
Finding Representations for Memory-Based Language 

Abstract 

Constructive induction transforms the representation of 
instances in order to produce a more accurate model of 
the concept to be learned. For this purpose, a vari- 
ety of operators has been proposed in the literature, 
including a Cartesian product operator forming pair- 
wise higher-order attributes. We study the effect of 
the Cartesian product operator on memory-based lan- 
guage learning, and demonstrate its effect on general- 
ization accuracy and data compression for a number of 
linguistic classification tasks, using k-nearest neighbor 
learning algorithms. These results are compared to a 
baseline approach of backward sequential elimination 
of attributes. It is demonstrated that neither approach 
consistently outperforms the other, and that attribute 
elimination can be used to derive compact representa- 
tions for memory-based language learning without no- 
ticeable loss of generalization accuracy. 
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Daelemans et al., 1997]. Successful attribute elimina- 
tion leads to compact datasets, which possibly increase 
classification speed. Constructive induction, on the 
other hand, tries to exploit dependencies between at- 
tributes, by combining them into complex attributes 
that increase accuracy of the classifier. For instance- 
based algorithms, this approach has been demonstrated 
to correct invalid independence assumptions made by 
the algorithm [Pazzani, 1998]: e.g., for the Naive Bayes 
classifier (Duda & Hart, 1973), the unwarranted as- 
sumption that in general the various attributes a, = v, 
are independent, and form a joint probability model for 
the prediction of the class C: 

It is a widely held proposition that inductive learn- 
ing models, such as decision trees [Quinlan, 1993] or k- 
nearest neighbor models [Aha, Kibler & Albert, 1991], 
are heavily dependent upon their representational bi- 
ases. Both decision tree algorithms and instance-based 
algorithms have been reported to be vulnerable to ir- 
relevant or noisy attributes in the representation of ex- 
emplars, which unnecessarily enlarge the search space 
for classification [John, 1997]. In general, there are 
two options for dealing with this problem. Attribute 
elimination (or selection) can be applied in order to 
find a minimal set of attributes that is maximally in- 
formative for the concept to be learned. Attribute 
elimination can be seen as a radical case of attribute 
weighting [Scherf & Brauer, 1997, Aha, 1998], where 
attributes are weighted on a binary scale, as either rel- 
evant or not; more fine-grained methods of attribute 
weighting take information-theoretic notions ifito ac- 
count such as information gain ratio [Quinlan, 1993. 

l-I P(a, = v, I C) P(C) 
t 

P(C I a~ = v~A...Aa, = v,) = P(a~ = v~ A... ^ a,, = v,) 

(I) 

Constructive induction thus can be used to invent re- 
lationships between attributes that, apart fl'om possi- 
bly offering insight into the underlying structure of the 
learning task, may boost performance of the resulting 
classifier. Linguistic tasks are sequential by nature, as 
language processing is a linear process, operating on 
sequences with a temporal structure (see e.g. Cleere- 
mans (1993) for motivation for the temporal structure 
of finite-state grammar learning). Learning algorithms 
like k-nearest neighbor or decision trees abstract away 
from this linearity, by treating representations as multi- 
sets of attribute-value pairs, i.e. permutation-invariant 
lists. Using these algorithms, constructive induction 
cannot be used for corrections on the linearity of the 
learning task, but it can be used to study attribute in- 
teraction irrespective of ordering issues. 

In this paper, the use of constructive induction is 
contrasted with attribute elimination for a set of lin- 
guistic learning tasks. The linguistic learning domain 
appears to be deviant from other symbolic domains in 
being highly susceptible to editing. It has been no- 
ticed [Daelemans et al., 1999i] that editing exceptional 
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instances from linguistic instance bases tends to harm 
generalization accuracy. In this study, we apply edit- 
ing on the level of instance representation. The central 
question is whether it is more preferable to correct lin- 
guistic tasks by combining (possibly noisy or irrelevant) 
attributes, or by finding informative subsets. 

Representation Transformations 
John (1997) contains presentations of various attribute 
selection approaches. In Yang & Honovar (1998), a 
genetic algorithm is used for finding informative at- 
tribute subsets, in a neural network setting. Cardie 
(1996) presents an attribute selection approach to nat- 
ural language processing (relative pronoun disambigua- 
tion) incorporating a small set of linguistic biases (to 
be determined by experts). 

Many operators have been proposed in the litera- 
ture for forming new attributes from existing ones. Pa- 
gallo & Hauser (1990) propose boolean operators (like 
conjunction and negation) for forming new attributes 
in a decision tree setting. Aha (1991) describes IB3- 
CI, a constructive indiction algorithm for the instance- 
based classifier IB3. Aiming at reducing similarity be- 
tween an exemplar and its misclassifying nearest neigh- 
bor, IB3-CI uses a conjunctive operator forming an at- 
tribute that discriminates between these two. Bloedorn 
& Michalski (1991) present a wide variety of mathe- 
matical and logical operators within the context of the 
AQ17-DC1 system. A general perspective on construc- 
tive induction is sketched in Bloedorn, Michalski & 
Wnek (1994). Keogh & Pazzani (1999) propose correla- 
tion arcs between attributes, augmenting Naive Bayes 
with a graph structure. 

Pazzani (1998) proposes a Cartesian product oper- 
ator for joining attributes, and compares its effects on 
generalization accuracy with those of attribute elimina- 
tion, for (a.o.) the Naive Bayes and PEBLS (Cost & 
Salzberg, 1993) classifiers. The Cartesian product oper- 
ator joins two attributes At and A2 into a new, complex 
attribute At..42, taking values in the Cartesian product 

{< a,,aj >1 a i e  Values(At) ^ aj E Values(A.,_)} (2) 

where Values(A) is the value set of attribute A. The 
Cartesian product operator has an intrinsic linear in- 
terpretation: two features joined in a Cartesian prod- 
uct form an ordered pair with a precedence relation 
(the ordered pair < a, b > differs from the ordered pair 
< b, a >). This linear interpretation vanishes in learn- 
ing algorithms that do not discern internal structure in 
attribute values (like standard nearest neighbor). 

Pazzani's backward sequential elimination and join- 
b~g algorithm (BSEJ) finds the optimal representation 
transformation by considering each pair of attributes 

in turn, using leave-one-out cross-validation to deter- 
mine the effect on generalization accuracy. Attribute 
joining carries out an implicit but inevitable elimina- 
tion step: wiping out an attribute being subsumed by 
a combination. This reduces the dimensionality of the 
result dataset with one dimension. Following success- 
ful joining, the BSEJ algorithm carries out an explicit 
elimination step, attempting to delete every attribute in 
turn (including the newly constructed attribute) look- 
ing for the optimal candidate using cross-validation. 
The algorithm converges when no more transforma- 
tions can be found that increase generalization accu- 
racy. This approach is reported to produce significant 
accuracy gain for Naive Bayes and for PEBLS. Pazzani 
contrasts BSEJ with a backward sequential ehmination 
algorithm (BSE, backward sequential elimination, pro- 
gressively eliminating attributes (and thus reducing di- 
mensionality) until accuracy degrades. He also investi- 
gates forward variants of these algorithms, which suc- 
cessively build more complex representations up to con- 
vergence. Both for PEBLS and Naive Bayes, attribute 
joining appears to be superior to elimination, and the 
backward algorithms perform better than the forward 
algorithms. For k-nearest neighbor algorithms based 
on the unweighted overlap metric, BSEJ did not out- 
perform BSE. 

Conditioning representation transformations oil the 
performance of the original classifier implements a 
wrapper approach (John, 1997; Kohavi & John, 1998), 
which has proven an accurate, powerful method to mea- 
sure the effects of data transformations on generaliza- 
tion accuracy. The transformation process is wrapped 
around the classifier, and no transformation is carried 
out that degrades generalization accuracy. 

In this study, two algorithms, an implementation of 
BSE and a simplification of the BSEJ algorithm, were 
wrapped around three types of classifiers: IBI-IG, IB1- 
IG&MVDM (a classifier related to PEBLS in using 
MVDM) and IGTREE [Daelemans et al., 1997]. All of 
these classifiers are implemented in the TiMBL package 
[Daelemans et al, 1999ii]. IBI-IG is a k-nearest neigh- 
bor algorithm using a weighted overlap metric, where 
the attributes of instances have their information gain 
ratio as weight. For instances X and l ' ,  distance is 
computed as 

n 

ACX, Y)  = y ~  wdiCxi. Yi) (3) 
t = l  

where 6 is the overlap metric, and w, is the information 
gain ratio (Quinlan, 1993) of attribute i. 

The PEBLS algorithm can be approximated to a cer- 
tain extent by combining IBI-IG with the Modified 
Value Difference Metric (MVDM) of Cost & Salzberg 

25 



(1993). The MVDM defines the difference between two 
values x and y respective to a class C, as 

5(x,y) = Z [ P(C, ix) - P(C, [y) [ (4) 
z----I 

i.e., it uses the probabilities of the various classes 
conditioned on the two values to determine overlap. 
Attribute weighting of IBI-IG&MVDM (information 
gain ratio based) differs from PEBLS: PEBLS uses 
performance-based weighting based on class predicyion 
strength, where exemplars are weighted according to an 
accuracy or reliability ratio. 

IGTREE is a tree-based k-nearest neighbor algo- 
rithm, where information gain is used as a heuristic to 
insert nodes in the tree. For every non-terminal node, 
a default classification is stored for the path leading to 
it. Whenever no exact match can be found for an un- 
known instance to be classified, the default classification 
associated with the last matching attribute is returned 
as classification for the instance. Although IGTREE 
sometimes lags behind IBI-IG in accuracy, it provides 
for much faster, high quality classifiers. 

An implementation of the BSE algorithm is outlined 
in figure . It is akin in spirit to the backward elimi- 
nation algorithm of John (1997). During every pass, it 
measures the effects on generalization accuracy of elimi- 
nating every attribute in turn, only carrying out the one 
which maximizes accuracy. A simplified version of the 
BSEJ algorithm called backward sequential joining with 
information gain ratio (BSJ-IG) is outlined in figure. 

N! It checks the ~ ordered combinations for N fea- 
tures during each pass, and carries out the one resulting 
in the maximum gain in accuracy (as a consequence of 
the permutation im, ariance, the total search space of 

N! possible combinations can be halved). Any two 
joined attributes are put on the position with the max- 
imum information gain ratio of both original positions, 
after which the remaining candidate position is wiped 
out. Again, as the used classifiers are all permutation- 
invariant with respect to their representations, this is 
only a decision procedure to find a target position for 
the attribute combination; all candidate positions are 
equivalent target positions. 

Unlike the original BSEJ algorithm, BSJ-IG omits 
the additional explicit attribute elimination step di- 
rectly after every attribute joining step, in order to seg- 
regate the effects of attribute joining as much as possi- 
ble from those of attribute elimination. 

Both BSE and BSJ-IG algorithms are hill-climbing 
algorithms, and, as such, are vulnerable to local lnin- 
ima. Ties are resolved randomly by both. 
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E x p e r i m e n t s  

The effects of forming Cartesian product attributes 
on generalization accuracy and reduction of dimen- 
sionality (compression) were compared with those of 
backward sequential elimination of attributes. The 
following 7 linguistic datasets were used. STRESS is 
a selection of secondary stress assignment patterns 
from the Dutch version of the Celex lexical database 
[Baayen, Piepenbrock & van Rijn, 1993], on the basis 
of phonemic representations of syllabified words. At- 
tribute values are phonemes. Also derived from Celex 
is the DIMIN task, a selection of diminutive formation 
patterns for Dutch. This task consists of assigning 
Dutch diminutive suffixes'to a noun, based on phonetic 
properties of (maximally) the last three syllables of the 
noun. Attribute values are phoneme representations 
as well as stress markers for the syllables. The WSJ- 
NPVP set consists of part-of speech tagged Wall Street 
Journal material (Marcus, Santorini & Marcinkiewicz, 
1993), supplemented with syntactic tags indicating 
noun phrase and verb phrase boundaries (Daelemans et 
al, 1999iii). wsJ-POS is a fragment of the Wall Street 
Journal part-of-speech tagged material (Marcus, San- 
torini and Marcinkiewicz, 1993). Attributes values are 
parts of speech, which are assigned using a window- 
ing approach, with a window size of 5. INL-POS is a 
part-of-speech tagging task for Dutch, using tl~e Dutch- 
Tale tagset [van der Voort van der Kleij et al., 1994], 
attribute values are parts of speech. Using a window- 
ing approach, on the basis of a 7-cell window, part 
of speech tags are disambiguated. GRAPHON consti- 
tutes a grapheme-to-phoneme learning task for English, 
based on the Celex lexical database. Attribute values 
are graphemes (single characters), to be classified as 
phonemes. PP-ATTACH, finally, is a prepositional phrase 
(PP) attachment task for English.. where PP's are at- 
tached to either noun or verb projections, based on 
lexical context. Attribute values are word forms for 
verb, the head noun of the following nouu phrase, the 
preposition of the following PP, and the head noun of 
the PP-internal noun phrase (like bring a t t e n t i o n  to 
problem). The material has been extracted by Rat- 
naparkhi et al. (1994) from the Penn Treebank Wall 
Street Journal corpus. Key numerical characteristics of 
the datasets are summarized in table 1. 

Each of these datasets was subjected to the BSJ-IG 
and the BSE wrapper algorithms, embedding either the 
IBI-IG or IGTREE architecture. Both the Naive Bayes 
and PEBLS classifier investigated by Pazzani (1998) al- 
low for certain frequency tendencies hidden in the data 
to bear on the classification. This has a smoothing ef- 
fect on the handling of low-frequency events, which ben- 
efit from analogies with more reliable higher-frequency 
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Procedure BSE 

Input: a training set T 
Output: a new training set T' with possibly attributes removed 

S e t  Acc to  Accuracy(T) fo r  the  cur ren t  c l a s s i f i e r  
S e t  Success to  t rue  
While (Success) do 

SetSuccess to false 

For every attribute A in T do 

Produce T' by removing A from every instance in T 

NewAcc=Accuracy(T') for the current classifier 

If (NewAcc>Acc) 

Then 

Set Acc to NewAcc 

Set Winner to T' 

Set Success to true 

If Success equals true 

Then 

Set T to Winner 

Return T 

Figure h A wrapper implementation of Backward Sequential Elimination (BSE). 

events. In order to assess the effects of smoothing, the 
following additional experiments were carried out. Em- 
beddded into BSE and BSJ-IG, the PEBLS approxima- 
tion IBI-IG with MVDM was applied to three datasets: 
STRESS, DIMIN and PP-ATTACH, for three values of k (1, 
3, 7), the size of the nearest neighbor set. Values for k 
larger than 1, i.e. non-singleton nearest neighbor sets. 
have been found to reproduce some of the smoothing in- 
herent to statistical back-off models (Daelemans et al.. 
1999ii; Zavrel & Daelemans, 1997). 

Generalization accuracy for every attribute joining 
or elimination step was measured using 10-fold cross- 
validation, and significance was measured using a two- 
tailed paired t-test at the .05 level. All experiments 
were carried out on a Digital Alpha XL-266 (Linux) and 
a Sun UltraSPARC-IIi (Solaris). Due to slow perfor- 
mance of the IBI-IG model on certain datasets with the 
used equipment, IBI-IG experiments with %VSJ-NPVP 
could not be completed. 

R e s u l t s  

The results show, first of all, that the compression 
rates obtained with BSE (average 34.9%) were consis- 
tently higher than those obtained with BSJ-IG (average 
28.6%) (table 2). 

Secondly, BSE and BSJ-IG have com~)arable effects 
on accuracy. BSE generally boosts IGTREE perfor- 
mance to IBI-IG level, and leads to significant accu- 
racy gains for two datasets, STRESS and PP-A.TTACH 
(tabel 3). BSJ-IG does so for the STRESS set (tabel 
4). Neither BSE nor BSJ-IG produce any significant 
gain in accuracy for the IBI-IG classifier. This general- 
izes the findings of Pazzani (1998) ibr classifiers based 
on unweighted overlap metrics to classifiers based oll a 
weighted overlap metric. 

For the classifier IBI-IG&MVDM. the situation is 
more complex (table 5). First, for k = 1. BSE and BSJ- 
IG have comparable accuracy. For the STRESS and PP- 
ATTACH sets, both algorithms produce significant and 
comparable accuracy gains. Second, compression by 
BSE is significantly higher than compression oy BSJ- 
IG (47.2% vs. 30.6%). 

For the larger values for k (3, 7), BSJ-IG produces 
significant higher accuracies on the STRESS set, outper- 
forming BSE. Moreover, BSJ-IG yields a compression 
rate comparable to BSE. BSE compression drops from 
47.2% to 27.8%. 

A detailed look at the representations produced by 
BSE and BSJ-IG reveals the following. 
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Procedure BSJ-IG 

Input: a training set T 

Output: a new training set T' with possibly higher-order induced attributes 

Se t  Acc t o  A c c u r a c y ( T )  f o r  t h e  c u r r e n t  c l a s s i f i e r  
Se t  Succes s  t o  t r u e  
While ( S u c c e s s )  do 

Set  Succes s  t o  f a l s e  
For  e v e r y  o r d e r e d  c o m b i n a t i o n  of  two a t t r i b u t e s  At and Aj in  T do 

Produce  T '  f rom T by j o i n i n g  Ai and A~, p u t t i n g  them on t h e  p o s i t i o n  
k 6 {i , j}  wi th  t h e  l a r g e s t  i n f o r m a t i o n  g a i n  r a t i o .  

NewAcc=Accuracy(T')  f o r  t h e  c u r r e n t  c l a s s i f i e r  
If (NewAcc~Acc) 

Then 

Set Acc to NewAcc 

Set Winner to T' 

Set Success to true 

If Success equals true 

Then 

Set T to Winner 

Return T 

Figure 2: A wrapper  implementation of Backward Sequential Joining with Information Gain ratio (BSJ-IG) 

* (BSJ-IG) I B I - I G & B S J - I G  and IGTREE&BSJ- IG  
only agree on wsJ-POS: they both join the same at- 
tributes. For the other datasets,  there is no overlap 
a t  all. 

• (BSE) For the wsJ-POS set, BSE deletes exactly the 
same two features tha t  are joined by BSJ-IG for IB1- 
IG and IG TR EE.  For the DIMIN set, IBI - IG&BSE 
and I G T R E E & B S E  delete 4 common features. For 
STRESS, all features deleted by IBI - IG&BSE are 
deleted by I G T R E E & B S E  as well. On the INL-POS 
set, three common features are deleted. Frequently, 
BSE was found to delete an at t r ibute joined by BSJ- 
IG. 

• ( IBI - IG&MVDM, BSJ-IG) BSJ-IG produces no over- 
lap for D1MIN for the three different classifiers (k = 
1,3,7).  For STRESS, the k = 1, k = 3 and k = 7 
classifiers join one common pair of attributes.  This 
is the pair consisting of the nucleus and coda of the 
last syllable, indeed a strong feature for stress assign- 
ment  (Daelemans, p.c.). For PP-ATTACH, the k = 1, 
k - 3 and k = 7 classifiers identify at t r ibute 4 (the 
head noun of the PP-internal  noun phrase) for .join- 
ing with another  at tr ibute.  Attr ibute 4 clearly intro- 

duces sparseness in the dataset:  it has 5~695 possible 
values, opposed to maximally 4,405 values for the 
other at tr ibutes.  The k = 3 and k = 7 classifiers 
agree fully here. 

• ( IBI - IG&MVDM, BSE) On the DIMIN set, the k = 1 
and k = 3 classifiers differ in 1 a t t r ibute  elimination 
only. They display no overlap with k = 7, which elim- 
inates entirely other attributes.  For STRESS, k = 1 
and k = 3 classifiers overlap on 3 at tr ibutes.  The 
three classifiers delete 1. common at t r ibute  (not the 
nucleus or coda). For PP, the k = 3 and k = 7 clas- 
sifters do not eliminate attributes; the k = 1 classi- 
fier deletes the at t r ibute 4 (PP-internal  head noun), 
and even the first verb-valued at tr ibute.  In doing 
so, it constitutes a strongly lexicalised model for PP-  
a t tachment  taking only into account the first head 
noun and the following preposition. 

BSE produced more overlapping results across classi- 
tiers than BSJ-IG.  IBI - IG&MVDM with BSJ-IG is the 
only type of classifier that  is able to t rap the impor tant  
interaction between nucleus and coda in the STRESS set. 
Due to lack of domain knowledge, we cannot be cer- 
tain that  other important  interactions have ,lot been 

28 



Dataset Instances Attributes IBI-IG IGTREE 
STRESS 

DIMIN 

WSJ-NPVP 

GRAPHON 

WSJ-POS 

INL-POS 

PP-ATTACH 

3,000 
3,000 
200,000 
350,000 
399,925 
250,004 
20,801 

12 
12 
8 
7 
5 
7 
4 

85.9+0.8 
98.2+0.4 
97.1±0.08 
96.6+0.04 
95.9±0.04 
96.3+0.1 
81.3±0.5 

81.6+1.0 
98.2±0.5 
96.5±0.08 
96.2±0.06 
95.9±0.04 
96.3±0.1 
78.3+0.4 

Table 1: Number of instmlces, attributes and original accuracies for the datasets. 

Algorithm BSE BSJ-IG 
IBI-IG 34.2 23 
IGTREE 34.7 30.9 
IBI-IG&MVDM, k=l  47.2 30.6 
IBI-IG&MVDM, k=3 30.5 33.3 
IBI-IG&MVDM, k=7 27.8 25 
Average 34.9 28.6 

Table 2: Average compression rates. 

trapped as well; this lies outside the scope of this study. 
Although firm conclusions cannot be drawn on the basis 
of three datasets only, the compact and accurate results 
of the k = 3 and k = 7 classifiers may indicate a ten- 
dency for smoothing algorithms to compensate better 
for eventual non-optimal attribute combinations than 
for eliminated attributes. This would be in agreement 
with Pazzani's findings for PEBLS and Naive Baves. 

Frequently, cases were observed where BSE elimi- 
nates attributes that were used for joining by BSJ-IG. 
This indicates that at least some of the advantages of 
attribute joining originate from implicit attribute elim- 
ination rather than combination, which has also been 
noted by Pazzani (1998): removing an attribute may 
improve accuracy more than joining it to another at- 
tribute. 

C o n c l u s i o n s  

The effects of two representation-changing algorithms 
on generalization accuracy and data compression were 
tested for three different types of nearest neighbor clas- 
sifters, on 7 linguistic learning tasks. As a consequence 
of the permutation-invariance of the used classifiers and 
the use of hill-climbing algorithms, a practical sampling 
of the search space of data transformations was applied. 
BSE. an attribute elimination algorithm, was found to 
produce accurate classifiers, with consistently higher 
data compression rates than BSJ-IG, an attribute join- 
ing algorithm. The generalization accuracy of BSE is 
comparable to that of BSJ-IG. 

Some evidence hints that attribute joining may be 
more succesful - both for compression and accuracy 
- for classifiers employing smoothing techniques, e.g. 
PEBLS-Iike algorithms which select a nearest neighbor 
from a nearest neighbor set using frequency informa- 
tion. This type of classifier was able to trap at least 
one important attribute interaction in the STRESS do- 
main, offering extended insight in the underlying learn- 
ing task. Further evidence is needed to confirm this 
conjecture, and may shed further li6ht on the question 
whether and how linguistic learning tasks could benefit 
from attribute interaction. An alternative line of re- 
search to be pursued will address cla~ssifier models that 
allow for linear encoding of linguistic learning tasks: 
these models will allow investigations into corrections 
on the linearity of linguistic tasks. 
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Dataset IBI-IG&BSE 
STRESS 10 86.24-1.0 
DXMIN 4 98.54-0.4 
W S J - N P V P  _ _ 

G R A P H O N  = ----- 

ws~-POS 3 96.14-0.04 
INL-POS 3 96.54-0.09 
PP-ATTACH 3 82.04-0.7 

IGTREE&BSE 
6 84.94-1.0+ 
5 98.44-0.5 
7 96194-0.07 

3 96.14-0.04 
3 96.54-0.09 
3 81.94-0.7+ 

Table 3: Number of remaining attributes and accuracies for BSE. A '+ '  indicates a siguificant increase in accuracy 
compared to the original algorithm; a '_' indicates the experiment could not be completed. 

Dataset 
S T R E S S  

D I M I N  

W S J - N P V P  

G R A P H O N  

W S . I - P O S  

I N L - P O S  

P P - A T T A C H  

IBI-IG&BSJ-IG IGTREE&BSJ-IG 
9 86.64-1.0 8 85.24-0.8+ 
6 98.54-0.4 6 98.4-t-0.4 

6 96.94-0.08 
6 96.24-0.05 

4 96.04-0.04 4 96.04-0.04 
4 96.54-0.1 4 96.54-0.1 

Table 4: Number of remaining attributes and accuracies for BSJ-IG. A '+ '  indicates a significant increase in accuracy 
compared to the original algorithm; a '='  indicates no difference with respect to the original algorithm; a '_' indicates 
the experiment could not be completed. 
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