 

4 . 2 . 4  V e c t o r  S i z e  ( D i m e n s i o n a f i t y )  T e s t s  

The choice of the number of features (vector elements) 
for each stem was 280. Investigations as to the number of 
features actually utilized was performed in various ways. 
Using subsets of the TIPSTER corpus (1,000, 10,000 and 
30,000 documents) in which relevance judgments were 
available the vector size was both increased and 
decreased. Since document context vectors are 
represented in the same space as the word context vectors 
the dimensionality was the same. The results of the 
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experiments are given in Table 4. Each entry is in 
comparison to the baseline of 280 features. 

Vector 
Dimension 

Match Filtered 
Query 

50 r 12 % -47 % 
140 -8 % -24 % 
280 0 % 0% 
512 +5 % +4 % 

Coniext Vector 
only Query 

Table 4. Vector Dimension vs. Retrieval Performance 

To further give evidence as to whether or not all 
dimensions of the vectors were being utilized an eigan 
analysis was performed on the 1,000 document corpus. 
All the stem context vectors (approximately 16,000) were 
multiplied creating a 280 by 280 symmetric matrix. A 
singular value decomposition was then performed to 
determine if the vectors spanned the entire space. Figure 
8 plots the eiganvalues for a 280 dimensional system and 
figure 9 plots the eigenvalues for a 512 dimensional 
system. It is clear that the 280 features are spanning the 
space, any fewer would cause the stem vectors to overlap 
each other and, as evidenced in Table 4, cause a 
degradation in performance. Figure 9 indicates that 512 
dimensions is perhaps too large for this size corpus. 
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Figure 9. Eigen Analysis of 512 Dimension Stem 
Context Vectors 

Empirical tests showed that increasing the vector size 
improves recall. For the TIPSTER 24 month evaluation 
the precision (number of relevant documents 
retrieved/total number of documents retrieved) for a 280 
feature vector versus a 512 feature vector showed little 
difference while the recall (number of relevant documents 
retrieved/total number of relevant documents) increased 
approximately 5%. 

4.2.5 Thesaurus Training Tests 

HNC obtained an electronic thesaurus in an attempt to 
encode the relationships found in the thesaurus into the 
vector space model. The reasoning behind this 
experiment is as follows. The bootstrapping algorithm is 
designed to encode word relationships in a vector space 
model using examples from free text. If a pre-existing 
knowledge base (e.g. thesaurus) were used as an initial 
training example this may help the MatchPlus system in 
learning word relationships. The thesaurus training 
vectors would act as an initial starting point for training 
on the TIPSTER corpus much like the hand entered 
context vectors did. Past information retrieval programs 
have used thesauri for query expansion. MatchPlus 
trained on the thesaurus, which did exhibit very good 
stem trees, then using the trained vectors trained on the 
TIPSTER corpus. In one experiment thesaurus words 
were allowed to be bootstrapped (trained) by the corpus. 
This gave a degradation in performance (10%-15%) over 
our baseline system. An alternate approach to thesaurus 
training involved "freezing" the stems that were trained 
by the thesaurus during bootstrapping. There was a 
significant degradation in performance (40%-50%). 
Through the use of stem tree analysis after thesaurus 
training and after the TIPSTER corpus training it became 
apparent that "similarity of use" is NOT the same as 
synonymy. Referring to the stem trees in figure 6 and 
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figure 7, it is clear that the related "concepts" to both 
"Chernobyl" and "Hezbollah" are much more than 
synonyms. The stem trees reveal the "true" meaning of 
concepts as they are used in the training data. 

4.2.6 Training Window Size Tests 

The original bootstrapping algorithm used as its window 
vector three words on either side of the "target" update 
stem (refer to figure 10). These stems were summed up 
using a Gaussian distributed weight and applied to the 
"target" stem. There was no consideration paid to 
sentence and paragraph boundaries (i.e. the window 
vectors could be part of another sentence or paragraph). 
Only the document boundaries were used (i.e. the 
window for a "target" update stem did NOT carry over 
into the next document). The conjecture was that like a 
single document, each sentence contained a complete idea 
or concept. Likewise a paragraph contained a unique 
concept and if these "concepts" were treated as 
individual documents the system would perform better. 
Tests were run in which bootstrapping occurred on 
sentence and paragraph markers (i.e. the window did not 
use words to the right or left of the target update stem if 
they began or ended a sentence or paragraph). Using only 
paragraph boundaries as well as sentence and paragraph 
boundaries made little difference in performance. Using 
an early version of the bootstrapping algorithm there was 
a slight improvement in performance (2%-4%). Although 
with the latest bootstrapping implementation there is a 
small degradation in performance (less than 1%). Our 
conjecture that each sentence and each paragraph contains 
unique "concepts" is incorrect for the TIPSTER corpus. 
While some of the document sets do not contain 
paragraph markers (Department of Energy, Federal 
Registry) it is apparent that even when there exist 
paragraph markers they do not express complete thoughts 
but are inserted for aesthetic reasons. 

4.2.7 Batched Learning Tests 

A learning law experiment that proved to improve 
retrieval performance significantly for all size builds 
(1,000 documents, 10,000 documents, etc.) was the 
batching of the adjustment that was to be made to each 
stem. The original algorithm would make immediate 
updates as it encountered each stem in the corpus. For 
example if the word "stock" was the first word in the first 
document its initial random context vector would get 
modified by the neighboring words. When "stock" was 
encountered again in the document or in one of the next 
documents either as a target for updating or as a 

neighboring word contributing to a target stem's update, 
the "altered" context vector was used. This created a 
"smearing" condition in which the context vector for any 
word was continually being changed and other stems used 
these "intermediate" changes when calculating their 
neighborhoods. Batching was implemented to remove 
this condition. The algorithm was modified such that 
each update that was to be applied to any stem was stored 
but never actually applied to the target word until the end 
of the iteration (i.e. when all the documents were 
processed). This "batching" technique provided a more 
stable algorithm in that each word context vector 
remained the same as it became a target for updates and a 
neighbor, contributing to another word's update. Table 5 
shows performance improvement with batching for 
various corpus sizes. 

CORPUS SIZE PERFORMANCE CHANGE 
lk +25 % 

10k +22 % 
30k +19 % 

Table 5. Batching vs. Non-Batching Performance 

I--INC did experiment with batching the updates on the 
document boundaries as opposed to the entire corpus but 
that did not provide as big an improvement as the full 
batching. 

As mentioned above, the learning algorithm uses a 
window size when calculating a neighborhood for a target 
word. The original approach used 3 words to the left of 
the target and 3 words to the right of the target. Various 
other window widths were tried including using the entire 
sentence as the window (again with the conjecture that 
complete concepts are contained in a single sentence). 
The results indicate a window width of 3 words works 
well but further investigations with alternate weightings 
need to be conducted (i.e. Gaussian weight is applied to 
neighboring stems which causes the closest words in 
proximity to the target word to have the largest weight). 
Table 6 has some comparisons for various window width 
sizes against the baseline of 3 words on either side that 
were run on the lk corpus. 
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WINDOW SIZE PERFORMANCE CHANGE 
4 words -2 % 
5 words -5 % 

entire sentence I -1% 

Table 6. Window Size Experiment.s 

Many experiments were conducted that involved 
transplanting a set of stem context vectors from one 
corpus to another. For example a set of vectors trained 
from a 1,000 document subset could be transplanted into 
a 10,000 document system. There are approximately 
16,000 unique stems in the 1,000 document corpus and 
60,000 stems in the 10,000 document corpus. During a 
transplant the trained context vectors for each stem are 
copied into the corresponding stem for the 10,000 
document build. The stems not found in the 1,000 
document build are set to zero since they are untrained 
(experiments were conducted in which the untrained stem 
context vectors were initialized to random numbers and 
the retrieval performance indicated it was better to set 
them to zero so they have no affect when generating 
document context vectors). Once the transplant is 
complete the document context vectors are calculated. 
The results of various transplant experiments are 
presented in Table 7. 

Type of Corpus 
Transplant 

lk transplanted into 1Ok 

10k transplanted into 30k 

Transplant Performance 

-7.0 % prec.,  -0.6 % 
recall 

-3.2 % prec., -2.1% recall 

Table 7. Transplant Results 

Given these encouraging results and the amount of time 
required to bootstrap the entire TIPSTER collection, 
various subsets of the TIPSTER corpus were trained and 
transplanted into the entire collection. It has become 
apparent that when working with gigabyte corpus sizes it 
is important to train on a sufficiently large portion of the 
text. A 10,000 document subset (45 meg) and an 
80,0000 document subset (320 meg) were used for 
training and transplanted into CD's 1 and 2 of the 
TIPSTER collection. The official results (avg. prec and 
total relevant) are given in Table 8. 

Training Set Precision Relevant 
Size Documents 

10k documents .2648 7240 
80k documents .2837 (+4 %) 7541 (+7 %) 

Table 8. Transplant Results for CD's 1 and 2 from 
TIPSTER Collection 

It seems contradictory that the results in Table 6 indicate 
it is possible to get "near" baseline performance by 
transplanting from a smaller corpus while Table 7 
indicates performance can suffer from a smaller corpus 
training and transplant. If one looks at the percent of 
untrained stems in the above tests it becomes apparent 
that 10,000 documents (45 meg) is not large enough to 
characterize the first two CD's (1,200 meg, 740,000 
documents). The percentages are presented in Table 9. 

Donor and Recipient of 
Transplant 

lk to lOk 

Percent of Trained 
Vectors 

32 % 
10k to 30k 2 1 % 

10k to CD's 1 and 2 
(1,200k) 

80k to CD's 1 and 2 
. . . . .  (1,200k) 

7 %  

23 % 

Table 9. Percent of Trained Vectors for Various 
Transplants 

Most of the transplanting experiments involved 
transplanting a smaller training set into a larger set. 
Some tests were conducted where the training set was the 
same size and larger than the "target" set and the results 
indicated that only a small (less than 3%) degradation in 
performance is detected. This result indicates that a 
sufficiently large and sufficiently domain compatible (i.e. 
wall street journal transplanted into associated press, 
NOT wall street journal transplanted into New England 
Medical Journal) can be transplanted continuously, 
eliminating the need to bootstrap new documents, thus 
greatly increasing the speed of building new systems or 
updating existing systems. For existing systems, when 
new data needs to be added it is sufficient to simply 
create a document context vector for each new document. 

4.2.8 Word Sense Disambiguation 

Late in the project the concept of "word sense" 
disambiguation was investigated. "Word sense" 
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disambiguation refers to finding all the "senses" in which 
a word is used. For example the word "star" may be used 
in the context of "the moon and the stars", or in the 
context of "star wars and the Strategic Defense Initiative", 
or "movie star". These senses can be disambiguated from 
the text as well as the query resulting in improved 
retrieval performance. This process is completely 
automatic and uses no thesauri or knowledge bases. The 
word sense disarnbiguation uses a k-means clustering 
algorithm to cluster a given set of context vectors. If, for 
example the word "virus" is to be disambiguated each 
neighborhood window (i.e. the 3 words on either side of 
"virus") is calculated. Then each of these neighborhood 
vectors (the number of vectors is simply the frequency of 
the word "virus" in the corpus) are given to the k-means 
clustering algorithm with a pre-specified number of 
resulting clusters. Once these clusters have been 
calculated they can be used in various ways. During 
document context vector generation the appropriate sense 
of the word can be calculated by taking the neighborhood 
context vector found in the document and calculating the 
dot products with the centroids of each of the clusters for 
the word. The closest cluster would then be used when 
calculating the document context vector. In an identical 
fashion the "best" sense could be automatically 
determined in a query. Given the following query: 
"movie stars who are in cowboy films" it would be 
expected that the cluster involving "movie stars" would 
be used and NOT the cluster involving "the moon and the 
stars". Evidence supporting the above claim can be found 
in Table 10. The Wall Street Journal from 1990 through 
1992 was used. The example shows the list of 4 clusters 
that have been calculated for the word "virus". The 
clusters are listed in order of dot product (highest dot 
product is first) with the word "internet". It is clear the 
correct sense would have been determined if the query 
were "internet, virus". 

S e n s e  

1 computer 
virus 

2 mixup 
3 methy- 

lpredin 
4 hiv 

Related Related Related Related 
Word 1 Word 2 Word 3 Word 4 

computer 

transmit 
secrete 

i m m u n -  

deficiency 

michel- 
angelo 
tobacco 

recombine 

infect 

portable 
computer 
genetic 
necros 

retrovirus 

Table I0. Word Senses for "virus" in the Context of 
"internet" 

There has been limited testing with "word sense" 
disambiguation. Using the TIPSTER collection and the 

topic queries the performance is slightly better (less than 
5 %) than our baseline system which does not utilize the 
word senses. Future experiments include using more than 
one word sense for queries and/or documents, over 
specifying the number of clusters wanted then running a 
"combiner" to determine the appropriate number of senses 
for each word on an individual basis (this has been done 
for document clustering with some success, see sections 
below), re-bootstrapping after the word senses have been 
calculated, only modifying the sense that matches closest 
with the window context vector, and using alternate 
clustering algorithms that automatically determine the 
number of clusters. 

4 .2 .9  L e a r n i n g  L a w  T e s t s  

One of the most important experiments involved the way 
in which the word context vectors were updated. More 
specifically the point at which the update was made and 
the weight applied to that update were investigated. The 
original learning technique used a "moving average" type 
of approach with a positional weighting. The "window" 
(i.e. the 3 words on either side of the target stem) was 
computed using the Gaussian weighting function. This 
window vector was then added to the unnormalized target 
stem and the resulting vector was normalized (refer to 
Figure 10). 

i l l  

1.0 

Gaussian 
Weighting 
Function G(i) 

i=-3 i=-21=-1 i=0 1=1i=21=3 

Now is [ th~ time for [ all I8oodmento [ cometo . . .  

Neighbors Target Neighbors 

Figure 10. Original Bootstrap Window Calculation 

The "moving average" approach produced modest results 
as evaluated by the TIPSTER tests. Further investigations 
indicated the algorithm was not moving the stem context 
vectors a sufficient amount in the direction of their 
"window". This could be perceived when looking at the 
learned relationships for a specific word. This "stem tree" 
calculation uses a single stem and calculates the dot 
product with every other stem in the corpus and produces 
a list in order of stems that are closest to the specified 
stem. The list produced after training was very similar to 
the list produced before training, using the initial random 
context vectors. The new approach applies a constraint to 
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the geometry of the vector space. The constraint will 
dete~nine how close any target can get to its neighbors. 
The influence of each neighbor on the target is 
determined individually by Euclidean distance. The 
original implementation only used the weighted sum of 
neighborhood stem context vectors. The amount of the 
effective error and the corresponding change in position is 
determined by the co-importance of the neighbor and the 
target. "Overtraining" resulting in poor performance, a 
characteristic of the original approach, is eliminated when 
constraints are applied to the learning law. 

4.3 Document Context Vector Generation 

The approach to document vector generation is to simply 
add up each of the stems, weighted by the inverse 
document frequency (IDF) weight (see Figure 11). 

D°cCVk = Z:=, wi(StemCV~ ) 

w i = l o g ( ~  N )  
n i 

Figure 11. Document vector equation 

4.3.1 Weighting Tests 

Various weighting techniques were experimented with. 
One approach was to eliminate the IDF weight 
completely and use a fiat weighting scheme. Like the 
approach found in Figure 11 if a word is repeated a great 
deal throughout the document its vector is continually 
added to the document causing the document vector to 
point in the same direction as the repeated stem (i.e. 
overly biased toward the high frequency stems), 
regardless of the other words present in the document. A 
variation to the IDF weighting was experimented with. 
Instead of adding the stem each time it is encountered in 
the document, the stem vector is added once and given a 
weight equal to the log of the frequency of the stem in the 
document (Chris Buckley reported an improvement over 
IDF weighting using this approach - See TREC2 
Conference, Aug 30, 1993). Once again, this did not 
prove to be beneficial with regards to the TIPSTER tests 
but in terms of solving the problem of a single stem 
"overpowering" the other stems in the document vector 
representation it has proved successful. A final attempt at 
alternative document generation weighting used the 
importance factor formula that was used in the 

bootstrapping algorithm. This too did not provide a 
significant change in performance. The original approach 
(the IDF weighting) does seem to give the best 
performance on the TIPSTER tests over the variations 
tried by HNC and others. Table 11 provides a summary 
of the performance results for the 10k corpus. 

WEIGHTING ' PERFORMANCE CHANGE 
IDF 0% 
Flat -1.8 % 

Modified IDF -2.7 % 
Importance -3.8 % 

Table 11. Document Weighting Experiments 

4.3.2 Document Clustering Tests 

Document clustering uses the same algorithm as word 
sense disambiguation (K-means). Each document has a 
context vector. When document clustering is performed 
the number of clusters is pre-specified. Each document 
vector is put into one of these clusters. 

The initial motivation behind document clustering was to 
improve retrieval speed. Although the results are 
preliminary, it is apparent that retrieval time can be 
greatly reduced. As the number of clusters searched for a 
retrieval goes down the retrieval speed also goes down. 
Obviously as the number of clusters searched is decreased 
the system's recall goes down. Early tests on the 10,000 
document subset of the TIPSTER corpus indicate that by 
only looking at 500 documents from the top "n" clusters 
(variable number of clusters are searched for each topic) 
there is less than a 5% degradation in recall and precision. 
For the non-cluster system 10,000 dot products are 
required for each query while the clustered system only 
requires 500 dot products for each query. 

An extremely noteworthy discovery involving document 
clustering is an automated cluster explanation capability 
that is inherent in the context vector approach. By taking 
the centroid vector of each of the resulting document 
clusters and "dotting" them (i.e. calculating the dot 
product) with every word and word phrase in the corpus 
the system can automatically elucidate the meaning of the 
cluster (i.e. what the documents in the cluster are about). 
would be used for all topics regardless of the number of 
words contained in the "concept" section (the average 
number of words in the concepts section is -25). The 
relative threshold would'require "x" percent of the words 
from the "concepts" section to appear in a document 
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Cluster 1 
i 

Cluster 2 Cluster 3 Cluster 4 Cluster 5 

launch at&t snow commando interface 
maiden sprint gust guerilla specific 
titan cable shower shiite portable 
payload " transmit appalachians lebanon architecture 
pad fcc dakato gunman processor 
navigation tariff wisconsin insurgent logic 
shuttle mci wyoming moslem programming 
rocket gte scatter afghan database 
navstar fiber thunderstorm manilla graph 
gooch transmitted commuter alih diagnostic 
nasa coaxial lake dash software 
unmanned marketplace buffalo hezbollah prolog 
orbit distance minnesota islamabad maintenance 
booster optic eastem fled hardware 
delt phone upper mujahedeen interact 
atl copper idaho palestin concur 
satellite breakup picket pakistan function 
space Its nebraska vorontsov computer 
challenger deregulation wind wound query 
discovery competition valley beirut language 

Table 12. Document Cluster Closest Stems 

This can be used to aid in visualization and in creating 
automated subject indexes. An example of the cluster 
explanation is given in Table 12. This sample was taken 
from the 1,000 document test system which was clustered 
into 20 groups (5 of the clusters are presented in the 
table). 

4.4 Query Processing 

The TIPSTER evaluations consisted of 150 topic 
descriptions (see appendix C for an example). Numerous 
experiments were conducted to come up with the optimal 
automated parsing strategy for all the topics over all of 
the TIPSTER corpus. Additional experiments involved 
alternative weighting schemes and relevance feedback. 

4.4.1 Boolean Filters 

The MatchPlus system works best in conjunction with a 
gross boolean filter (i.e. specifying many terms with a 
small match requirement). Given the structure of the 
topic queries, it was apparent the "concepts" portion of 
the topic would be a likely candidate for the boolean 

filter. This in fact did turn out to be the best approach. 
The two match threshold approaches were an absolute 
threshold and a relative threshold. The absolute threshold 
would use the same threshold for all the topics. For 
example if the threshold were 4 the system would first 
retrieve all the documents that had at least 4 of the words 
contained in the "concepts" section of the topic 
description. Once those documents were retrieved they 
were ranked by dot product between their document 
vectors and the query context vector. The threshold of 4 
before it was retrieved. This threshold, like the absolute 
threshold, was swept and it was determined that a 
constant threshold of 3 (4 was slightly better for very 
large corpora) performed the best. 

4.4.2 Query Weighting 

As is the case when generating document context vectors, 
query context vectors are a weighted sum of each of the 
individual query stem vectors. Again, there were various 
experiments to determine the best weighting scheme. The 
original approach used the traditional tf*idf weighting (tf 
being the term frequency in the query). The importance 
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factor equation was experimented with as well as the 
variation of the tf*idf weight, log(tf)*idf, which was 
described as giving better performance for other IR 
systems (see Buckley, TREC2, Aug 30, 1993). As was 
found for generating document context vectors, the 
original approach proved to be the best. 

4.4 .3  Q u e r y  E x p a n s i o n  

The idea of query expansion was experimented with 
during TIPSTER Phase I. Traditional adhoc query 
expansions involved adding words from a thesaurus or a 
preset knowledge base such as WordNet. For example if 
the query were "dog" the terms "canine" and "pooch" 
might be automatically added to the query. MatchPlus's 
approach was to augment query terms with terms that the 
system had automatically determined were related. Most 
likely these terms would NOT be simply synonyms but 
"concepts" that are related or found in similar documents. 
For example if the query were "NASA" the top 8 related 
terms added to the original query would be: "space 
shuttle, unpiloted, challenger, unmanned, payload, 
booster, launch, rocket". This automated query expansion 
proved to be unsuccessful. It is apparent that the original 
query term(s) already have, encoded in them, the related 
terms that were used to augment the query. The vector 
for "NASA" is already "close" to terms such as "space 
shuttle" and "rocket" so documents with only these two 
terms and NOT NASA will be retrieved. This "built in" 
query expansion is one of the benefits of the vector space 
model and such things as a thesaurus and WordNet 
(which have not been successful for query expansion in 
the TIPSTER tests) are not necessary. Future research 
needs to be done with regard to augmenting query terms 
with their related words. For example the augmented 
terms could be used to broaden and enrich the boolean 
filter, or the terms could be selected and de-selected by a 
user in a feedback situation. 

4.4 .4  R e l e v a n c e  F e e d b a c k  

The use of relevance feedback for adhoc queries proved 
to be a success. The experiment consisted of taking the 
top 20 documents retrieved for each query and making a 
relevance judgment. The context vectors for the relevant 
documents were then added back into the original query 
vector and the new query was used to retrieve the rest of 
the documents. This approach gave a 3 % to 5 % increase 
in performance over our baseline scores. 

4 .4 .5  V e c t o r  O n l y  Q u e r y  

An extremely encouraging experiment involved using a 
context vector query with NO boolean filter. The entire 
topic (excluding the domain and definitions sections) was 
used in creating this automatic adhoc query. As reported 
in the tipster 24 month proceedings the context vector 
query with no boolean matching only performed 3 % 
worse for relevant documents and 8 % on precision. The 
comparison is with a similarly formed query but with the 
additional requirement that documents with at least 4 of 
the terms in the "concept" section of the topic be present 
in the document for it to be retrieved. This result 
indicates that good retrieval performance can be obtained 
using only the context vector approach. No inverted 
index (used in calculating boolean "hits") is necessary, 
greatly reducing the system build time and the system 
storage requirements. 

4 .5  R o u t i n g  E x p e r i m e n t s  

The vector space model lends itself very nicely to 
conventional neural network training algorithms. One of 
those algorithms, the single cell perceptron learning, 
proved to be very useful in the routing environment. 
There were two approaches experimented with using the 
perceptron algorithm. The first, the "stem weighting" 
approach calculated weights for each of the query terms 
for each topic description. The input for the network was 
the dot product between each query term and a previously 
judged document (either relevant or not relevant for that 
particular topic query), and the relevance judgment. An 
example input is given in Table 13. 

surrogate mother court case relevance 
Doc I .3 .4 .7 .9 0 
Doc 2 .8 .7 .5 .2 1 

Table 13, Stem Weighting Input for Perceptron Learning 

The output consists of weights for each of the query terms 
which are applied when adding up each of the query 
terms to form the final query vector. For the example 
given in Table 12 one would expect the weight for the 
term "case" to be low because it did not play a significant 
part in retrieving the relevant document but did contribute 
significantly in retrieving the non-relevant document. 
The second approach that utilizes the perceptron network 
is the "full context vector" method. The input consists of 
a judged document context vector (280 floating point 
values) and the relevance judgment. The network returns 
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with 280 weights that are directly inputted into the query 
context vector. The stem weighting approach performed 
better than the "full context vector" approach. This is 
most likely due to the fact the "full context vector" 
approach required many more training examples (i.e. 
relevance judgments) because it was calculating 280 
weights while the "stem weighting" was calculating on 
average 25 weights. Although there were an abundances 
of relevance judgments for each topic there were many 
more examples of non-relevant documents than relevant 
documents. 

The idea of combining different types of query runs (from 
the same system as well as from different systems) proved 
to be very successful. This idea of "data fusion" was 
inspired by the observation that any two TIPSTER 
retrieval runs came up with for the most part non- 
intersecting sets of documents. Using information about 
each retrieval approach's performance (e.g. "stem 
weighting" works better than an adhoc query) retrieval 
lists were combined in two different ways. The first way 
determined the best approach for each topic and used that 
approach to retrieve all the documents for that query. For 
example, if the context vector only query (no boolean 
matching) worked best for topic 51 then that query was 
used to retrieve all the documents. The second approach, 
which proved to work slightly better, combined document 
lists for each topic by taking documents from each 
retrieval approach (again, based on the accuracy weights) 
and combining them to create a single list. For example, 
the top ranked retrieved document from the best approach 
("stem weighting") would be chosen first, the top ranked 
document for the second best approach would be next, 
etc.. An experiment using the latter combining method 
showed that by combining the best single retrieval run 
from the University of Massachusetts INQUERY system 
with MatchPlus's best run the single best performance by 
any single participant in TREC and TIPSTER could be 
improved 5 %. 

5. EVALUATION SUMMARY 

5.1 Results 

For TIPSTER Phase I 24-month evaluation HNC 
submitted 5 adhoc and 5 routing runs. The results for the 
adhoc runs which were run on Disks 1 & 2 and used 
topics 101-150 are given in Table 14. 

Run Relevan Relative Prec. @ Relative 
t Docs Perf. 100 Perf. 

1 7205 0.0 % .4520 0.0 % 

2 7173 -0.4 % .4748 +5.0 % 

3 7504 +4.1% .4616 +2.1% 

4 7202 0.0 % .4464 -1.2 % 
I 

5 6926 I -3.9 % .4128 -8.7 % 

Table 14. Adhoc Retrieval Results 

The total number of relevant documents for the adhoc 
was 11,657. For each of the topics 101-150, 1000 
documents were retrieved. The 5 different run types are 
described as follows: 

. Totally automated, use entire topic with a match 
threshold of 4 terms on the concepts section (baseline 
system). The training size was 320 megabytes of text. 

. Use run 1 for first 20 retrievals, read these documents 
and mark relevant ones. Add context vectors for 
relevant documents to original query context vector 
and retrieve remaining 980 documents. The training 
size was 320 megabytes of text. 

. Same query type as run 1 but the system uses a larger 
context vector size (512 dimensions versus 280 
dimensions). The training size was 320 megabytes of 
text. 

. Same as run 3 but a smaller corpus was used for the 
learning of the context vectors. The training size was 
45 megabytes of text. 

5. Context Vector only query (i.e. No boolean match 
filter). The training size was 320 megabytes of text. 
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The routing results which were run on Disk 3 and topics 
51-100 are given in Table 15. 

Run [ Relevan Relative Prec. @ Relative 
t Docs Perf.  100 Perf. 

! 

1 5752 0.0 % .4128 0.0 % 

2 6531 +11.9 % .4748 +13.1% 

3 5966 +3.6 % .4616 +4.9 % 

4 6436 +10.6 % .4464 +7.5 % 

5 5950 +3.3 % .4520 +8.7 % 

Table 15. Routing Retrieval Results 

The total number of relevant documents for the routing 
was 10,489. For each of the topics 51-100, 1000 
documents were retrieved. Runs 1,2 and 4 used a 
technique called "data fusion". Multiple query types were 
used then the resulting retrieval lists were combined to 
produce a single list of documents. The following were 
the query types used for combining (refer to section 4, 
routing for details of routing techniques): 

• Stem weighting (neural network training) 

• Full context vector weighting (neural network 
training) 

• Adhoc automated query, boolean filter (Runs 1 and 2 
only) 

• Adhoc automated query, context vector only (Run 4 
only) 

The 5 different run types are described as follows: 

1 Stem weighting for entire run. 

2. Data fusion 1: combines 4 different types of 
retrievals inside each topic. 

3. Adhoc query, fully automatic with a match threshold 
of 4 terms on the concepts section. 

4. Use same approach as Run 1 but include a context 
vector only query as one of the query types. 

. Data fusion 2: combines 4 different types of adhoc 
and routing approaches by topic (i.e. the same query 
approach is used for retrieving all the documents for 
a particular topic). 

5.2 Interpretation of Results 

Increasing the size of the vector training set improves 
performance. Adhoc run 3 was trained on 320 megabytes 
of data while run 4 was trained on 45 megabytes. There 
is nearly a 5% improvement with the increased amount of 
training data. 

Increasing the vector size from 280 dimensions to 512 
dimensions helps performance. For the larger vector size 
MatchPlus performed 5% better on the number of 
relevant documents and 8% better for precision at I00 
documents. The increased dimensionality provided more 
distinguishability between document context vectors thus 
fewer non-relevant documents were retrieved. 

A probabilistic combination of multiple runs gives 
superior performance to any single query formation 
technique. The best combination run (Route run 2) gave 
over a 10% improvement for both precision and recall 
over the best single routing method (Route run 1). 

For further details regarding "unofficial" results from 
numerous experiments refer to the section on 
"Experiments and Performance". 
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