
Treatment of ~-Moves in Subset Construction

Gertjan van Noord

Alfa-informatica & BCN
University of Groningen, Netherlands

vannoordOlet, rug. nl

Abstract. The paper discusses the problem of determinising finite-state automata contain-
ing large numbers of e-moves. Experiments with finite-state approximations of natural lan-
guage grammars often give rise to very large automata with a very large number of e-
moves. The paper identifies three subset construction algorithms which treat e-moves. A
number of experiments has been performed which indicate that the algorithms diff~ con-
siderably in practice. Furthermore, the experiments suggest that the average number of e-
moves per state can be used to predict which algorithm is likely to perform best for a given
input automatorL

1 Introduction

In experimenting with finite-state approximation techniques for context-free and more pow-
erful grammatical formalisms (such as the techniques presented in Pereira and Wright (1997),
Nederhof (1997), Evans (1997)) we have found that the resulting automata often are extremely
large. Moreover, the automata contain many e-moves (jumps). And finally, if such automata are
determinised then the resulting automata are often smaller. It turns out that a straightforward
implementation of the subset construction determinisation algorithm performs badly for such
inputs.

As a motivating example, consider the definite-clause grammar that has been developed
for the OVIS2 Spoken Dialogue System. This grammar is described in detail in van Noord et
al. (1997). After removing the feature constraints of this grammar, and after the removal of the
sub-grammar for temporal expressions, this context-free skeleton grammar was input to an im-
plementation of the technique described in Nederhof (1997). 1 The resulting non-deterministic
automaton (labelled zov/s2 below) contains 89832 states, 80935 e-moves, and 80400 transitions.
The determinised automaton contains only 6541 states, and 60781 transitions. Finally, the mini-
mal automaton contains only 78 states and 526 transitions! Other grammars give rise to similar
numbers. Thus, the approximation techniques yield particularly 'verbose' automata for rela-
tively simple languages.

The experiments were performed using the FSA Utilities toolkit (van Noord, 1997). At the
time, an old version of the toolkit was used, which ran into memory problems for some of these
automata. For this reason,, the subset construction algorithm has been re-implemented, paying
special attention to the treatment of e-moves. Three variants of the subset construction algo-
rithm are identified which differ in the way e-moves are treated:

per graph The most obvious and straightforward approach is sequential in the following
sense. Firstly, an equivalent automaton without e-moves is constructed for the input. In or-

A later implementation by Nederhof (p.c.) avoids construction of the complete non-determistic automa-
ton by determinis'mg and minimising subautomata before they are embedded into larger subautomata.

57

m

m

B

D
der to do this, the transitive closure of the graph consisting of all e-moves is computed. Sec-
ondly, the resulting automato n is then treated by a subset construction algorithm for e-free
automata.

per state For each state which occurs in a subset produced during subset construction, com-
pute the states which are reachable using e-moves. The results of this computation can be
memorised, or computed for each state in a preprocessing step. This is the approach men-
tioned briefly in Johson and Wood (1997). 2

per subset For each subset Q of states which arises during subset construction, compute Q' D
Q which extends Q with all states which are reachable from any member of Q using e-
moves. Such an algorithm is described in Aho, Sethi, and Ullman (1986). We extend this
algorithm by memorising the e-closure computation.

• The motivation for this paper is the experience that the first approach turns out to be imprac-
tical for automata with very large numbers of e-moves. An integration of the subset construc-
tion algorithm with the computation of e-reachable states performs much better in practice. The
per subset algorithm almost always performs better than the per state approach. However, for
automata with a low number of jumps, the per graph algorithm outperforms the others.

In constructing an e-free automaton the number of transitions increases. Given the fact that
the input automaton already is extremely large (compared to the simplicity of the language it
defines), this is an undesirable situation. An equivalent e-freeautomaton for the example given
above results in an automaton with 2353781 transitions. The implementation ofper subset is the
only variant which succeeds in determinising the input automaton of this example.

In the following section some background information concerning the FSA Utilities tool-
box is provided. Section 3 then presents a short statement of the problem (determinise a given
finite-state automaton), and a subset construction algorithm which solves this problem in the
absence of e-moves. Section 4 identifies three variants of the subset construction algorithm
which take e-moves into account. Finally, section 5 discusses some experiments in order to com-
pare the three variants both on randomly generated automata and on automata generated by
approximation algorithms.

2 FSA Ut i l i t i e s

The FSA Utilities tool-box is a collection of tools to manipulate regular expressions, finite-state
automata and finite-state transducers (both string-to-string and string-to-weight transducers).
Manipulations include determirtisation (both for finite-state acceptors and finite-state trans-
ducers), minimisation, composition, complementation, intersection, Kleene closure, etc. Var-
ious visualisation tools are available to browse finite-state automata. The tool-box is imple-
mented in SICStus Prolog.

The motivation for the FSA Utilities tool-box has been the rapidly growing interest for finite-
state techniques in computational linguistics. The FSA Utilities tool-box has been developed to
experiment with these techniques. The tool-box is available free of charge under Gnu General
Public License. z The following provides an overview of the functionality of the tool-box.

2 According to Derick Wood (p.c.), this approach has been implemented in several systems, including
Howard Johnson's INR System.

3 See http: //www. let. rug. nl /%7Evannoord/Fsa./. The automata used in the experiments are

available from the same site. ,

58

m

U

m

m

m

m

m

m

nm

u

m

m

m

m

[]

m

n

m

n

m

U

m

m

m

m

- Construction of finite automata on the basis of regular expressions. Regular expressiorl op-
erators include concatenation, Kleene closure, union and option (the standard regular ex-
pression operators). Furthermore the extended regular expression operators are provided:
complement, difference and ".intersection. Symbols can be intervals of symbols, or the 'Any'-
variable which matches any symbol. Regular expression operators are provided for oper-
ations on the underlying automaton, including minimisation and determinisation. FinaUy,
we support user-defined regular expression operators.

- We also provide operators for transductions such as composition, cross-product, same-
length-cross-product, domain, range, identity and in~cersion.

- Determinisation and Minimisation. Three different minimisation algorithms are sup-
ported: Hopcroft's algorithm (Hopcroft, 1971), Hopcroft and Ullmart's algorithm (Hopcroft
and Ullman, 1979), and Brzozowski's algorithm (Brzozowski, 1962).

- Determinisation and minimisation of string-to-string and string-to-weight transducers
(Mohri, 1996; Mohri, 1997).

- Visuuli~tion. Support includes built-in visualisation (TCl/Tk, TeX+PicTeX, TeX+PsTricks,
Postscript) and interfaces to third party graph visualisation software (Graphviz (dot), VCG,
daWmci).

- Random generation of finite automata (an extension of the algorithm in Leslie (1995) to al-
low the generation of finite automata containing e-moves).

3 Subset Construction

3.1 Problem statement

Let a finite-state machine M be specified by a tuple (Q, 22, 6, S, F) where Q is a finite set of states,
is a finite alphabet, 6 is a function from Q x (27 u {e}) --* 2 Q. Furthermore, S c Q is a set of

start states 4 and F C Q is a set of final states.

Let e-move be the relation {(qi, qJ)lqj E $(qi, e)}. e-reachable is the reflexive and transitive
closure of e-move. Let e-CLOSURE: 2 Q --, 2 Q be a function which is defined as:

e-CLOSURE(Q') = {qlq' fi Q', (q', q) e e-reachable)

For any given finite-state automaton M = (Q, ~, 6, S, F) there is an equivalent deterministic
automaton M' = (2 Q, 27, 6', {Q0}, F'). F' is the set of all states in 2 Q containing a final state of
M, i.e., the set of subsets {Q~ e 2Ctlq E Qi, q E F}. M' has a single start state Q0 which is the
epsilon closure of the start states of M, i.e., Q0 = e-CLOSURE(S). Finally,

¢({q~, q2,..., qd, a) = ~'LOSUREC6(q~, ~) U ~(q2, a) U.. . U ~(q~, a))

An algorithm which computes M' for a given M will only need to take into account states in
20 which are reachable from the start state Q0. This is the reason that for many input automata
the algorithm does not need to treat all subsets of states (but note that there are automata for
which all subsets are relevant, and hence exponential behaviour cannot be avoided in general).

Consider the subset construction algorithm in figure 1. The algorithm maintains a set of
subsets States. Each subset can be either marked or unmarked (to indicate whether the sub-
set has been treated by the algorithm); the set of unmarked subsets is sometimes referred to

4 Note that a set of start states is required, rather than a single start state. Many operations onautomata
can be defined somewhat more elegantly in this way. Obviously, for deterministic automata this set
should be a singleton set.

59

1

1

1

fund subset_construction ((Q, 27, 6, S, F))
index_transitionsO; Trans := 0; F/ns/s := 0; States := O;
Start =: epsilon.dosure(S)
add(Start)
while there is an unmarked subset T E States do

m~rk(T)
foreach (a, U) ~ insm~ctions(T) do

U := epsilon_dosure(U)
TransiT, a] := {U}
add(U)

od
ed
mtum (States, E, rrans, {Start}, P # ~)

end

proc add (U) Reachable-state-set Maintenance
i f U ~ States

then
add U unmarked to States
if U N F then F/na/s := F/na/s U U fi

fi
end

tunct/mtrucaons (P)
return merge(Upe P transfl/ons(p))

end

Instruction Computation

funct eps//on_dosure(U)
return U

end

variant 1: No e-moves

Figure 1. Subset-construction algorithm.

as the agenda. The algorithm takes such an unmarked subset T and computes all transitions
leaving T. This computation is performed by the function instructions and is called instruction
computation by Johson and Wood (1997).

The function index_transitions constructs the function transitions : Q -~ 2~ x 2Q. This func-
tion returns for a given state p the set of pairs (s, T) representing the transitions leaving p. Fur-
thermore, the function merge takes such a set of pairs and merges all pairs with the same first
element (by taking the union of the corresponding second elements). For example:

me••e({(a•{••2•4})•(b•{2•4})•(a•{3•4})•(b•{5•6})})={(a•{••2•3;4})•(b•{2•4•5•6•)}

The procedure add is responsible for "reachable-state-set maintenance', by ensuring that
target subsets are added to the set of subsets if these subsets were not encountered before. More-
over, if such a new subset contains a final state, then this subset is added to the set of final states.

60

i

[]

i

I

I

I

I

i

i

i

i

i

i

i

i

I

i

I

I

i

I

m

I

I

4 T h r e e V a r i a n t s for e - M o v e s

The algorithm presented in the previous section does not treat e-moves. In this section three
possible extensions of the algorithm are identified to treat e-moves.

4.1 Per graph

This variant can be seen as a straightforward implementation of the constructive proof that for
any given automaton with e-moves there is an equivalent one without e-moves (Hopcroft and
Ullman, 1979)[page 26-27].

For a given M = (Q,2~,6,S,F) t l ~ variant first computes M' = (Q,2~,6',S',F), where
S' = e-CLOSURE(S), and ~'(q, a) = e-CLOSURE(5(q, a)). The function e-CLOSURE is com-
puted by using a standard transitive closure algorithm for directed graphs: this algorithm i s
applied to the directed graph consisting of all e-moves of M. Such an algorithm can be found
in several textbooks (see, for instance, Cormen, Leiserson, and Rivest (1990)).

The advantage of this approach is that the subset construction algorithm does not need to
be modified at all. Moreover, the transitive closure algorithm is fired only once (for the full
graph), whereas the following two variants call a spedalised transitive closure algorithm pos-
sibly many times.

4.2 Per subset and per state

The pet subset and the per state algorithm use a variant of the transitive closure algorithm for
graphs. Instead of computing the transitive closure of a given graph, this algorithm only com-
putes the closure for a given set of states. Such an algorithm is given in figure2.

funct c/osure(T)
D=: 0
foreach t E T do add t unmarked to D od
while there is an unmarked state t E D do

mark(t)
foreach q E ~(t, e) do

if q ~ D then add q unmarked to D fi
od

od
return D

end

Figure 2. Epsilon-closure Algorithm

In either of the two integrated approaches, the subset construction algorithm is initialised
with an agenda containing a single subset which is the e-CLOSDRE of the set of start-states of
the input; furthermore, the way in which new transitions are computed also takes the effect
of ~-moves into account. Both differences are accounted for by an alternative definition of the
epsilon_closure function.

61

I

R

The approach in which the transitive closure is computed for one state at a time is defined
by the following definition of the epsilon_closure function. Note that we make sure that the
transitive closure computation is only performed once for each input state, by memorising the
closure/unctior~-

funct epsilon_dosure(U)
ret.m U~u me~o(dos~e({,,}))

end

variant 2: per state

In the case of the per subset approach the closure algorithm is applied to each subset. We also
memorise the closure function, in order to ensure that the closure computation is performed
only once for each subset. This can be useful since the same subset can be generated many times
during subset construction. The definition simply is:

funct epsilon_dosure(U)
return memo (d osure (U))

end

variant 3: per subset

The motivation for per state approach may be the insight that in this case the closure algo-
rithm is called at most IQ] times. In contrast, in the per subset approach the transitive closure
algorithm may need to be called 2 IQI times. On the other hand, in the per state approach some
overhead must be accepted for computing the union of the results for each state. Moreover, in
practice the number of subsets is often much smaller than 21QI. In some cases, the number of
reachable subsets is smaller than the number of states encountered in those subsets.

II

II

II

5 Experiments

Two sets of experiments have been performed. In the first set of experiments a number of ran-
dom automata is generated according to a number of criteria (based on Leslie (1995)). In the
second set of experiments, results are provided for a number of (much larger) automata that
surfaced during actual development work on finite-state approximation techniques.

Random automata. Firstly, consider a number of experiments for randomly generated automata.
Following Leslie (1995), the absolute transition density of an automaton is defined as the number
of transitions divided by the square of the number of states times the number of symbols (i.e.
the number of transitions divided by the number of possible transitions). Deterministic transi-
tion density is the number of transitions divided by the number of states times the number of
symbols (i.e. the ratio of the number of transitions and the number of possible trans~'ons in a
deterministic machine). Leslie (1995) shows that deterministic transition density is a reliable mea-
sure for the difficulty of subset construction. Exponential blow-up can be expected for input
automata with deterministic transition density of around 2. 5

A number of automata were generated randomly, according to the number of states, sym-
bols, and transition density. The random generator makes sure that all states are reachable from
the start state. For the first experiment, a number of automata was randomly generated, consist-
ing of 15 symbols, and 15, 20, 25, 100 or 1000 states, using various densities (and no e-moves).

5 Leslie uses the terms absolute density and deterministic density.

62

m

m

m

m

m

m

m

m

u

m

mm

n

m

m

m

The results are summarised in figure 3. Only a single result is given since each of the imple-
mentations works equally well in the absence of e-moves. 8

A new concept called absolute jump density is introduced to specify the number of c-moves. It
is defined as the number of e-moves divided by the square of the number of states (i.e., the prob-
ability that an e-move exists for a given pair of states). Furthermore, deterministic jump density
is the number of e-moves divided by the number of states (i.e., the average number of ~-moves
which leave a given state). In order to measure the differences between the three implemen-
tations, a number of automata has been generated consisting of 15 states and 15 symbols, us-
ing various transition densities between 0.01 and 0.3 (for larger densities the automata tend to
collapse to an automaton for 27*). For each of these transition densities, jump densities were
chosen in the range 0.01 to 0.24 (again, for larger values the automaton collapses). In figure 4
the outcomes of this experiment are summarised by listing the average amount of CPU-time re-
quired per deterministic jump density (for each of the three algorithms). Thus, every dot repre-
sents the average for determinising a number of different input automata with various absolute
transition densities and the same deterministic jump densi~. The figures 5, 6 and 7 summarise
similar experiments using input automata with 20, 25 and 100 states, z

The striking aspect of these experiments is that the per graph algorithm is more efficient for
lower deterministic jump densities, whereas, if the deterministic jump density gets larger, the
per subset algorithm is more efficient. The turning point is around a deterministic jump den-
sity between I and 1.5~ where it seems that for larger automata the turning point occurs at a

' lower determinisic jump density. Interestingly, this generalisation is supported by the experi-
ments on automata which were generated by approximation techniques (although the results
for randomly generated automata are more consistent than the results for "real' examples).

Experiment: Automata generated by approximation algorithms The automata used in the previous
experiments were randomly generated, according to a number of criteria. However, it may well
be that in practice the automata that are to be treated by the algorithm have typical properties
which were not reflected in this test data. For this reason results are presented for a number
of automata that were generated using approximation techniques for context-free grammars
(Pereira and Wright, 1997; Nederhof, 1997; Evans, 1997). In particular, a number of automata
has been used generated by Mark-Jan Nederhof using the technique described in Nederhof
(1997). In addition, a small number of automata have been used which were generated using
the technique of Pereira and Wright (1997) (as implemented by Nederhof).

The automata typically contain lots of jumps. Moreover, the number of states of the resulting
automaton is often smaller than the number of states in the input automaton, Results are given
in table 1. One of the most striking examples is the ygrim automaton consisting of 3382 states

CPU-time was measured on a HP 9000/780 machine running HP-UX 10.20, 240Mb, with SICStus Prolog
3 #3. For comparison with an "industrial strength" implementation, we have applied the determiniser
of AT&T's FSM utilities for the same examples. The results show that for automata with very small
transition densities FSM is faster (up to 2 Or 3 times as fast), but for automata with larger densities the
results are very similar, in some cases our Prolog implementation is even faster. Note finally that our
timings do include IO, but not the start-up of the Prolog engine.
We also provide the results for FSM again; we used the pipe fsmrmepsilon I fsmdeterminize
• According to Fernando Pereira (pc) the comparison is less meaningful in this case because the fsm-
rmepsilon program treats weighted automata. This generalisation requires some overhead also in case
no weights are used (for the determiniser this generalisation does not lead to any significant overhead).
Pereira mentions furthermore that FSM used to include a determiniser with integrated treatment of
jumps. Because this version could not (easily) be generalised for weighted automata it was dropped
from the tool-set.

68

=
O v

,ww,w
O

le+06

100000

10000

1000

100

10
0.01

~ m +
states []

+
[] []

Input automata with 25 states
. i i

~ e
m +

¢
[]

+

E I ~ + +
o

[]

¢ +

nl +
+

.* i I

0.1 1
Determirdstic Density

| m

0

B
[]

[]
[]

. I

0

0

, , !

10

le+06

=

o 100000

0
10000

1000

100

~ a o

~ m +
states o

0 0 0

+

Input automata with 100 states
. ! , i

÷

÷

¢,
O

~+~

r n

+
o o o # .

+

+

. !

r n

O

O

[]

1 0 I , * * * , * . 1 * * , [

0.01 0.1 1 10
Deterministic Densi ty

Figure 3. Deterministic transition density versus CPU-time in msec. The input automata have no E-moves.

64

!

u

10000

Q Q

x + ~

0

tOO0

I00

0 0.5

r~
x

+

o

X

+
0

X

~+

15 states
i i i

x
x

[]

I I

p e r g r a p h ~
per subset +

per state []
fsm x

X
X x X X x x

13 13 V'l + + ~I
+ r:l

+ + + +

I I I I | I

1 1.5 2 2.5 3 3.5 4
Deterministic Jump Density

Figure4. Average amount of CPU-time versus jump density for each of the three algorithms, and FSM.
Input automata have 15 states. Absolute transition densities: 0.01-0.3.

u

20 states
100000 ! i i ! i

Q

10000

1000

100

~a

×

i " i

per graph o

per ~hbset +
per state m

fsm ×

X X
x

X x X x
0 x x

÷ 0 Q

+ + ,,I, + ,,k

1 0 I I I I | I ,I

0 0.5 1 1.5 2 2.5 3 3.5 4
Deterministic Jump Density

FigureS. Average m o u n t of C.PU-time versus jump density for each of the three algorithms, and FSM.
Input automata have 20 states. Absolute transition densities: 0.01-0.3.

65

B

B

OJ

t u

100000

10000

1000

100

[]

O
¥

10
0

25 states
i ' i ! ! i i u

per graph
per Subset +

per state o
fsm x

X

[] X X

0 0
¢. ,o
+ +

4-

X X x X X X X X X X

0 e

0 0 0
O 0 0 0 0 0 +

÷ + +
+ + + + ÷ +

! ! ! I I I I

0.5 1 1.5 2 2.5 3 3.5 4
Deterministic Jump Density

Figure 6. Average amount of CPU-time versus deterministic jump density for each of the three algorithms,
and FSM. Input automata have 25 states. Absolute transition densities: 0.01-0.3.

v

u

100000

10000

1000

100 states
' O O ' ' ' I

+ o o per subset +
+ B

+ o per state o
'> ~" n O f'slTt X

× X +
x @ x o

x X +
x ° x +

R
4" + X X X

q' o. ;5 o ~ ~.

x ~ 0 x
+ + G 0 O

+ +
@

+

.4-
+

100 i , I ~ . ,
0 0.5 1 1.5 2 2.5 3

Determ/nistic Jump Density

Figure 7. Average amount of CPU-time versus deterministic jump density for each of the three algorithms
and FSM. Input automata have 100 states. Absolute transition densities: 0.001-0.0035.

66

and 10571 jumps. For this example, the per graph implementation ran out of memory (after a
long time), whereas the per subset algorithm produced the determinised automaton relatively
quickly. The FSM implementation took much longer for this example (whereas for many of the
other examples it performs better than our implementations). Note that this example has the
highest number of jumps per number of states ratio.

input automaton
Id #states # transitions # jumps

! griml.n 238 43 485
g9a 342 58 478
g7 362 424 277

g15 409 90 627
ovis5.n 417 702 130

g9 438 313 472
gll 822 78 1578
g8 956 2415 330

g14 1048 403 1404
ovis4.n~ 1424 2210 660

g13 1441 1006 1404
rene2 1800 2597 96

ovis9.p 1868 2791 3120
ygrim 3382 5422 10571

ygrim.pi 48062 63704 122095
java19 54369 28333 59394
java16 64210 43935 43505
zovis3 88156 78895 79437
zovis2 89832 80400 80935

CPU-ti~e (msec)
~'aph subset state FS~

2060 100 140 4(
260 70 70 3(
180 240 200 6(
280 130 180 4(
290 320 380 19C
560 850 640 11C

1280 160 160 6(
500 500 610 14(

1080 1240 730 12Cl
2260 222O 2870 1311

I 2400 3780 2550 44~
440 530 600 20~

8334O 8O4O0 8704O 5256C
2710 70140 78491([

F
- 1438960 - 857585G

130130 55290 64420 847(
67180 24200 31770 637G

968160 768440
- 1176650 - 938040

T a b l e 1. Results for automata generated by approximation algorithms. The dashes in the table indicate
that the corresponding algorithm ran out of memory (after a long period of time) for that particular ex-
ample.

6 Conclusion

We have discussed three variants of the subset-construction algorithm for determinising finite
automata. The experiments support the following conclusions:

- the per graph variant works best for automata with a limited number of jumps
- the per subset variant works best for automata with a large number of jumps
- the per state variant almost never outperforms both of the two other variants
- typically, if the deterministic jump density of the input is less than 1, then the pergraph vari-

ant outperforms the per subset variant. If this value is larger than 1.5, then per subset outper-
forms per graph.

- the per subset approach is especially useful for automata generated by finite-state approxi-
mation techniques, because those techniques often yield automata with very large number
of ~-moves.

67

Acknowledgements

I am grateful to Mark-Jan Nederhof for support, and for providing me with lots of (often dread-
ful) automata generated by his finite-state approximation tools.

References

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. 1986. Comp//ers. Principles, Techniques and Tools. Addi-
son Wesley.

Brzozowskl, J.A. 1962. Canonical regular expressions and minimal state graphs for definite events. In
Mathematical theory of Automata. Polytechnic Press, Polytechnic Institute of Brooklyn, N.Y., pages 529-
561. Volume 12 of MRI Symposia Series.

Cormen, Leisersorb and Rivest. 1990. Introduction to Algorithms. Cambridge Mass.: MIT Press.
Evans, Edmund Grimley. 1997. Approximating context-free grammars with a finite-state calculus. In

35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European
Chapter of the Association for Computational Linguistics, pages 452--459, Madrid.

Hopcroft, John E. 1971. An n log n algorithm for minimizing the states in a finite automaton. In
Z. Kohavi, editor, The Theory of Machines and Computations. Academic Press, pages 189--196.

Hopcroft, John E. and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages and Computa-
t/on. Addison Wesley.

Johson, J. Howard and Derick Wood. 1997. Instruction computation in subset construction. In Darrell
Raymond, Derick Wood, and Sheng Yu, editors, Automata Implementation. Springer Verlag, pages 64-
71. Lecture Notes in Computer Science 1260.

Leslie, Ted. 1995. Efficient approaches to subset construction. Master's thesis, Computer Science, Uni-
versity of Waterloo.

Mohri, Mehryar. 1996. On some applications of finite-state automata theory to natural language process-
ing. Natural Language Engineering, 2:61--80. Originally appeared in 1994 as Technical Report, institut
Gaspard Monge, Paris.

Mohri, Mehryar. 1997. Finite-state transducers in language and speech processing. Computational Lin-
gu/stics, 23(2):269--311.

Nederhof, M.J. 1997. Regular approximations of CFLs. A grammatical view. In International Workshop on
Parsing Technologies, Massachusetts Institute of Technology, September.

van Noord, Gertjan. 1997. FSA Utilities: A toolbox to manipulate finite-state automata. In Darrell Ray-
mond, Derick Wood, and Sheng Yu, editors, Automata Implementation. Springer Verlag. Lecture Notes
in Computer Science 1260.

van Noord, Gertjan, Gosse Bouma, Rob Koeling, and Mark-Jan NederhoL 1997. Robust grammatical
analysis for spoken dialogue systems. Article submitted to Journal of Natural Language Engineering.
Draft availabel from http: //www. let. rug. nl / ~vannoord/.

Pereira, Femando C.N. and Rebecca N. Wright. 1997. Finite-state approximation of phrase-structure
grammars. In Emmanuel Roche and Yves Schabes, editors, Finite-State Language Processing. MIT Press,
Cambridge, pages 149-173.

68

