
Clause Aggregation Using Linguistic Knowledge
James Shaw

Dept. of Compute r Science
Columbia University

New York, NY 10027, USA
shaw@cs.columbia.edu

Abstract

By combining multiple clauses into one single sentence, a text generation system can express
the same amount of information in fewer words and at the same time, produce a great variety
of complex constructions. In this paper, we describe hypotactic and paratactic operators for
generating complex sentences from clause-sized semantic representations. These two types of
operators are portable and reusable because they are based on general resources such as the
lexicon and the grammar.

1 I n t r o d u c t i o n

An expression is more concise than another expression if it conveys the same amount of informa-
tion in fewer words. Complex sentences generated by combining clauses are more concise than
corresponding simple sentences because multiple references to the recurring entities are removed.
For example, clauses like "Jones is a patient" and "Jones has hypertension" can be combined into
a more concise sentence "Jones is a hypertensive patient. '~ To illustrate the common occurrence
of such repeated entities in generation, let us take a shipping company's database as an example.
Each database tuple being conveyed is transformed into one or multiple propositions or clauses
(we use these terms interchangeably throughout t he paper). Each proposition refers to a piece of
information which usually corresponds to a simple sentence. The database might Contain multiple
shipments to the same location possibly on the same day. Generating a sentence for each tuple sep-
arate ly would containrepetit ive and potentially redundant references to the same location Or date.
Though we used a relational database as the example, the observation about recurring entities in
the input is also valid for other types of input, such as execution traces from expert systems.

CASPER (Clause Aggregation in Sentence P lannER) is a sentence planner which focuses on
generating concise sentences. Clause aggregation can happen at three levels: inferential, rhetori-
cal, and linguistic. At the inferential level, user modeling, domain knowledge, and common sense
reasoning are used to reduce the number of concepts to convey. Such operations are implemented
in the content planner and clauses are combined without consulting lexical resources. Text sum-
marization is an application which uses inferential operators extensively. For example, the two
sentences "John hit Mary" and "Mary kicked John" might imply that "John and Mary fought."
To define a set of inferential operators for unrestricted text is beyond the state-of-art. Because
it is unlikely that the inferential operators for our domains (medical briefings and telephone net-
work plan descriptions) will be reusable for other applications, we have directed our effort into
aggregation operations at other levels. At the rhetorical level, clauses are combined based on their
rhetorical relationships [Mann and Thompson, 1986], such as CONTRAST and CONDITION. We
will take advantage of such information in future aggregation work. At the linguistic level, lexical
and Syntactic information are used to combine clauses. In this paper, we concentrate on two types

138

I
I
I
I
!

I
I
!1
i i
i l
I

!1

I
!

!1
il
I
I

The patient's past medical history is significant for bladder carcinoma1, status post cystectomy with
a urostomy tube insertion2, left nephrolithiasis~, status post surgery4, recurrent syncopes, questionable
vagovagal6, a neurological workup was negativer, and the EPS was negatives, abdominal aortic aneurysm
approximately 5 cmg, high cholesterol10, exertional anginan, past tobacco smoker, quit about one year ago12.

Figure 1: The sentence with maximum number of propositions in the corpus

Of linguistic aggregation operators: hypotactic and paratactic. The term, hypotaxis, describes the
relation between a dependent element and its dominant element. Hypotactic operators t ransform
one clause into a modifier and at tach the modifier to the dominant clause. I n contrast, parat-
actic aggregation operators combine clauses together using constructions of equal status, such as.
coordination.

CASPER is used in two separate projects, M A G I C (Mult imedia Abstract Generat ion for
Intensive Care) and P L A N D o c , to increase the fluency of the generated text. M A G I C
[Dalal et al., 1996, MeKeown et al., 1997] automatically generates mult imedia briefings to describe
the post-operative status of a patient after undergoing Coronary Artery Bypass Graft (CABG)
surgery. It uses the existing computerized information infrastructure in the operating rooms at
Columbia Presbyterian Medical Center. PLANDoc[Kuk ich et a l , 1994, McKeown et al., 1994]
generates English summaries based on somewhat cryptic traces of the interaction between planning
engineers and LEIS-PLAN TM. It documents the timing, placement and cost of new facilities for
routes in telephone networks.

In Section 2, we present a corpus analysis to identify the complexity of the target ou tput in
MAGIC. Section 3 describes the semantic representation used in CASPER. Details of hypotactic
operators are presented in Section 4. Para tac t ic operators are described in Section 5. Section 6
describes related work.

2 Corpus Analysis

We conducted a corpus analysis to s tudy various styles and types of aggregation. The corpus
consists of the first few sentences in the discharge summaries for 54 patients in the medical domain.
These sentences describe patients' demographics and medical conditions pert inent to patient care
in the Intensive Care Unit. In our study, the first step was to find out how many propositions were
combined in each sentence. A proposition is defined as a piece of information tha t the physician
(the speaker) might choose to convey in a stand-alone sentence t o t h e nurses in the Intensive Care
Unit (the hearer). For example; a sentence "The patient is a 40 year old female admit ted for heart
surgery:' contains three propositions: "The patient is a female.", "The patient is 40 years old.",
and "The patient was admit ted for heart surgery."

The small corpus contained 121 sentences with 2262 words. From the 121 sentences, we obtained
418 propositions after manual decomposition, with a maximum 12 propositions in a single sentence
as shown in Figure 1 . O n average, there are 3.5 propositions per sentence. Out of 54 summary
sentences (the first sentence in each discharge summary) for each patient, doctors prefer to use
prepositional phrases (PPs) ('%vith aortic stenosis") rather than relative clauses ("who likely has
endocarditis...';) to insert medical conditions into a sentence (35 occurrences vs. 4). In only two
cases, both PPs and relative clauses were used; all others have neither. Our studies revealed the
following:

• Physicians produce very complex sentences.

• Coordinate constructions are the most popular aggregation operations, followed by PPs, and
then adjectives. Present and past participle clauses are less common; relative clauses are rare.

• These aggregation operations result in long distance dependencies and non-consti tuent coor-
dinations (conjoin'ing constituents with different syntactic types):

139

The analysis also indicates that people prefer using linguistic devices that are simpler (e.g., words
over phrases over clauses) [Scott and de Souza, 1990, Hovy, 1993].

We encountered sentences from the corpus which could be formulated more concisely. The
doctors did very little editing to the discharge summaries. In this respect, the summaries are
somewhat similar to speech. As a result , doctors prefer to use more flexible linguistic constructions,
such as PPs, instead of producing the most concise sentences. Concepts such as "hypertension"
and "diabetes" have both noun and adjective forms. Even though the noun form is longer (it
is always used together with other words as in "patient with hypertension", or "patient who has

hyper tens ion") , the shorter adjective form ("hypertensive patient") did not appear in the corpus.
In only one case, an adjective "obese" is used instead of the PP "with obesity" to indicate medical
conditions. Since many medical conditions have no adjective forms, such as "peptic ulcers", t h e
speaker is more likely to use noun forms to group together all medical conditions. In addition,
m o r e information can be at tached to nouns but not adjectives. I n the noun form, the medical
condition "diabetes" might be modified in the corpus, as in "type 1 diabetes with extensive end
organ damage" and "borderline diabetes": Such flexibility with nouns explains the popular i ty of
its usage over adjectives.

In summary, our analysis shows that a high level of aggregation is typical in the domain. Judg ing
from the number of the PPs in comparison to relative clauses used, clause aggregation using simpler
syntactic consti tuents is preferred. DoCtors generate summaries in real-time without examining all
the information right in front of them. As a result, they might not generate the most concise
sentences. M A G I C , on the other hand, generates text off-line, with all the conveying information
available. This would allow M A G I C to generate more concise text by taking advantage of linguistic
opportunities.

3 Semantic Representation

CASPER uses a representation influenced by Lexical-Functional Grammar (LFG)
[Kaplan and Bresnan, 1982] and Semantic Structures [Jackendoff, 1990]. An example of the se-
mantic representation is provided i n F i g u r e 2. In our representation, the roles for each event or
state are PRED, ARG1, ARG2, ARG3, and MOD. The slot PRED stores the verb concept. Depend-
ing on the concept in PRED, ARG1, ARG2, and ARG3 can take on different thematic roles, such
as Actor, Goal, and Beneficiary, respectively, as in "John gave a red book to Mary yesterday."
The optional slot MOD stores modifiers of the PRED. It can have one or multiple circumstantial
elements, including MANNER, PLACE, or TIME. Inside each argument slot, it too has a MOD slot
to store information such as adjectives or PPs.

4 Hypotactic Operators

We will use an example from M A G I C to demonst ra te how hypotactic operators work. The surface
forms of the propositions from the content planner are shown in Figure 3. In addit ion to the
propositions, the content planner also indicates that the focus of the discourse is " the patient",
with an entity-id, ID1. CASPER picks the first proposition, la , as the dominant proposition because
it contains the focus entity, and it has C-NAME entity. Since, the enti ty in focus should appear
as early as possible to provide a context, the proposition l a is transformed from "The patient
has name - Jones" into the semantic representation for "Jones is a patient". The PRED of the
proposition is changed from C-IttS-ATTRIBtrrE to C-IS-INSTANCE, in addit ion to swapping of ARG1
and ARG2. Each proposition is represented similarly to the one shown in Figure 2. We use the
concept C-HAS-ATTRIBUTE to denote that the entity in ARG1 has the at t r ibute stored in ARG2.
Depending on the lexical properties of the at t r ibute in ARG2, the proposition l e in Figure 3, can
be realized as "the patient has diabetesnou~" or "the patient is diabeticaaj".

140

I

I
((pred ((pred c-has-at t r ibute) (type EVENT) (tense present)))
(argl ((pred c-doctor) (type THING)

(mod ((pred c-patient) (type THING)
(modify-type POSSESSOR) (entity-id IDI)))))

(arg2 ((pred c-name) (type THING)
(last-name "Smith"))))

Figure 2: Semantic representation for lf: 'q'he patient's doctor is Smith."

la. The
lb. The
lc. The
Id. The
le. The
If. The
Ig. The

patient has name - Jones.
patient has gender - female.
patient has age - 80 year.
patient has hypertension.
patient has diabetes.
patient's doctor has name - Smith,
patient is undergoing CABG.

Figure 3: input propositions for "Ms. Jones is an 80 year old hypertensive diabetic female patient of Doctor
Smith undergoing CABG.'"

I
I
I
I
I
I
I
I
I
I
I

To aggregate two propositions using hypotactic operators, the p ropos i t ionsmus t share some
entities in common. When they do, hypotactic operators try to transform one of the clauses into
a modifier. Since the goal is to generate concise text, CASPER prefers transforming a proposition
into an adjective if possible, then a PP, a participle clause, and if i l else fails, a relative clause.
This preference of syntactically simple expressions over more complex ones was also proposed in
[Scott and de Souza, 1990]. In the future, we plan to incorporate constraints from the corpus to
determine which aggregation operators to apply and in what order.

To transform a proposition into an adjective, a propositions must satisfy the following two
preconditions. First, the slot PLIED of the proposition being transformed must be C-HAS-ATTRIBUTE
(the patient has age - 80 years). T h e other requirement is that the ARG2 of the proposition (age

80 years) can be mapped to an adjective, as permitted in the lexicon. Using the algorithm,
propositions lb, lc, ld, le can all be transformed into adjectives and attached to proposition la
resulting in "Jones is an 80 year old hypertensive diabetic female patient." There are two interesting
things to note here. First, because of the PRED of the dominant proposition is C-IS-INSTANCE, the
transformed modifiers (age, gender, etc) are attached to the ARG2 slot of the dominant proposition
('% patient") instead of ARG1 ("Jones"). Second, t h e sequential order of the modifiers is not
determined yet at this stage. The goal of CASPER is to produce a concise semantic representation
for a set of propositions and to guarantee that there is at least one way to express the result in the
later generation modules. To guarantee expressibility [Meteer, 1991], CASPER looks ahead into the
lexicon, but it does not make detailed lexical decisions for efficiency reasons. The exact lexical and
syntactic decisions, including the ordering between modifiers, are made later in the lexical chooser.

Consider another proposition: "the patient has pept ic ulcers". This proposition cannot be
transformed into an adjective because there is no adjective form for C-PEPTIC-ULCER in the lexicon.
A proposition can be transformed into a PP with a general preposition '%vith" if the PRED of the
proposition is C-HAS-ATTRIBUTE and the concept in its ARG2 can be mapped into a noun phrase. If
we apply the P P operator to the proposition, we would have "Jones is an 80 year old hypertensive
diabetic female patient with peptic ulcers." CASPER currently uses an ontology which can identify
that C-PEPTIC-ULCER, C-HYPERTENSION, and C=DIABETES are all medical disorders and group them
together for cohesion. Since all these medical conditions can be mapped to nouns but not to
adjectives, they will all be realized as PPs: "Jones is an 80 year old female patient with hypertension,
diabetes and peptic ulcers]'

141

I

I
((pred ((pred c - i n s t a l l) (type EVENT) (tense pas t)))
(argl ((pred c-name) (TYPE THING)

(first-name "Alice")))
(arg2 ((pred c-MS-0ffice) (type THING)))
(rood "(((pred "on") (type TIME)

(argl ((pred "Monday") (type TIME-THING))))
((pred "for") (type BENEFICIARY)
(argl •((pred c-name) (type THING)

(first-name "John")))))))

Figure 4: The attribute-value pair representation for "Alice installed MS Office for John on Monday. I' ~().
= a list.

I
I
I
I

In If in Figure 3, "The patient's doctor has name - Smith", is transformed into a PP ("of
Smi th") . The POSSESSOR modifier in ARC1, as shown in Figure 2, can be transformed into
a PP using of-genitive[Quirk et al., 1985]. This phenomenon holds for relationships similar t o
patient/doctor, such as advisor/advisee, and boss/employee.

All propositions can be transformed into a relative clause of another as long as they: share a
common entity. In the example, proposition lg does not satisfy the precondition s of the previous
hypotactic operators. In this case, it is combined as a present participle clause because present
participle clause is simpler and shorter. The result of the hypotactic operators is a semantic
representation for "Jones is an 80 year old hypertensive diabetic female patient of Smith undergoing
CABG."

Similar to parsing long sentences, efficiency is an important issue in generating long and complex
sentences. Search space grows exponentially in respect to the length in both cases. CASPER is able
to generate complex sentences efficiently because it delays the difficult detailed lexical decisions until
absolutely needed. At the sentence planning level, CASPER looks ahead into the lexicon and merges
those propositions that satisfy the required lexical constraints. This prevents the lexical chooser
from •trying to combine incompatible clauses later. By determining sentence boundaries before
carrying out detailed lexical decisions, CASPER cuts down the search space of the lexical chooser
drastically. In STREAK [Robin, 1995], a generation system which also implements hypotactic
aggregation, detailed lexical decisions are made whenever a proposition is aggregated. This is
costly because the best lexical decisions• for n propositions might not be useful or correct for
n + ! propositions. The strategy generates impressive complex sentences, but for some complex
sentences, STREAK took more than half an hour. Since •CASPER does not use detailed lexical
information when it makes sentence boundary determination, it traded some optimal aggregation
for efficiency. Even though the lexicon is accessed twice in our system, CASPER prunes the search
space drastically by delaying expensive detailed lexical decisions after it knows• about how many
concepts are involved in the desired sentence. Efficiency issues in generation were also addressed
in [McDonald e t al., 1987, Elhadad et al., •1997].

5 Paratactic Operators

We will use an imaginary human resource report system for a technical support team as an example
to illustrate our paratactic algorithm. The example shown in Figure 4 has the following slots: PRED,

ARC1, ARC2, MOD-BENEFICIARY,. MOD-TIME. We Currently have two approaches to combine
propositions using coordinate constructions. In the first approach, adjacent propositions that have
only 1 slot containing distinct elements are collapsed into one proposition with one conjoined slot
containing the distinct elements. For example, the following sentence is the result of collapsing

• two propositions with distinct elements in their MOD-BENEFICIARY slot: "Alice installed Quicken
for Mary and Peter on Tuesday." [McCawley, 198!] described this •phenomenon as •Conjunction

142

i l

I

!

I

I

I
I

I
I
I Alice installed Excel for John on

Bob removed WordPerfect for John on
Alice installed Powerpoint for John on
Cindy removed Access for John on

Monday.
Tuezday.
Monday.
Monday.

Figure 5: A sample of input propositions in surface form.

Alice insta~.le~_Excel for John on
Alice installed Powerpoint for John on
Cindy removed Access for John on
Bob removed WordPerfect for John on

Monday.
Monday.
Monday.
Tuesday.

Figure 6: The propositions in surface form after Stage 1.

Reduction. In the second approach, the conjoined propositions have distinct elements in more than

I
I
I
I
I
i
i
I
I
i
I
I

one slot. To combine them, each conjoined proposition is generated, but deletion rules (described
later in Section 5.4) are used to ensure the resulting sentence has the correct ellipsis. I n the following
sentence, the two propositions are distinct at both PRED and ARG2: "John finished his work and
[John] went home. ''1 The ARG1 in second proposition "John" is deleted.

Due to limited space, we only describe the algorithm used in CASPER to produce sentences
w i th coordinations. For a more detailed discussion with relevant linguistic motivations, please see
[Shaw, 1998]. We have divided the algorithm into four stages~ where the first three stages take
place in the sentence planner and the last stage takes place in the lexical chooser:

S t a g e 1: group propositions and order them according to their similarities while
satisfying pragmatic and contextual constraints.

S t a g e 2: determine recurring elements in the ordered propositions that will be
combined.

S t a g e 3: create a sentence boundary when the combined clause reaches pre-
determined thresholds.

S t a g e 4: determine which recurring elements are redundant and should be deleted.
We will go into detail of each Stage in the following 4 sections.

5.1 G r o u p a n d O r d e r P r o p o s i t i o n s

Coordination allows the deletion of recurring entities at the surface level, but only if they are
adjacent; that is, the propositions containing the entities are sequentially next to each other. As a
result, the sequential order of the propositions being coordinated affects the length of the ou tput
text. In Step 1, CASPER sequentializes the propositions to allow the maximum number of adjacent
recurring entities to produce concise text.

For the proposition in Figure 5, the semantic representations have the following slots: PRED,
ARG1, ARG2, MOD-BENEFICIARY, and MOD-TIME. To identify which slot ha s the most similarity
among its elements, we calculate the number of distinct elements (NDE) in each slot across the
propositions. For the purpose of generating concise text, CASPER prefers to group propositions
which result in as many slots with NDE = 1 as possible. For the propositions in Figure 5, the NDE
of MOD-BENEFICIARY is 1 because all the beneficiaries are "John"; the NDEs for both PRED
and MOD-TIME a r e 2 because there are two actions, "install" and "remove", which occurred on
either "Monday" or "Tuesday"; the NDE for ARG2 is 4 because it contains "Excel", "WordPerfect",
"Powerpoint", and "Access"; similarly, the NDE of ARG1, the agent, is 3.

1The string enclosed in symbols [and] are deleted from the surface expression, but these concepts exist in the
semantic representation.

143

I

I
-((pred c-and) (type

(e l t s
-(((pred ((pred

(argl ((pred
(arg2 ((pred
(mod ((pred

(a rg l
((pred ((pred

(argl ((pred
(arg2 ((pred
(mod ((pred

(argl

LIST)

"installed") (type EVENT) (status RECURRING)))
"Alice") (TYPE THING) (status RECURRING)))
"Excel") (type THING)))
"on") (type TIME)
((pred "Monday") (type TIME-THING))))))
"installed") (type EVENT) (status RECURRING)))
"Alice") (TYPE THING) (status RECURRING)))
"Outlook") (type THING)))
"on") (type TIME)
((pred "Friday") (type TIME-THING)))))))))

Figure 7: The simplified representation for "Alice installed Excel on Monday and Outlook on Friday."

I
I
I
I

The algorithm re-orders the propositions by sorting the elements in each slots using compar-
ison operators which can determine that Monday is Smaller than Tuesday, or "Alice" i s smal le r
than "Bob" alphabetically. Start ing from the slots with highest NDE to the lowest, the algori thm
re-orders the propositions based on the elements of each particular slot. In this case, proposi-
tions will ordered according to their ARG2 first, followed by ARG1, MOD-TIME, PRED, and MOD-

BENEFICIARY. The sorting process will put similar propositions adjacent to each other as Shown
in Figur e 6.

5 .2 I d e n t i f y R e c u r r i n g E l e m e n t s

The current algorithm tries to combine only two propositions at once. In Stage 2, CASPER is
concerned with how many slots have distinct values and • which slots they are. When multiple

• adjacent propositions have only one slot with distinct elements, these propositions are 1-distinct.
Propositions tha t are 1-distinct can be replaced with one proposition with one slot conjoining the
distinct elements of that slot. In our example, the first and second propositions are 1-distinct at
ARG2, and they are combined into a semantic s tructure representing "Alice installed Excel and
Powerpoint for John on Monday."

When propositions have more than one distinct slot or their 1-distinct slot is different from
the previous 1-distinct slot, the two propositions are said to be multiple-distinct. Our approach
in combining multiple-distinct propositions is different from previous linguistic analysis. Instead
of removing recurring entities immediately based on transformation or substitution, the current
system generates every conjoined multiple-distinct proposition. During the lexicalization of the
conjoined sentence, the lexical chooser prevents the realization component from generating any
string for the redundant elements. Our multiple-distinct coordination produces what linguists
describe as •ellipsis and gapping. Figure 7 shows the result combining two propositions that will
result in !'Alice installed Excel on Monday and Outlook on Friday." Some readers might notice
that PRED and ARG1 in both propositions are marked as RECURRING. The process to delete only
subsequent recurring elements at surface level will be explained in Section 5.4.

• 5 . 3 D e t e r m i n e S e n t e n c e B o u n d a r y

Unless combining the next proposition into the result proposition will exceed the pre-determined
parameters for the complexity of a sentence, the algorithm will keep on combining more propositions
into the result proposition using 1-distinct or multiple-distinct coordination. Based on looking at
P L A N D o c output , we limit the number of propositions conjoined by multiple-distinct coordination
to two in normal cases. Higher threshold renders some of the sentences difficult to comprehend.
In special cases where the same slots across nmltiple propositions are multiple-distinct, the pre-

'-I
II
II

II
II

I I

144

I
I
!

I
i
i
I
I
I!
I
II
II
!

I
I
!

II
!

determined limit is ignored. By taking advantage of parallel structures, these propositions can be
combined using multiple-distinct procedures without making the coordinate structure more difficult
to understand. For example, the sentence "John took aspirin on Monday, penicillin on Tuesday,
and Tylenol on Wednesday." is long but quite understandable. Similarly, conjoining a long list
of 3-distinct propositions produces understandable sentences too: "John played tennis on Monday,
drove to school on Tuesday, and won the lottery on Wednesday." These constraints allow CASP~,R
to produce easily understandable complex sentences containing a lot of information.

5 .4 D e l e t e R e d u n d a n t E l e m e n t s

Stage 4 handles ellipsis. In the previous stages, adjacent elements that occur more than once among
the propositions are marked as RECURRING, but the actual deletion decisions have not been made
because CASPER lacks the necessary information. T15e importance of the surface sequential order
can be demonstrated by the following example. In the sentence "On Monday, Alice installed Excel
and [on Monday,]]Alice] removed Lotus 123.", the elements in MOD-TIME delete forward (i.e.
the subsequent occurrence of the identical constituent disappears). When MOD-TIME elements
are realized at the end of the clause, the same elements in MOD-TIME delete backward (i.e. the
antecedent occurrence of the identical constituent disappears): "Alice installed Excel [on Monday,]
and [Alice] removed Lotus 123 on Monday." In general, if a slot is realized at the front or medial
of a clause, the recurring elements in that slot delete forward. In the first example, MOD-TIME
is realized as the front adverbial while ARG1, "Alice", appears in the middle of the clause, so
elements in bo th slots delete forward. On the other hand, if a slot is realized at the end position of
a clause: the recurring elements in such slot delete backward, as the MOD-TIME in second exanlple.
Our extended directionality constraint, an extension of [Tai, 1969]'s Directionality Constraint, also
applies to conjoined premodifiers and postmodifiers as well, as demonstrated by ':in Aisle 3 and [in
Aisle] 4;', and "at 3 [PM] and [at] 9 PM".

Using the algorithm just described, the result is concise and easily understandable: "On Monday:
Alice installed Excel and Powerpoint and Cindy removed Word for John. Bob removed WordPerfect
for John on Tuesday." Further discourse processing can replace the beneficiary"John" in the second
sentence with a pronoun "him".

6 R e l a t e d W o r k

Both hypotactic and paratactic constructions described in this paper have received a lot of attention •
in linguistics [Quirk et al., 1985, Halliday, 19941 Carpenter, 1998]. Much generation literature on
aggregation was disguised under the topic "revision" [Meteer, 1991, Robin, 1995]
[Callaway and Lester, 1997]. We consider clause aggregation as an integral part of a text gen-
eration system, not as a revision. The term "revision" implies that something has been generated
and then improved upon, which is not the case in these systems. We prefer the term optimization
used by [Dale, 1992], which describes the phenomenon of aggregation more appropriately - it use
fewer words to convey the same amount of information.

In earlier systems, clause aggregations are implemented in strategic component
[Mann and Moore, 1980, Dale, 1992, Horacek, 1992]. Logical derivations were used to combine
clauses and remove easily inferable clauses in [Mann and Moore, 1980]. In such systems, ag-
gregation decisions are made without lexical information. Newer systems, such as [Shaw, 1995,
Wanner and Hovy, 1996, Huang and Fiedler, 1997]: use a sentence planner to make decisions at
clause level between the strategic and tactical component.

With the exception of [Scott and de Souza, 1990] and [Robin, 1995], most research in aggrega-
tion did not transform clauses into modifiers, such as adjectives, PP, or relative clauses, in a sys-
tematic manner. [Scott. and de Souza, 1990] proposed heuristics for carrying out clause combining
based on RST and specifically identified which rhetorical relations are appropriate for "embedding" :

145

which corresponds to our hypotactic operators. We will incorporate rhetorical aggregation in the
future. Robin's work on revision operators •is similar to ours. We have describe his work earlier in
Section 4.

Because sentences with coordination constructions can express a lot of information with few
words, many text generation systems have implemented the generation of coordination expres-
sions with various •complexities [Dale, 1992, Dalianis and Hovy, 1993, Huang and Fiedler, 1997,
Shaw, 1995, Callaway and Lester, 1997]. Most systems handles simple coordination which con-
tains only one conjoined syntactic constituents, such as subject, verb, or object. None of them
handles ellipsis as CASPER does. CASPER tries t o systematically find the most concise way to ex-
press the propositions by looking through all the • propositions. In contrast, aggregation operators
proposed in other work are local and does handle complex cases. In addition, the possibility •of too
much information in a sentence has not received much attention. Most research simply ignores this
possibility because the input to their sentence planners never exceeds a few clauses.

7 Conclus ion

We describe how hypotactic •operators combine clauses using lexical information and how paratactic
operators produce sentences with coordination. Through the use of look-ahead into the lexicon
during the aggregation process to guarantee expressibility and by performing the task of sentence
delimitation before lexical choice, the system can generate complex sentences efficiently. Since
hypotactic, and paratactic operators are reusable, further speed-up in future generation system
development is expected.

8 A c k n o w l e d g m e n t s

The author would like to thank Kathleen McKeown for her valuable advice and encouragement.
This work is supported by DARPA Contract DAAL01-94-K-0119, the Columbia University Center
for Advanced Technology in High Performance Computing and Comnmnications in Healthcare
(funded by the New York State Science and Technology • Foundation) and NSF Grants GER-90-
2406.

References

[Callaway and Lester, 1997] Callaway, C. B. and Lester, J. C. Dynamically improving explanations: A
revision-based approach to •explanation generation. In Proc. of the 15th IJCAI, pages 952-958, Nagoya,
Japan. . -

[Carpenter, 1998] Carpenter, B. Distribution, collection and quantification: A type-logical account. To
appear in Linguistics and Philosophy.

[Dalai et al., 1996] Dalai, M., Feiner, S., McKeown, K., Jordan, D., Allen, B., ar/d alSafadi, Y. MAGIC: An
experimental system for generating multimedia briefings about post-bypass patient status. In Proc. 1996
AMIA Annual Fall Syrup, pages 684--688, Washington, DC.

[Dale, 1992] Dale, R. Generating Referring Expressions: Constructing Descriptions in a Domain of Objects
and Processes. MIT Press, Cambridge, M A .

[Dalianis and Hovy, 1993] Dalianis, H. and Hovyl E. Aggregation in natural language generation. In Proc.
of the •th European Workshop on Natural Language Generation, Pisa, Italy.

[Elhadad et al., 1997] Elhadad, M., McKeown, K., and Robin, J. Floating constraints in lexical choice.
Computational Linguistics, 23(2):195-239~

[Halliday, 1994] Halliday , M. A. K. An Introduction to Functional Grammar. Edward Arnold, London, 2nd
edition.

146

I
I
I
I
i l
:,1
i i
I

!1
!1
!1
I
I

! l
[I
i.I
I
I

[Horacek, 1992] Horacek, H: An integrated view of text planning. In Aspects of Automated Natural Language
Generation, Lecture Notes in Artificial Intelligence, 587, pages 29-44. Springer-Verlag, Berlin.

[Hovy, 1993] Hovy, E. H. Automated discourse generation using discourse structure relations. Artificial
Intelligence, 63. Special Issue on NLP.

[Huang and Fiedler, 1997] Huang, X. and Fiedler, A. Proof verbalization as an application of NLG. In Proc.
of the 15th IJCAI, pages 965-970, Nagoya, Japan.

[Jackendoff, 1990] Jackendoff, R. Semantic Structures. MIT Press, Cambridge, MA.

[Kaplan and Bresnan, 1982] Kaplan, R. M. and Bresnan, J. Lexical-functional grammar: A formal sys-
tem for grammatical representation. In Bresnan, J., editor, Th_e Mental Representation of Grammatical
Relations, chapter 4. MIT Press.

[Kukich et al., 1994] Kukich, K., McKeown, K., Shaw, J., Robin, J., Lim, J., Morgan, N., and Phillips,
J. User-needs analysis and design methodology for an automated document generator. In Zampolli, A.,
Calzolari, N., and Palmer, M., editors, Linguistica Computazionale, Vol. IX-X, pages 109-115. Kluwer
Academic Publishers, Norwell, MA.

[Mann and Moore, 1980] Mann, W. C. and Moore, J. A. Computer as author - results and prospects.
Technical Report RR-79-82, USC Information Science Institute, Marina del Rey, CA.

[Mann and Thompson, 1986] Mann, \V. C. and Thompson, S. A. Rhetorical•structure theory: Description
and construction of text structures. Technical Report RS-86-174, USC Information Sciences Institute,
Marina Del Rey, CA.

[McCawley, 1981] McCawley, J. D. Everything that linguists have always wanted to know about logic (but
were ashamed to ask). University of Chicago Press.

[McDonald et al., 1987] McDonald, D. D., Meteer, M. h'i., and Pustejovsky, J. D. Factors contributing to
efficiency in natural language generation. In Kempen, G., editor, Natural Language Generation: New
Results in Artificial Intelligence, Psychology and Linguistics, NATO ASI Series - 135, pages !59-182.
Martinus Nijhoff Publishers, Boston.

[McKeown et al., 1994] McKeown, K., Kukich, K., and Shaw, J. Practical issues in automaticdocumentation
• generation. In Proc. of the 4th ACL Conference on Applied Natural Language Processing, pages 7-14,

Stuttgart.

[McKeown et al., 1997] McKeown, K., Pan, S., Shaw, J , Jordan, D., and Allen, B. Language generation for
multimedia healthcare briefings. In Proc. of the Fifth ACL Conf. on ANLP, pages 277-282.

[Meteer, 1991] Meteer, M. The implications of revisions for natural language generation. In Paris, C. L.,
Swartout, W. R., and Mann, W. C., editors, Natural Language Generation in Artificial Intelligence and
Computational Linguistics, pages 155-178. Kluwer Academic Publishers, Boston.

[Quirk et al., 1985] Quirk, R., Greebaum, S., Leech, G., and Svartvik, J. A Comprehensive Grammar of the
English Language. Longman Publishers, London.

[Robin, 1995] Robin, J. Revision-Based Generation of Natural Language Summaries Providing Historical
Background. PhD thesis, Columbia University.

[Scott and de Souza, 1990] Scott, D. R. and de Souza, C. S. Getting the message across in RST-based
text generation. In Dale, R., Mellish, C., and Zock, M., editors, Current Research in Natural Language
Generation, pages 47-73. Academic Press, New York.

[Shaw, 1995] Shaw, J. Conciseness through aggregation in text generation: In Proc. of the 33rd A CL (Student
Session), pages 329-331.

[Shaw, 1998] Shaw, J. Segregatory coordination and ellipsis in text generation. In To appear in Proc. of the
17th COLING and the 36th Annual Meeting of the ACL.

[Tai, 1969] Tai, J. H.-Y. Coordination Reduction. PhD thesis, Indiana University.

[Wanner and Hovy, 1996] V~ranner, L. and Hovy, E. The HealthDoc sentence planner. In Proc. of the 8th
International Natural Language Generation Workshop, pages 1-10: Sussex, UK.

147

