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: A b s t r a c t  

HPSG is widely Used in theoretical and computational linguistics, but rarely in natural language 
generation. The paper describes some approaches to surface realization in which HPSG can be 
used. The implementation of all the approaches combines generation algorithms in Prolog and 
HPSG grammars in ProFIT. It is natural to combine a head-driven HPSG grammar with a head- 
driven generation algorithm. We show how a simple head-driven generator can easily be adapted 
for use with HPSG. This works well with simplified semantics, but if we implement the full HPSG 
textbook semantics this approach does not work. In a second approach to head-driven generation, 
we implement some recent revisions of HPSG, and show that head-driven generation with HPSG 

• is in fact possible. We then switch to non-head-driven approaches. We show how a bag generation 
algorithm, developed for use with categorial grammar and indexed QLF, can be used with HPSG 
and MinimalRecursion Semantics. We describe an approach to incremental generation with HPSG, 
noting a difficulty for highly incremental generation with HPSG and proposing a solution. Finally 
we briefly mention a few other plausible approaches. 

1 I n t r o d u c t i o n  

In work on natural language generation, tile most influential linguistic framework has l)robably been Systemic 
Functional Grammar (SFG). However, in other areas of computational linguistics the most widely used 
grammatical framework appears to be Head-driven Phrase Structure Grarnmar (HPSG). Why is it, then, 
that using HPSG for generation has been almost as unpopular as using SFG for parsing? 

Without making any claim that HPSG is better t.han SFG for generation, we will review some plausi- 
ble approaches to surface realization with HPSG. We will show that there are indeed some fundamental 
difficulties in using HPSG for generation, but also that there are some solutions to these difficulties. 

The first approach to mention is the radical one of converting HPSG into something else before generation, 
such as Tree Adjoining Grammar (Kasper et al., 1995)..Though this seems to support the view that HPSG 
is unsuitable for generation, it is in fact a valuable contribution to work on compiling HPSG grammars for 
efficient processing, whether for parsing (Torisawa and Tsujii, 1996) or for generation. 

However, we will not be concerned with efficiency, but with more basic problems in the relations between 
HPSG and generation algorithmS. The question is, can existing algorithms be used with HPSG grammars at 
all? For clarity, we use the simplest versions of the algorithms, which were originally developed for use with 

definite clause (DCG) grammars and categorial grammar. For uniformity~ the algorithms are implemented 
m Prolog and the grammars are implemented in ProFIT (Erbach, 1995). .. 

1.1 G e n e r a t i o n  f rom w h a t ?  

A basic problem in using ttPSG for generation is the question "Generation from what?" Various different 
semantic representations have been used with HPSG granamars, partly due to differences in semai~tic theories 
and partly due to differences in the requirements of particular applications, such as database interfaces, 
machine translation, or interactive dialogues. 
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The semantic theory which has been particularly associated with HPSG is Situation Semantics. As feature 
structures became central to linguistic description, and unification became central to linguistic processing, 
the standard (Pollard and Sag, 1994) semantic representation in HPSG has been a feature structure version 
of Situation Semantics, and semantic composition has been implemented by unification of the semantic 
features of the components. So one answer to what generation should start from is to generate from Situation 
Semantics. 

The distinctive characteristic of HPSG is its emphasis on a head-driven organization of grammar. So it 
is natural to try using a head-driven generation algorithm, and this is compatible with the feature structure 
version of Situation Semantics. Head-driven approaches to generation with HPSG are described in detail by 
Wilcock and Matsumoto (1998). That work is summarised here, in Section 2 where a simple approach runs 
into fundamental difficulties and in Section 3 where a more sophisticated approach offers a solution. 

In machine translation, "head-switching" between languages (when the syntactic or semantic head of a 
source languagestructure does not naturally transfer to the head of a translationally equivalent structure in 
the target language) means that a strongly head-driven approach to semantics is undesirable. The problem 
of logical form equivalence is also crucial for generation in machine translation: A flat., list-based semantic 
representation is therefore more suitable. Minimal Recursion Semantics (Copestake et al., 1997) has been 
developed specifically to provide such a flat representation for HPSG. 

For generation from fiat lists, we need non=head-driven approaches. In Section 4 we show how an existing 
bag generation algorithm, developed for use with categorial grammar and indexed logical form, can also be 
used with HPSG and Minimal Recursion Semantics implemented in ProFIT: 

In interactive dialogues, generation needs to start from an incomplete bag of semantic terms, and continue 
incrementally as more terms are added. In Section 5 we describe an approach to incremental generation with 
HPSG. In contrast to categorial grammar, HPSG has some fundamental difficulties with highly incremental 
generation. However, we suggest a chart:based solution to the problem. 

In conclusion, some other approaches are briefly mentioned in Section 6. However, before discussing the 
different approaches to generation, we introduce the ProFIT system used for the implementations. 

1.2 H P S G  in P r o F I T  

ProFIT (Erbach. 1995) extends Prolog wit.h typed feature structures. A type hierarchy declaration defines 
the subtypes and appropriate features of every type. Typed feature terms, which can be mixed with ordinary 
terms in Prolog procedures, are compiled into normal terms by ProFIT before the procedures are passed to 
the normal Prolog compiler. An idea of how HPSG can be implemented in ProFIT is shown ill Figure 1, from 
(Wilcock and Matsumot.o, 1995), where fixrther details are explained. We note here only that the Semantics 
Principle 'SemP' is defined by a template (:=) which says that the CONTENT of the mother is the same as 
the CONTENT of the head daughter, and this principle is imposed on all head-nexus-phrases (non-adjunct 
phrases) by invoking the template by (~:'SemP' within the template for hd_r, exus_ph. 

'HFP' := synsem!loc!cat!head!HF 
hd_dtr!synsem!loc!cat!head!HF. 

'SemP' := synsem!loc!cont!Cont 
hd_dtr!synsem!loc!cont!Cont. 

hd_ph ~= <hd_ph a @'HFP' & 
synsem!loc!cat!val!comps![]. 

hd_nexus_ph := <hd_nexus_ph ~ @hd_ph 
@'SemP' 

hd_subj_ph := <hd subj_ph ~ @hd_nexus_ph 
@'VALP'(spr) & @'VALP'(comps) 
synsem!loc!cat!val!subj![]. 

hd_comp_ph := <hd comp_ph ~ ~hd_nexus_ph 
@'gALP'(subj) ~ @'VALP,(spr). 

@hd_subj_ph & phon!PO-PN & 
hd_dtr!(Head & 

synsem!loc!cat!val!subj![S]) & 
subj dtr!(Subj & synsem!S) 

"--> [Head & <phrase • phon!PI-PN, 
Subj & <phrase & phon!PO-P1]. 

• hd_comp_ph ~ phon!PO-PN & 
hd_dtr!(Head 

synsem!loc!cat!val!comps![C]) 
comp dtrs![Comp ~ synsem!C] 

---> [Head & <word a phon!PO-P1, 
Comp a <phrase & phon!Pi-PN]. 

Figure 1: Principles, Phrase Types, Schemata 
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2 H e a d - . D r i v e n  G e n e r a t i o n  ( I )  

Head-driven generation algorithms (van Noord, 1990) are based on systematic sharing of logical form between 
the mother and one of the daughters, the semantic head daughter, in grammar rules. Given a suitable 

grammar with such Systematic sharing, these algorithms are very efficient, especially when implemented 
with a chart (Haruno et ah, 1996; Wilcock and Matsumoto, 1996) •. The question is, are HPSG grammars 
suitable in this sense? 

This question is addressed by Wilcock and Matsum0to (1998), who point Out that semantic head-driven 
generation with HPSG should be easy to implement because semantic heads are very clearly defined in HPSG 
(in head-adjunct phrases, the adjunct daughter is the semantic head; in other headed phrases, the syntactic 
head daughter is the semantic head) and in both cases, the HPSG Semantics Principle requires the semantic 
content of the semantic head to be identical to the semantic content of the mother. Therefore, taking this 
semantic content to be the logical fornL HPSG appears to be extremely suitable for semantic head-driven 
generation. The Semantics Principle means that, apart from coordinate structures, all grammar rules must 
include the sharing of logical form required for head-driven generation. 

2.1 B U G I  and  H P S G  

The simplest version of a head-driven generation algorithm Was specified by van Noord (1990) as the BUG1 
• generator in Prolog. Figure 2, from (Wilcock and Matsumoto, 1998), shows how BUG1 can easily be used 
with a ProFIT HPSG grammar of the type illustrated in Figure 1. 

h~(HF) := synsem!10c!cat!head!HF. 
If(LF) := synsem!loc!cont!LF. 

Z Head Feature Principle replaces link. 
predict_word(~If(LF) & @hT(HF), Word ) "- 
lex( Word a ©lf(LF) a ©hf(HF) ). 

predict rule(Head,Mother,Others,@hf(HF)) :- 
( Mother a @hf(HF) ---> [HeadIOthers] ). 

generate(LF, Sign, String) : :  
bugl( Sign ~ phon!String-[] • ¢If(LF) ). 

/* BUG1 generator: van Noord 1990 */ 
bugl(Node) "- 

predict_word(Node/ Small), 
connect(Small, Node). 

connect(Node, Node). 
connect(Small, Big) "- 

predict_rule(Small,Middle,Others,Big), 
gen_ds(Others), 
connect(Middle, Big). 

gen_ds ( [] ). 
gen_ds([Node]Nodes]) :- 

bugl(Node), 
gen_ds(Nodes). 

Figure 2: ProFIT/HPSG Interface for BUG1 

2.2 P rob lems  wi th  Quant i f ie rs  and  Contex t  

This very simple approach to head-driven generation with HPSG works successfully, if all the information 
required for generation is supplied as part of the initial logical form, and if this logical form call be identified 
with semantic content in the HPSG granunar, In particular, the initial logical form must be unifiable with 
the CONTENT feature of some appropriate lexical item which can serve ms the pivot for the generation 
algorithm. However, this over-simplifies the way semantic information is represented in HPSG. 

Wilcock and Matsumoto (1998) point out two severe difficulties for head-driven generation with HPSG. 
The first problem is how to handle quantifier scoping. Unscoped quantifiers are stored in the QSTORE 
feature, which is not part of CONTENT. At •some point in a syntactic derivation, a quantifier is retrieved 
from the •store and moved to the QUANTS feature, which is inside CONTENT. In the grammar rule which 
licenses this part of the derivation , the CONTENTof the mother includes the quantifier, but the CONTENT 
of the semantic head daugllter does not, so the daughter is not the semantic head as required by the generation 
algorithm. 

The second problem is how to handle contextual background conditions, such as tile assumption that the 
personreferred to by she is female. In HPSG, these conditions are specified in BACKGR, Which is part. of 
CONTEXT and is not part of CONTENT at all..If the conditions are included in the initial logical form, it. 
will not. be unifiable with the CONTENT feature of the semantic head, whose CONTENq does not include 
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CONTEXT features. As Wilcock and Matsumoto (1998) point out, even a simple sentence such as She saw 
Kim cannot be generated with this approach to head-driven generation with HPSG. 

3 H e a d - D r i v e n  G e n e r a t i o n  ( I I )  

In order to use a semantic head-driven generation algorithm with HPSG, while including unscoped quantifiers 
and contextual backgrounds, the role of semantic heads in the grammar needs to be consolidated, as proposed 
by Wilcock (1997). The problem is that semantic information in standard HPSG (Pollard and Sag, 1994) is 
fragmented into quantificational content, nuclear content, and context. Only nuclear content is consistently 
shared between the mother and the semantic head daughter, but nuclear content contains no more tha:n 
referential indices attached to semantic roles. Quantificational content may or may not be shared, depending 
on whether quantifiers are retrieved. Contextual background is gathered from all daughters, with no special 
role for the semantic head. 

The problem is in the mechanism for collecting together the quantifiers and background conditions of 
a phrase. In standard HPSG,-a phrase's set of unscoped quantifiers (QSTORE) must be the union Of 
the QSTOREs of the phrase's daughters (minus any quantifiers which are retrieved), and a phrase's set of 
contextual background conditions (BACKGR) must be the union of the BACKGRs of the phrase's daughters. 
This is known as phrasal amalgamation. 

In contrast to this, head-driven generation requires all semantic information- nuclear, quantificational and 
contextual - to be shared between the mother and the semantic head, with semantic heads thereby playing 
a key role in the grammar. This requires the lexicalization of quantifier scoping, and the lexicalization of 
context, as described by Wilcock (1997). Basically, this means that a word's QSTORE nmst be the union 
of the QSTOREs of the word's arguments, and a word's BACKGR must be the union of the BACKGRs of 
the word's arguments. These requirements take the form of lexical constraints in HPSG theory, and this 
mechanism is known as lc:rical amalgamation. 

3.1 Lexical mnalgamat ion  in P r o F I T  

A ProFIT implementation of lexical amalgamation is shown in Figure 3, from (Wilcock and Maisumoto, 
1998). In lhe lexical entry for the verb saw, QSTORE sets and BACKGR sets are Prolog difference lists. 
The subject's BACI(GR set B0-B1 and the object's BACI(GR set B1-BN are amalgamated in the verb's 
BA('KGR set t30-BN. The subject and object. QSTORE sets. Q0-Qt and Q1-QN, are similarly amalgamated 
in the verb's QSTORE QO-QN. 

lex( phon![sa~[X]-X a @verb & 
synsem!loc!( 

cat!(head!<verb 
val!(subj![@np & 

loc!(cat!head!case!<nom & 
cont!index!Subj a 
conx!backgr!BO-Bl 
qstore!QO-Ql)] & 

¢omps![@np & 
loc!(cat!head!case!<acc 

cont!index!Obj 
conx!backgr!BI-BN 
qstore!QI-QN)])) 

• cont!nuc!(seer!Subj a seen!Ob3) 
conx!backgr!BO-BN & 
qstore!QO-QN) ). 

'SHIP' := 
hd_dtr! 

'QUIP' := 
hd_dtr! 

'CHIP' := 
hd_dtr! 

synsem!loc!cont!Cont 
synsem!!oc!cont!Cont. 
synsem!loc!qstore!QS 
synsem!loc!qstore!QS. 
sYnsem!loc!conx!Conx 
synsem!loc!conx!Conx. 

hd_nexus_ph := <hd_nexus_ph ~ @hd_ph 
@'SHIP' & @'QUIP' ~ @'CHIP'. 

Figure 3: Lex[cal Amalgamation and Logical Form Inheritance 

The basic Semantics Principle, for semantic content only. was implemented by tile template 'SetuP' shown 
in Figure 1. In order to ensure the required sharing of unscoped quantifiers and background .conditions be- 
tween a phrase and its semant.ic hcad, the Semamics Principle is extended, as proposed by Wilcock (1997), 
to three principles: Semantic Itead Inheritance Principle (StIIP). Quantifier Inheritance Principle (QUIP). 
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and Contextual Head Inheritance Principle (CHIP). These are implemented by templates as shown in Fig- 
ure 3, and the three principles are included in the grammar by the modified template for hd:.aexus_ph, which 
replaces the earlier template in Figure 1. With these revisions, it is possible to include unscoped quantifiers 
and background conditions in the starting logical form, and perform head-driven generation successfully 
using the BUG1 generator. 

4 B a g  G e n e r a t i o n  

We now switch to non,head-driven approaches. Phillips (1993) proposed a bottom-up chart generation 
algorithm for use With indexed logical forms and categorial grammar in machine translation. An important 
property of the algorithm is that the Order of terms in the logical form is not significant. The name bag 
generation is adopted from related work on shake-and-bake machine translation. 

We now show how Phillips' algorithm can-be used with HPSG grammar; with a bag of MRS relations 
instead of a bag of indexed logical terms. Though he presents the algorithm as a generator for categorial 
grammar, PhilliPs suggests that it can be adapted for use with phrasestructure grammar (PSG), provided 
an indexed logical form is used -and the indices are included in the syntactic categories. HPSG uses indices 
for agreement, and therefore includes the indices inside syntactic categories. By implementing HPSG as a 
PSG extended with typed feature structures (Sect.ion 1.2), and by implementing MRS as a similarly ext.ended 
:indexed QLF (SeCtion 4.2), we can adapt• Phillips I algorithm for use with HPSG. .: 

4.1 A S imple  Bag G e n e r a t o r  

The adapted algorithm is shown in Figure 4 .  \Ve use simple chart processing from the bottom-up chart. 
parser o f  Gazdar and Mellish (1989). The main work is done by s tar t_gen,  which looks up the next term in 
the list of semantic tern)s, adds appropriate edges to the chart, and calls itself recursively on the remaining 
terms. Generation finishes when all edges have been built, and is successful if an inactive edge "'spans" 
the Whole input semantics, i.e. if an inactive edge's semantics are a laermufalion of the input, semantics. 
permuta t ion/2 : i s  a library predicate. 

generate(Semantics,Category,String) -- 
abolish(edge,2), 
startigen(Semantics), 
clause(edge(Category,[]),true), 
semantics(Category,EdgeSem), 
permutation(Semantics,EdgeSem), 
string(Category,String). 

. s t a r t _ g e n ( [ ] ) .  
s tar t_gen([TermlTerms]) .  :-  

foreach( lookup_term(Term,Category) ,  
• add edge(Category,  I ] ) ) ,  

start_gen(Terms). 

add_edge(Cat ,Cats )  : -  
c l a u s e ( e d g e ( C a t , C a t s ) , t r u e ) ,  !. 

a d d _ e d g e ( C a t l , [ ] )  "- 
a s s e r t a ( e d g e ( C a t l , [ ] ) ) ,  
foreach(rule(Cat2,[CatllCats]), 

add_edge(Cat2,[CatllCats])), 
~oreach(edge(Cat2,[CatiICatS]), 

add_edge(Cat2,Cats)). 
add_edge(Cat!,[Cat21Cats]) :- 

asserta(edge(Cat1,ECat21Cats])), 
foreach(edge(Cat2,[]), 

add_edge(Cat1,Cats)). 

rule(Mother, Daughters) :- 
(Mother ---> Daughters). 

Figure 4: A Simple Bag Generator 

The algorithm assumes that Categories include surface strings and semantics as wellas syntactic infor- 
mation (HpSG has Category sign,.with string in PHON and semantics in CONTENT). For a part.icular 
grammar, the predicates s t r i n g  and semantics extract the string and semantics from the Category, giving 
a clean interface between the algorithm and the grammar. For a particular lexicon, lookup_term returns 
the Category of a lexical entry which includes the given semantic predicate, giving an interface between the 
algorithm and the lexicon. 

4.2 M R S  and  QLF 

MRS (Copestake et. al., 1997) is a new semantic representation for use with HPSG. Like the indexed QLF 
o f [  ) ~illips.(.19.9:~,). Ml(..q was moliv;m:.d I,.v the nee(Is of machine translation, where "flat" representations 
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are preferred over strongly head-driven representations, as the head in one language may not correspond to 
the head in another language. Like the QLF, MRS depends on the use of indices to represent dependencies 
between the terms in the fiat list. HPSG previously used indices only for entities of type nominal_object, to 
assign them to semantic roles as participants in states of affairs and to carry agreement features. In MRS, 
indices are also used for events, as in the QLF. 

A major difference between MRS and the QLF is that MRS uses typed feature structures instead of 
ordinary logical terms. Each element in the list is an HPSG typed feature structure of type relation. This 
facilitates the integration of MRS into HPSG. While the QLF logical terms could be represented in Prolog, 
we need ProFIT to extend the terms with typed feature structures for MRS. We thus implement MRS as 
an extension of QLF in the same way that we implement HPSG as an extension of PSG. 

Another major difference, which makes MRS a significant improvement over the QLF, is that MRS sup- 
ports the representation of quantifier scope (either fully resolved or underspecified). This is done by including 
handles which label each term in the list. Scope can be represented by means of the handles, while main- 
taining the flat list representation, without the nesting required when operators are used to represent scope. 
As a musical joke about semantic composition, the handle feature is named HANDEL and the list feature is 
named LISZT. 

4.3  Non-Head-Dr iven  Semant ics  

In the semantics of Pollard and Sag (1994), which was derived from Situation Semantics, semantic ,com- 
position is performed by recursive unification of semantic feature structures, to produce a single complex 
semantic feature structure in the semantic head. This semantic structure is structure-shared between a 
phrase and its semantic head daughter, by the Semantics Principle. This form of semantic representation is 
therefore suitable for semantic head-driven generation. 

By contrast, in the fiat MRS representation, semantic composition is performed by concatenation of the 
LISZTs of a phrase's daughters to give the LISZT of the mother. The LISZT of the semantic head daughter 
will not be the same as the LISZT of the mother. MRS is therefore suitable for bag generation, but not for 
head-driven generation 1. The Semantics Principle must be scrapped or redefined. We show a simple revision 
of 'SetuP' in Figure 5, in which INDEX and HANDEL (but not LISZT) are shared between mother and 
semantic head, in contrast to 'SetuP' in Figure 1 which shares the whole • CONTENT structure. 

index(I) := synsem!loc!cont!index!I. 
handel(H) := synsem!loc!cont!handel!H. 
liszt(L) := synsem!loc!cont!liszt!L. 

'SemP' := @handel(H) a @index(I) 
hd_dtr!(¢handel(H) a @index(I)). 

@hd_subj_ph & phon!PO-PN a @liszt!LO-LN 
hd_dtr!(Head ~ @liszt!LI-LN) 

synsem!loc!cat!val!subj![S]) 
subj_dtr!(Subj a @liszt!LO-Ll 

synsem!S) 
---> [Head & <phrase ~ phon!PI-PN, 

Subj a <phrase & phon!PO-Pl]. 

@hd_comp_ph & phon!PO-PN a @liszt!LO-LN & 
hd_dtr!(Head • @liszt!LO-Ll & 

synsem!loc!cat!val!comps![C]) 
comp_dtrs![Comp • @liszt!Li-LN 

synsem!C] 
---> [Head ~ <word & phon!PO-Pl, 

Comp ~ <phrase & phon!P1-PN]. 

Figure • 5: Semantics Principle, LISZT Composition 

We use Prolog difference lists to implement the LISZT feature for efficient concatenation, as we did with 
PHON. In the case of LISZT, the predicate semantics hides this representation from the algorithm. LISZT 
concatenation is added to the PSG rules for HPSG schemata, as shown in Figure 5. 

A full MRS representation includes a top-level handle and a top-level index, which are specified separately 
from the flat list'of terms. A top-level index is also mentioned by Phillips (1993). We have ignored these in 
the bag generation algorithm, to simplify adaptation to incremental generation in Section 5. However, the 
top-level index specifies what the semantics is about. For example, a simple QLF representation: [man(m), 
t~alk(e,ra)'l could mean either "A man walked" or "A man who walked". These are only distinguished by 
the top-level index (e or m respectively). In this respect, the top-level index specifies the topic, part of 
information structure, which we will come back to in Section 5.3. 

1Head-driven generation with MRS would require the lexical amalgamation of LISZT. 
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5 I n c r e m e n t a l  G e n e r a t i o n  

A variant of Phillips' algorithm was used in PLUS (a Pragmatics-based Language Understanding System) for 
surface generation of dialogue responses from an indexed QLF using a categorial grammar. Jokinen (1996) 
gives an overview of the PLUS system, and describes the planning of dialogue responses to be passed to the 
surface generator as indexed QLF representations. Lager and Black (1994), discussing"the PLUS surface 
generator, suggest that the algorithm and the QLF are suitable for incremental generation. 

We now show how the bag generation algorithm can be modified for incremental generation with HPSG 
andMRS,  and discuss differences between categorial grammar and HPSG which incremental generation 
emphasises. From an incomplete bag and a partial utterance, the generator attempts to continue the 
utterance as further semantic terms are added. We include a simple form of repair when the generator 
cannot find a way to continue the utterance. We ignore the issue of real-time processing here, and deal only 
with order of inputs and outputs. Though the order of terms in the bag is not itself significant, the order in 
which terms are added influences the utterance very strongly. 

• 5.1 A n  I n c r e m e n t a l  A l g o r i t h m  :: 

The basic incremental algorithm is shown in Figure 6. incremental_gen is initialized with an empty bag of 
semantic terms and an empty list of strings uttered so far. The  procedure inputs a new semantic term, looks 
it up in the lexicon, and adds a new edge for each word found, thereby triggering construction of further 
edges. When all edges have been built, the procedure calls u t t e r  and then recursively calls itself with the 
augmented bag of terms and the augmented list of strings uttered. 

incremental_generation :- incremental_gen(SemO ,PhonO) :- 
abolish(edge ,2), input_t erm(Term), 
incremental_gen( [] , [] ) . ( Term = end_of_file 

; foreach(lookup_term(Term,Category), 
add_edge(Category, ~ )), 

utter ( [Term I SemO] , PhonO, Phonl ), 
increment al_gen ( [Term l S emO] , Phonl ) 

). 

Figure 6: Incremental Generation 

A set of utterance rules is shown in Figure 7, numbered from 1 to 4. Each rule is attempted, in the order 
given, until an utterance is produced, or the default rule 4 is reached, which simply utters nothing and allows 
incremental .gen to input another semantic term. 

Utterance Rule 1 succeeds if it finds an inactive edge (a coinplete syntactic constituent) which spans the 
bag of semantic terms, and whose PHON list is a continuation of the list uttered so far. If so, tile new part of 
PHON is outPut by u t t e r _ c o n t i n u e .  (An edge "spans" a bag of terms if its own semantics is a permutation 
of the terms in the bag): 

Utterance Rule 2 performs a simple form of repair, when there is a complete syntactic constituent which 
spans the semantics, but its PHON does not continue the utterance which has been started. In this case, 
u t te r_ . repa i r  finds the minimum backtracking change needed to effect the repair, and utters the new part 
only, preceded by " E r , . . . " .  

If there is no complete syntactic constituent which spans the bag of terms, we could wait (Rule 4), or, 
if we want the generator to be more "talkative", we can use active edges from the chart. Utterance Rule 3 
continues the utterance with any active edge whose semantics matches the new semantic term. The best set 
of rules needs to be found by further work. 

5 .2 -  Ca tegor ia l  G r a m m a r  a n d  H P S G  - 

Previous work on incremental generation has usually assumed that Utterances must correspond to syntactic 
constituents. For example, discussing the possible adaptation of Phillips' algorithm to incremental gener- 
ation, Lager and Black (1994) point out that some versions of Categorial Grammar (CG) would make the 
generator more talkative, by giving rise to "a more generous notion of constituency". However, in order to 
use HPSG for incremental generation, we must challenge the underlying assumption. 

The basic approach to combining a head (verb) with its arguments (subject and complements) is significant 
here. Whereas in CG a head -may be combined with its arguments one by one, giving a series of  unsaturated 
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1. Inactive edge: Continue 
utter(Seml,PhonO,Phonl) :- 

span_inactive(Seml,Cat), 
string(Cat,Phonl), 
utter_continue(PhonO,Phonl),!. 

2. Inactive edge: Repair 
utter(Seml,PhonO,Phonl) :- 

span inactive(Seml,Cat), 
string(Cat,Phonl), 
utter_repair(PhonO,Phonl),!. 

3. Active edge: Continue 
utter([Terml_],PhonO,Phonl):- 

span_active([Term],Cat), 
string(Cat,Phonl), 
utter,continue(PhonO,Phonl);!. 

4. Active Edge: Wait 
utter(_,Phon,Phon). 

span_inactive(Sem, Cat) : -  
¢lause(edge(Cat,~),true), 
semantics(Cat,EdgeSem), 
permutation(Sem,EdgeSem). 

span active(Sem, Ca~) "- 
clause(edge(Cat,[_l_J),true), 
semantics(Cat,EdgeSem), 

permutation(Sem,EdgeSem). 
utter_continue(PhonO,Phonl) :- 

append(PhonO,NewPhon,Phonl), 
write(' ... '):write(NewPhon),nl. 

utter_repair(PhonO,Phonl) :- 
repair(PhonO,Phonl,Repair), 

write(' Er ..... '),write(Repair),nl. 
repair([WordlWords],[WordlWordsll,Repair) :- 

repair(Words,Wordsl,Repair), 
repair(_,Wordsl,Wordsl). 

Figure 7: Utterance Rules 

intermediate constituents until a saturated one is completed, in HPSG a head (a verb) is usually combined 
first with all Of its complements in one constituent (a VP), and then this is combined with the subject. 

In incremental generation of English, after the subject has been generated, further semantic input may 
enable the verb to be generated next. In this case, CG may allow the subject and verb to be combined into 
a valid syntactic constituent, but HPSG will not recognise this as a constituent. If an incremental generator 
only Utters valid constituents, an HPSG-based generator must wait, after uttering the subject, until all the 
complements of the verb have been identified, before uttering the verb as part of the complete verb phrase. 
This is a significant problem in using HPSG for incremental generation. 

However, in deciding what units should be uttered it is information structure which should be decisive, 
not syntactic constituency. From this point of view, which we will discuss in the next sectionl the problem 
with HPSG's notion of constituency can be reduced t o a  computational matter. As the verb is put into 
the chart as an active edge before its complements are identified, it can also be uttered, if desired, without 
waiting for the VP edge to be completed. This may be computationally slightly awkward, but it is feasible. 

5.3 I n f o r m a t i o n  S t r u c t u r e  

The incremental system described so far does not take information structure into account, but is driven 
purely by the order in which semantic terms are supplied. In a "shallow" system (for example, a simultaneous 
interpretation system) it may be necessary to rely on the order to implicitly realize information structure, 
but if the system includes "deep" processing, with logical inferencing, then it is not satisfactory to rely on 
the order in which an inference component happens to produce its results. Such a system needs ezplici~ 
management of information structure. 

Engdahl and Vallduvi (1996) argue that information structure is a distinct dimension, and locate INFO- 
STRUCT in the HPSG CONTEXT feature rather than CONTENT. However, the representation they pro- 
pose is purely syntactic: Link (topic) and Focus are equated with syntactic constituents (NPs and VPs) 
which realize the topic concept and the focus information. In a footnote, they accept that it would be more 
appropriate for the value of INFO-STRUCT to be structure shared with the value of CONTENT. 

Steedman (199.1) argues that there is a correspondence between information structure, intonation 
and syntactic constituency, and it is a strength o f C G  that i t  allows suitable syntactic constituents: 
Engdahl and Vallduvi (1996) argue that there is no correspondence between information structure and syn- 
tactic constituency, and that it is a strength of HPSG's multidimensional representation that we are not 
forced to assume such a correspondence. 

Perhaps both approaches over-emphasise the role of Syntaxl in an area where semantics and pragmatics 
should be more central. In the PLUS system, a pragmatics-based Dialogue Manager (Jokinen, 1996) explic- 
itly manages information structure, using a semantics-based representation. Central Concept (topic) and 
Newlnfo (focus) are represented using QLFs with explicit indices for discourse referents. This facilitates 
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distinguishing old and new information, but the QLF lacks explicit representation of scope. This suggests 
tha t  it would be interesting to include focus scope ("narrow focus" and "wide focus") in an MR.S-based 
representation with HPSG, in a similar way to quantifier scope. 

Response planning in the PLUS Dialogue Manager always stares from NewInfo, adding other content (such 
as Central Concept linking) only when necessary. This gives rise to natural, elliptical surface generation. It 
also makes possible a proper approach to time constraints. This approach to generation from NewInfo has 
been developed further by Jokinen et al. (1998). 

6 O t h e r  A p p r o a c h e s  

In conclusion we take a brief look at some other approaches. One approach to generation is to take a grammar 
which was developed for parsing, and invert it for generation. Since most existing HPSG grammars were 
developed for parsing, this approach has a point. It has been applied to HPSG by Wintner et al. (1997). 
Their work is also representative of the recent development of new implementations for ttPSG based on 
abstract machines, which are expected t o  supercede the current Prolog-based implementations such as the 
ProFIT system used here. 

As noted in the introduction, another approach is to convert HPSG into TAG (Kasper et al., 1995) for 
generation. Similar work on compiling HPSG for efficient parsing (Torisawa and Tsujii, 1996) should be 
equally applicable to generation. 

Finally, we come back to Systemic Functional Grammar (SFG) which we contrasted with HPSG in the 
introduction. Since SFG and HPSG share a similar underlying logic of typed feature structures, it should 
be possible to  use tools such-as ProFIT and AMALIA (Wintner et al., 1997) for SFG, by implementing the 
system network as a type hierarchy. 

A more surprising approach would be tO a t tempt  to use a systemic generation algorithm with an HPSG 
grammar. A systemic generation algorithm traverses the system network, making choices within the systems 
as it goes, and collecting realization rules which will decide the final output: To apply this to HPSG 
would mean implementing the HPSG type hierarchy as a system network, and traversing it with a systemic 
generation algorithm, making choices within the subtypes as it goes, and collecting type constraints which 
will decide the final output. 
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