
Exploiting Diversity in Natural Language Processing:
Combining Parsers

J o h n C . H e n d e r s o n a n d E r i c B r i l l
D e p a r t m e n t of C o m p u t e r Science

Johns Hopkins Univers i ty
Ba l t imore , MD 21218

{ jhndrsn ,br i l l}@cs. jhu .edu

A b s t r a c t

Three state-of-the-art statistical parsers are com-
bined to produce more accurate parses, as well as
new bounds on achievable Treebank parsing accu-
racy. Two general approaches are presented and two
combination techniques are described for each ap-
proach. Both parametric and non-parametric mod-
els are explored, i The resulting parsers surpass the
best previously published performance results for
the Penn Treebank.

1 I n t r o d u c t i o n

The natural language processing community is in the
strong position of having many available approaches
to solving some of its most fundamental problems.
The machine learning community has been in a simi-
lar situation and has studied the combination of mul-
tiple classifiers (Wolpert, 1992; Heath et al., 1996).
Their theoretical I finding is simply stated: classifica-
tion error rate decreases toward the noise rate ex-
ponentially in the number of independent, accurate
classifiers. The theory has also been validated em-
pirically.

Recently, combination techniques have been in-
vestigated for part of speech tagging with positive
results (van Halteren et al., 1998; Brill and Wu,
1998). In both cases the investigators were able to
achieve significant improvements over the previous
best tagging results. Similar advances have been
made in machine translation (Frederking and Niren-
burg, 1994), speech recognition (Fiscus, 1997) and
named entity recognition (Borthwick et al., 1998).

The corpus-based statistical parsing community
has many fast and accurate automated parsing sys-
tems, including systems produced by Collins (1997),
Charniak (1997) and Ratnaparkhi (1997). These
three parsers have given the best reported parsing
results on the Penn Treebank Wall Street Journal
corpus (Marcus et al., 1993). We used these three
parsers to explore parser combination techniques.

2 T e c h n i q u e s f o r C o m b i n i n g P a r s e r s

2.1 Parse Hybridizat ion

We are interested in combining the substructures of
the input parses to produce a better parse. We
call this approach parse hybridization. The sub-
structures that are unanimously hypothesized by the
parsers should be preserved after combination, and
the combination technique should not foolishly cre-
ate substructures for which there is no supporting
evidence. These two principles guide experimenta-
tion in this framework, and together with the evalu-
ation measures help us decide which specific type of
substructure to combine.

The precision and recall measures (described in
more detail in Section 3) used in evaluating Tree-
bank parsing treat each constituent as a separate
entity, a minimal unit of correctness. Since our goal
is to perform well under these measures we will simi-
larly treat constituents as the minimal substructures
for combination.

2.1.1 Const i tuent Voting
One hybridization strategy is to let the parsers vote
on constituents' membership in the hypothesized
set. If enough parsers suggest that a particular con-
stituent belongs in the parse, we include it. We call
this technique constituent voting. We include a con-
stituent in our hypothesized parse if it appears in the
output of a majority of the parsers. In our particular
case the majority requires the agreement of only two
parsers because we have only three. This technique
has the advantage of requiring no training, but it
has the disadvantage of treating all parsers equally
even though they may have differing accuracies or
may specialize in modeling different phenomena.

2.1.2 Naive Bayes
Another technique for parse hybridization is to use
a naive Bayes classifier to determine which con-
stituents to include in the parse. The development of
a naive Bayes classifier involves learning how much
each parser should be trusted for the decisions it
makes. Our original hope in combining these parsers
is that their errors are independently distributed.
This is equivalent to the assumption used in proba-

187

bility estimation for naive Bayes classifiers, namely
that the at tr ibute values are conditionally indepen-
dent when the target value is given. For this reason,
naive Bayes classifiers are well-matched to this prob-
lem.

In Equations 1 through 3 we develop the model
for constructing our parse using naive Bayes classi-
fication. C is the union of the sets of constituents
suggested by the parsers. It(c) is a binary function
returning t (for true) precisely when the constituent
c 6 C should be included in the hypothesis. Mi(c)
is a binary function returning t when parser i (from
among the k parsers) suggests constituent c should
be in the parse. The hypothesized parse is then the
set of constituents that are likely (P > 0.5) to be in
the parse according to this model.

argmax P(Tr(c)[M1 (c) . . . Mk (c))

= argmax P(Ml(C)'"Mk(e)lTr(c))P(Tr(c)).(1)
,(c) P(M1 (c).. . Mk (c))

k
= argmaxP(rr(c))II P(Mi(c)lTr(c)) (2)

~(c) i=1 P(Mi(c))
k

= argmaxP(?r(c)) I I P(Mi(c)l~r(c)) (3)
~r(c) i : 1

The estimation of the probabilities in the model is
carried out as shown in Equation 4. Here N(.)
counts the number of hypothesized constituents in
the development set that match the binary predi-
cate specified as an argument.

k

P(~-(c) = t) I I P(M'(c) l~r(c) = t)
i=1

Y(Tr(c) = t) ~ N(Mi(c),r(c) = t)
- ICl ~ N ~ ----~ (4)

i=1

2.1.3 Lemma: N o Cross ing Brackets
Under certain conditions the constituent voting and
naive Bayes constituent combination techniques are
guaranteed to produce sets of constituents with no
crossing brackets. There are simply not enough
votes remaining to allow any of the crossing struc-
tures to enter the hypothesized constituent set.

Lemma: If the number of votes required by con-
sti tuent voting is greater than half of the parsers
under consideration the resulting structure has no
crossing constituents.

P r o o f : Assume a pair of crossing constituents ap-
pears in the output of the constituent voting tech-
nique using k parsers. Call the crossing constituents
A and B. A receives a votes, and B receives b votes.
Each of the constituents must have received at least
[~--~-~q votes from the k parsers, so a > [k2~] and 2 /

b > F~.2_!l Let s = a + b. None of the parsers pro- _ / 2 / "

duce parses with crossing brackets, so none of them
votes for both of the assumed constituents. Hence,
s _< k. But by addition of the votes on the two
parses, s > 9.F~.t.11 > k, a contradiction. •

- - - ~ 2 !
Similarly, when the naive Bayes classifier is con-

figured such that the constituents require estimated
probabilities strictly larger than 0.5 to be accepted,
there is not enough probability mass remaining on
crossing brackets for them to be included in the hy-
pothesis.

2.2 Parser Swi tch ing

In general, the lemma of the previous section does
not ensure that all the productions in the combined
parse are found in the grammars of the member
parsers. There is a guarantee of no crossing brackets
but there is no guarantee that a constituent in the
tree has the same children as it had in any of the
three original parses. One can trivially create sit-
uations in which strictly binary-branching trees are
combined to create a tree with only the root node
and the terminal nodes, a completely flat structure.

This drastic tree manipulation is not appropriate
for situations in which we want to assign particu-
lar structures to sentences. For example, we may
have semantic information (e.g. database query op-
erations) associated with the productions in a gram-
mar. If the parse contains productions from outside
our grammar the machine has no direct method for
handling them (e.g. the resulting database query
may be syntactically malformed).

We have developed a general approach for combin-
ing parsers when preserving the entire structure of
a parse tree is important . The combining algorithm
is presented with the candidate parses and asked to
choose which one is best. The combining technique
must act as a multi-position switch indicating which
parser should be trusted for the particular sentence.
We call this approach parser switching. Once again
we present both a non-parametric and a parametric
technique for this task.

2.2.1 Similarity Switching
First we present the non-parametric version of parser
switching, similarity switching:

1. From each candidate parse, 7ri, for a sentence,
create the constituent set Si by converting each
constituent into its tuple representation.

2. The score for rri is ~ IS# N Sil, where j ranges
#¢i

over the candidate parses for the sentence.

3. Switch to (use) the parser with the highest score
for the sentence. Ties are broken arbitrarily.

The intuition for this technique is that we can
measure a similarity between parses by counting the

188

constituents they have in common. We pick the
parse tha t is most similar to the other parses by
choosing the one with the highest sum of pairwise
similarities. This is the parse that is closest to the
centroid of the Observed parses under the similarity
metric.

2.2.2 NaYve Bayes
The probabilistic version of this procedure is
straightforward: We once again assume indepen-
dence among our various member parsers. Further-
more, we know one of the original parses will be the
hypothesized parse, so the direct method of deter-
mining which one is best is to compute the proba-
bility of each of the candidate parses using the prob-
abilistic model iwe developed in Section 2.1. We
model each parse as the decisions made to create
it, and model those decisions as independent events.
Each decision determines the inclusion or exclusion
of a candidate consti tuent. The set of candidate
constituents comes from the union of all the con-
stituents suggested by the member parsers. This
is summarized in Equation 5. The computation of
P(Tri(c)lM1...Mk(c)) has been sketched before in
Equations 1 th~:ough 4. In this case we are inter-
ested in findingl the maximum probability parse, ~'~,
and Mi is the s:et of relevant (binary) parsing deci-
sions made by parser i. 7r~ is a parse selected from
among the outputs of the individual parsers. It is
chosen such that the decisions it made in including
or excluding constituents are most probable under
the models for all of the parsers.

argmax P(~'i[M1 • • • Mk)
7rl

= argmaxHPbr, Cc)iM1Cc)...Mk(c)) (5)
7fi C •

i
3 Experiments
The three parsers were trained and tuned by their
creators on various sections of the WSJ portion of
the Penn Treebank, leaving only sections 22 and 23
completely untouched during the development of any
of the parsers, i We used section 23 as the develop-
ment set for our combining techniques, and section
22 only for final testing. The development set con-
talned 44088 constituents in 2416 sentences and the
test set contained 30691 constituents in 1699 sen-
tences. A sentence was withheld from section 22
because its exireme length was troublesome for a
couple of the parsers)

The standard measures for evaluating Penn Tree-
bank parsing performance are precision and recall of
the predicted Constituents. Each parse is converted
into a set of constituents represented as a tuples:

1The sentence: in question was more than 100 words in
length and included nested quotes and parenthetical expres-
sions.

(label, start, end). The set is then compared with
the set generated from the Penn Treebank parse to
determine the precision and recall. P r e c i s i o n is the
portion of hypothesized constituents that are cor-
rect and reca l l is the portion of the Treebank con-
stituents that are hypothesized.

For our experiments we also report the mean of
precision and recall, which we denote by (P + R)/2
and F-measure. F-measure is the harmonic mean of
precision and recall, 2PR/ (P + R). It is closer to
the smaller value of precision and recall when there
is a large skew in their values.

We performed three experiments to evaluate our
techniques. The first shows how constituent features
and context do not help in deciding which parser
to trust. We then show that the combining tech-
niques presented above give better parsing accuracy
than any of the individual parsers. Finally we show
the combining techniques degrade very little when a
poor parser is added to the set.

3 . 1 C o n t e x t

It is possible one could produce bet ter models by in-
troducing features describing constituents and their
contexts because one parser could be much bet ter
than the majority of the others in particular situa-
tions. For example, one parser could be more ac-
curate at predicting noun phrases than the other
parsers. None of the models we have presented uti-
lize features associated with a particular constituent
(i.e. the label, span, parent label, etc.) to influence
parser preference. This is not an oversight. Fea-
tures and context were initially introduced into the
models, but they refused to offer any gains in per-
formance. While we cannot prove there are no such
useful features on which one should condition trust,
we can give some insight into why the features we
explored offered no gain.

Because we are working with only three parsers,
the only situation in which context will help us is
when it can indicate we should choose to believe a
single parser that disagrees with the majority hy-
pothesis instead of the majori ty hypothesis itself.
This is the only important case, because otherwise
the simple majority combining technique would pick
the correct constituent. One side of the decision
making process is when we choose to believe a con-
stituent should be in the parse, even though only
one parser suggests it. We call such a constituent an
isolated constituent. If we were working with more
than three parsers we could investigate minority con-
stituents, those constituents that are suggested by
at least one parser, but which the majority of the
parsers do not suggest.

Adding the isolated constituents to our hypothe-
sis parse could increase our expected recall, but in
the cases we investigated it would invariably hurt
our precision more than we would gain on recall.

189

Consider for a set of constituents the isolated con-
stituent precision parser metric, the portion of iso-
lated constituents tha t are correctly hypothesized.
When this metric is less than 0.5, we expect to in-
cur more errors 2 than we will remove by adding those
constituents to the parse.

We show the results of three of the experiments we
conducted to measure isolated constituent precision
under various parti t ioning schemes. In Table 1 we
see with very few exceptions that the isolated con-
stituent precision is less than 0.5 when we use the
constituent label as a feature. The counts represent
portions of the approximately 44000 constituents hy-
pothesized by the parsers in the development set.
In the cases where isolated constituent precision is
larger than 0.5 the affected portion of the hypotheses
is negligible.

Similarly Figures 1 and 2 show how the iso-
lated constituent precision varies by sentence length
and the size of the span of the hypothesized con-
stituent. In each figure the upper graph shows the
isolated constituent precision and the bot tom graph
shows the corresponding number of hypothesized
constituents. Again we notice that the isolated con-
stituent precision is larger than 0.5 only in those
partitions that contain very few samples. From this
we see that a finer-grained model for parser combi-
nation, at least for the features we have examined,
will not give us any additional power.

3.2 Performance Testing
The results in Table 2 were achieved on the develop-
ment set. The first two rows of the table are base-
lines. The first row represents the average accuracy
of the three parsers we combine. The second row
is the accuracy of the best of the three parsers. 3
The next two rows are results of oracle experiments.
The parser switching oracle is the upper bound on
the accuracy that can be achieved on this set in the
parser switching framework. It is the performance
we could achieve if an omniscient observer told us
which parser to pick for each of the sentences. The
maximum precision row is the upper bound on accu-
racy if we could pick exactly the correct constituents
from among the constituents suggested by the three
parsers. Another way to interpret this is that less
than 5% of the correct constituents are missing from
the hypotheses generated by the union of the three
parsers. The maximum precision oracle is an upper
bound on the possible gain we can achieve by parse
hybridization.

2This is in absolute terms, tota l errors being the sum of
precision errors and recall errors.

3The identity of this parser is not given, nor is the iden-
tity disclosed for the results of any of the individual parsers.
We do not aim to compare the performance of the individual
parsers, nor do we want to bias further research by giving the
individual parser results for the test set.

Parser Sentences
Parser 1 279
Parser 2 216
Parser 3 1204

%

16
13
71

Table 4: Bayes Switching Parser Usage

We do not show the numbers for the Bayes models
in Table 2 because the parameters involved were es-
tablished using this set. The precision and recall of
similarity switching and constituent voting are both
significantly bet ter than the best individual parser,
and constituent voting is significantly bet ter than
parser switching in precision. 4 Constituent voting
gives the highest accuracy for parsing the Penn Tree-
bank reported to date.

Table 3 contains the results for evaluating our sys-
tems on the test set (section 22). All of these systems
were run on data that was not seen during their de-
velopment. The difference in precision between sim-
ilarity and Bayes switching techniques is significant,
but the difference in recall is not. This is the first
set tha t gives us a fair evaluation of the Bayes mod-
els, and the Bayes switching model performs signif-
icantly bet ter than its non-parametric counterpart .
The constituent voting and naive Bayes techniques
are equivalent because the parameters learned in the
training set did not sufficiently discriminate between
the three parsers.

Table 4 shows how much the Bayes switching tech-
nique uses each of the parsers on the test set. Parser
3, the most accurate parser, was chosen 71% of the
time, and Parser 1, the least accurate parser was cho-
sen 16% of the time. Ties are rare in Bayes switch-
ing because the models are fine-grained - many es-
t imated probabilities are involved in each decision.

3.3 Robustness Testing
In the interest of testing the robustness of these com-
bining techniques, we added a fourth, simple non-
lexicalized PCFG parser. The P CF G was trained
from the same sections of the Penn Treebank as the
other three parsers. It was then tested on section
22 of the Treebank in conjunction with the other
parsers.

The results of this experiment can be seen in Ta-
ble 5. The entries in this table can be compared with
those of Table 3 to see how the performance of the
combining techniques degrades in the presence of an
inferior parser. As seen by the drop in average indi-
vidual parser performance baseline, the introduced
parser does not perform very well. The average in-
dividual parser accuracy was reduced by more than
5% when we added this new parser, but the preci-

4All significance claims are made based on a binomial hy-
pothesis test of equality with an a < 0.01 confidence level.

190

Constituent Parser1 Parser2 Parser3
Label count Precision count Precision count Precision

ADJP
ADVP
CONJP

' FRAG
:INTJ
LST
NAC
NP

'NX
PP
PRN
PRT
QP
RRC
S
SBAR
SBARQ
SINV
SQ
UCP
VP
WHADJP
WHADVP
WHNP
WHPP
X

132 28.78
150 25.33

2 50.00
51 3.92

3 66.66
0 NA
0 NA

1489 21.08
7 85.71

732 23.63
20 55.0O
12 16.66
21 38.09

1 0.00
757 13.73
331 ii.78

0 NA
3 66.66
2 0
6 16.66

868 13.36
0 NA
2 100.00

33 33.33
0 NA
0 NA

215 21.86
129 21.70

8 37.50
29 27.58

1 100.00
0 NA

13 53.84
1550 18.38

9 22.22
643 20.06

33 54.54
20 40.00
34 44.11

1 0.00
482 23.65
196 23.97

6 16.66
11 81.81
11 18.18
12 8.33

630 24.12
0 NA
5 40.00
8 25.00
0 NA
2 100.00

173 34.10
102 31.37

3 0.00
11 9.09

2 50.00
0 NA
7 14.28

1178 27.33
3 0.00

503 27.83
38 15.78
16 37.50
76 14.47

2 0.00
434 38.94
178 34.83

3 0.00
13 30.76
3 33.33
8 12.50

477 35.42
1 0.00
1 100.00

17 58.82
2 100.00
1 0.00

Table 1: Isolated Constituent Precision By Constituent Label

Reference / System P R (P+R)/2 F
Average Individual Parser 87.14 86.91 87.02 87.02
Best Individual Parser 88.73 88.54 88.63 88.63
Parser Switching Oracle 93.12 92.84 92.98 92.98
Maximum Precision Oracle 100.00 95.41 97.70 97.65
Similarity Switching 89.50 89.88 89.69 89.69
Constituent Voting 92.09 89.18 90.64 90.61

Table 2: Summary of Development Set Performance

Reference / System P R (P+R)/2 F
Average Individual Parser 87.61 87.83 87.72 87.72
Best Individual Parser 89.61 89.73 89.67 89.67
Parser Switching Oracle 93.78 93.87 93.82 93.82
Maximum Precision Oracle 100.00 95.91 97.95 97.91
Similarity Switching 90.04 90.81 90.43 90.43
Bayes Switching 90.78 90.70 90.74 90.74
Constituent Voting 92.42 90.10 91.26 91.25
Naive Bayes 92.42 90.10 91.26 91.25

Table 3: Test Set Results

191

6

6

z

lO0

80

60

40

20

0
0

800

700

600

500

400

300

200

100

0
0

!

Parser I J
Parser 2 - - - x - - -
Parser 3 ---~---

• ., ,.

: ",,.•

"••• . . . ~ ~ ~. , ' " "•. ,,,"

/

I I I I I I ~-

10 20 30 40 50 60

lO

/ \
: \

/i
• ,,/'

/ . , . ;.. "', ' \

""',,..~.. ; \'\

%
I I I I I

20 30 40 50 60
Sentence Length

Pa~ser 1 *
Parser 2 - - -x - - -
Parser 3 ---~---

70

70

Figure 1: Isolated Constituent Precision and Sentence Length

sion of the constituent voting technique was the only
result that decreased significantly. The Bayes mod-
els were able to achieve significantly higher preci-
sion than their non-parametric counterparts. We see
from these results that the behavior of the paramet-
ric techniques are robust in the presence of a poor
parser• Surprisingly, the non-parametric switching

technique also exhibited robust behaviour in this sit-
uation.

4 C o n c l u s i o n

We have presented two general approaches to study-
ing parser combination: parser switching and parse
hybridization. For each experiment we gave an non-

192

o

g

a

g

g

z

6O

40

20

0
0

1600

1200

g00

600

400

200

s t
!

/
t

,,°
¢

/ I
/

/ I
/

: l
/ t

" A ; /

/ : !
• . o

~-- . "'" ~ : i /
. ~ ~ i i l

. . . . -X... . ~ . - X

10 20 30 40

I
i
t

/
I

I
/

/
/

/
!

1
/

!
/

P a r s e r 1 i

Parser 2 - - - x - - -
Parser 3 ---~---
] I

50

i

Parser I i
Parser 2 - - -x - - -
Parser 3 ---~---

""",~ \
\ \

\',\\

~1~ . °

60

l0 20 30 40 50 60
Constituent Span Length (Tokens)

Figure 2: Isolated Constituent Precision and Span Length

parametric and a parametric technique for combin-
ing parsers: All four of the techniques studied result
in parsing systems that perform better than any pre-
viously reported. Both of the switching techniques,
as well as the parametric hybridization technique
were also shown to be robust when a poor parser was
introduced into the experiments. Through parser

combination we have reduced the precision error rate
by 30% and the recall error rate by 6% compared to
the best previously published result.

Combining multiple highly-accurate independent
parsers yields promising results. We plan to explore
more powerful techniques for exploiting the diversity
of parsing methods.

193

Reference / System P R (P+R) /2 F
Average Individual Parser 84.55 80.91 82.73 82.69
Best Individual Parser 89.61 89.73 89.67 89.67
Parser Switching Oracle 93.92 93.88 93.90 93.90
Maximum Precision Oracle 100.00 96.66 98.33 98.30
Similarity Switching 89.90 90.89 90.40 90.39
Bayes Switching 90.94 90.70 90.82 90.82
Constituent Voting 89.78 91.80 90.79 90.78
Naive Bayes 92.42 90.10 91.26 91.25

Table 5: Robustness Test Results

5 Acknowledgements
We would like to thank Eugene Charniak, Michael
Collins, and Adwait Ratnaparkhi for enabling all of
this research by providing us with their parsers and
helpful comments.

This work was funded by NSF grant IRI-9502312.
Both authors are members of the Center for Lan-
guage and Speech Processing at Johns Hopkins Uni-
versity.

References
Andrew Borthwick, John Sterling, Eugene

Agichtein, and Ralph Grishman. 1998. Ex-
ploiting diverse knowledge sources via maximum
entropy in named entity recognition. In Eugene
Charniak, editor, Proceedings of the Sixth Work-
shop on Very Large Corpora, pages 152-160,
Montreal.

Eric Brill and Jun Wu. 1998. Classifier combination
for improved lexical combination. In Proceedings
of the 17th International Conference on Compu-
tational Linguistics.

Eugene Charniak. 1997. Statistical parsing with
a context-free grammar and word statistics. In
Proceedings of the Fourteenth National Confer-
ence on Artificial Intelligence, Menlo Park. AAAI
Press/MIT Press.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proceedings of
the Annual Meeting of the Association of Compu-
tational Linguistics, volume 35, Madrid.

Jonathan G. Fiscus. 1997. A post-processing sys-
tem to yield reduced word error rates: Recognizer
output voting error reduction (ROVER). In Eu-
roSpeech 1997 Proceedings, volume 4, pages 1895-
1898.

Robert Frederking and Sergei Nirenburg. 1994.
Three heads are better than one. In Proceedings of
the 4th Conference on Applied Natural Language
Processing, pages 95-100, Stuttgart, Germany.

David Heath, Simon Kasif, and Steven Salzberg.
1996. Committees of decision trees. In
B. Gorayska and J. Mey, editors, Cognitive

Technology: In Search of a Humane Inter-
face, pages 305-317. Elsevier Science B.V.,
Amsterdam.

Mitchel l P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building a large
annotated corpus of english: The Penn Treebank.
Computational Linguistics, 19(2):313-330.

Adwait Ratnaparkhi. 1997. A linear observed time
statistical parser based on maximum entropy
models. In Second Conference on Empirical Meth-
ods in Natural Language Processing, Providence,
R.I.

Hans van Halteren, Jakub Zavrel, and Walter Daele-
mans. 1998. Improving data driven wordclass tag-
ging by system combination. In Proceedings of the
17th International Conference on Computational
Linguistics, Montreal.

David H. Wolpert. 1992. Stacked generalization.
Neural Networks, 5:241-259.

194

