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Abstract 

The acquisition of the semantics of natural 
language spatial terms is considered within 
the cognitive framework introduced by (Lan- 
gncker, 1987), and the computational frame- 
work of the Berkeley L0 project (Feldman et. 
al., 1990). We describe a computational model 
which incorporates selective attention mech- 
anisms to facilitate the identification of sig- 
nificant objects within the visual field, and 
their consequent binding to linguistic rela- 
tional identifiers (for example, the trajector 
and landmark) according to the conventions 
of the input language. In contrast to previ- 
ous work in this area, the approach allows ex- 
tension of the system to more sophisticated 
(potentially cluttered and feature-laden) in- 
put scenes and referential linguistic phenom- 
ena, without a major redesign of the system. 

The application of the model to lexemes de- 
scribing static concepts such as the English 
above, below and in is discussed, as are exten- 
sions to dynamic concepts. 

1 I n t r o d u c t i o n  

This paper is concerned with the acquisition of nat- 
ural language spatial semantics by a neurally plau- 
sible connectionist system. Within the cognitive 
framework introduced by (Langacker, 1987), elemen- 
tary spatial concepts (such as the English above) are 
characterised by locative relations between a poten- 
tially mobile object called the trajector (TR) and 
a static reference object called the landmark (LM). 
Previous computational investigations of this prob- 
lem (Regier, 1992), have relied upon highly struc- 
tured feature detection systems and the abstraction 
of object identification issues into the input data. 
While highly successful on their own terms, systems 
of this nature are not readily generalisable to prob- 
lems involving more sophisticated (especially clut- 
tered) input scenes and linguistic phenomena, and 

provide neither a conscious nor an autonomous se- 
lection mechanism through which such inputs may 
be successfully processed. 

The model discussed below resolves some of these 
issues through the use of mechanisms of selective 
visual attention, through abstraction of established 
models from computational neuroscience (Niebur 
and Koch, 1997) and extension to allow linguistic 
input to cue selection and scene parsing. While re- 
taining the overall computational philosophy of the 
Berkeley Lo project (see section 2), the present work 
does not rely upon feature pre-processing to the 
same extent as the Regier system - representations 
being based upon probabilistic receptive fields. In 
this way, 'prior knowledge' of limited specificity may 
be employed through higher level recruitment to rep- 
resent quite complex relations (see section 5.1 and 
(Hogan and Diederich, 1994), (Hogan and Diederich, 
1995)). 

The computational philosophy of the Berkeley Lo 
project is introduced in the next section, followed by 
discussion of the Regier model and the importance 
of explicit object recognition in the light of evidence 
from early language acquisition. Section 2.4 relates 
this discussion to an accepted cognitive theory medi- 
ated through binding of representations at the focus 
of attention. Selective visual attention, and recent 
computational models of the process dominate chap- 
ter 3, prior to a formal outline of the model in chap- 
ter 4. The paper concludes with examination of rep- 
resentations for a limited set of English static con- 
cepts - developed through simulations based upon 
novel Gaussian domain response units - along with 
discussion of extensions to dynamic concepts. 

2 C o n n e c t i o n i s t  M o d e l l i n g  a n d  t h e  
L0 P r o j e c t  

Advances in brain sciences and information technol- 
ogy in recent decades have allowed the development 
of sophisticated models of cognitive processes at a 
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number of levels of abstraction. Noting the domain- 
specific nature of much of this work, and the im- 
portance of integration of disparate cognitive ma- 
chinery in the long-term development of the disci- 
pline, (Feldman et. al., 1990) proposed Lo as a 
"touchstone [task] for cognitive science", requiring 
elements of visual perception, natural language mod- 
elling, and learning. As originally stated, the Lo task 
is to construct a computer system to perform Minia- 
ture Language Acquisition, without reliance upon 
"forthcoming results in related domains" to resusci- 
tate an otherwise inadequate model: 

The system is given examples of pictures 
paired with true statements about those 
pictures in an arbitrary natural language. 
The system is to learn the relevant portion 
of the language well enough so that given 
a novel sentence of that language, it can 
determine whether or not the sentence is 
true of the accompanying picture. 

The system is further constrained by the substantial 
variations known to exist across natural languages in 
their characterisation of space - eliminating ad hoc 
computational mechanisms - and by the assump- 
tion that learning must simulate childhood language 
acquisition in the exclusion of explicit negative evi- 
dence (see for example (Chomsky, 1965)). Thus only 
positive instances of a given concept may be pre- 
sented during training, but the system may receive 
negative examples during normal operation. 

2.1 A Semantic  Sub-Task  

The L0 sub-task examined by (Regier, 1992) re- 
quires that the model system acquire "perceptu- 
ally grounded semantics of natural language spatial 
terms". Each lexeme describes a locative relation- 
ship between a special (potentially mobile) object 
known as the trajector (TR) and a static reference 
object known as the landmark (LM) (Langacker, 
1987). Figure 1 shows a positive example for the 
English lexeme 'above'. In essence, spatial seman- 
tics define a partitioning of the set of object pictures 
into classes prescribed by the underlying natural lan- 
guage. The task of the model system is then to learn 
this classification from positive examples of each cat- 
egory, forming a recognition system for each class of 
pictures 1. In English, these labels might include the 

1However, examples may belong to a number of cat- 
egories, and some gradation of class membership is de- 
sirable as some scenes are better, more prototypical ex- 
emplars of a given concept than others. See chapter 2 of 
(Regier, 1992) for discussion of this issue. 

© 

Figure 1: Example image for the Lo task, with 
which one might associate the English fragment "cir- 
cle above square". 

static concepts: above, below, left, right, in, out, on, 
and off; and their dynamic equivalents: above, be- 
low, left, right, around, in, on, out of, through, and 
o v e r .  

System input is provided in the form of a two- 
dimensional bitmap (static concepts) or sequence 
of bitmaps (hereafter a "movie", for dynamic con- 
cepts) usually showing only the 'line-drawn' LM and 
TR  in a position exemplifying the concept, although 
Regier does also consider more complicated phenom- 
ena such as deixis a. The task is thus simplified so 
as to limit issues of object detection (through avoid- 
ance of feature-laden scene backgrounds and object 
interiors), confusion due to distractors, and to dis- 
regard the role of luminance and colour. 

Nevertheless, computational approaches are 
greatly constrained by many years of research in a 
number of disciplines, rendering the task of feature 
extraction and encoding non-trivial. While a 
cognitive model need not replicate all aspects of the 
underlying neural substrate, it gains in plausibility 
if it supports classifications based upon processing 
in cortical areas known to be active during perfor- 
mance of the given task. Thus, some functional 
replication of neural pathways - ostensibly at the 
level of systems neuroscience (Churchland and 

2These extensions are not examined in the present 
work. 
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Sejnowksi, 1992) - becomes an essential aspect 
of architectural design, and this is more readily 
accomplished through a top down approach. 

2.2 The  R e g l e r  Model  

(Regier, 1992) implemented highly structured con- 
nectionist systems for both the static and dynamic 
concept classes discussed above - the dynamic sys- 
tem incorporating the single frame processing capa- 
bilities of the static system. Concepts were repre- 
sented in terms of directional ~ and non-directional 4 
features computed from the image, system pre- 
processing providing the output network with real- 
valued encodings for each feature value. In contrast 
to the present model, objects are tagged as LM or 
TR tokens as part of the input representation, and 
the image is partitioned into separate TR and LM 
bitmaps as part of pre-processing. 

Computationally, the Regier system may be 
viewed within the framework of "partially structured 
connectionism" (Feldman et. al., 1988), in which 
systems level architectural design is coupled with 
unstructured local networks which may be trained 
to perform (initially unspecified) functions so as to 
realist an overall system task - although this de- 
scription understates the specificity of some model 
subsystems s. 

2.3 Discussion of  the Regier Model 

It is well-accepted that perceptual represen- 
tations may rely upon independent encodings 
of object features and properties in distinct 
anatomical areas, and that some mechanism 
is then required to associate or bind the rep- 
resentations together to facilitate processing 
of a particular object instantiation (Treisman, 
1996). This observation is best illustrated by the 
separation of the object recognition (variously 
the 'what '/'object '/'ventral' /'occipito-temporal') 
and location ('where'/'spatial'/ 'dorsal'/ 'occipito- 
parietal') pathways of the visual system. 

Sin particular, the orientation of a line connecting 
points of closest approach, and of that connecting the 
centres of mass. 

4For example surface contact or inclusion. 
Sin the original L0 paper, (Feldman et. al., 1990) 

noted the difficulty in balancing the facilitation of learn- 
ing provided by "innate structures" (in computational 
modelling a top down approach) against the potential 
generality of relatively unstructured networks. Notwith- 
standing the apparent structural sophistication of the 
Regier model - perhaps motivated in part by difficulties 
in parameter adjustment with limited training sets - the 
choice of feature extraction machinery was in this case 
sufficiently general to allow lexeme acquisition across a 
variety of natural languages. 

While Regier carefully positioned his model clear 
of any controversy over correspondence with bio- 
logical structures, its architecture must ultimately 
be viewed as an abstraction of the 'where' (dorsal) 
pathway, the need for object recognition being re- 
duced through explicit tagging of the input data. 

Although spatial relations are implicitly deter- 
mined by the position of the objects in an example 
image, equally valid but semantically distinct (per- 
haps antonymic) characterisations of the scene may 
be made depending upon the selection of trajector 
and landmark. Figure 1, for example, may be re- 
garded as prototypical example of both above ("Cir- 
cle above square"; TR=Circle;LM---Square) or below 
("Square below Circle"; TR=Square: LM=Circle). 
Identification of TR and LM is thus critical in the 
selection of the appropriate lexeme, and correct tag- 
ging appears to require association of an object name 
and internal representation sufficient to facilitate vi- 
sual search, and a language-specific comprehension 
of the syntactic relationship between the TK,LM, 
and lexeme s. It is our contention that childhood 
acquisition of spatial semantics is dependent upon 
sufficient facility in the native language to perform 
this object-tagging, through parsing of spoken lan- 
guage fragments associated with the image. 

It is thought (Crystal, 1995),(Khanji and Weist, 
1996) that acquisition of elementary spatial lex- 
emes takes place soon after the ~naming explo- 
sion" of the second year of life (Woodward et. al., 
1994), and prior to the development of sophisticated 
internal models of space (such as those allowing 
scene rotation and manipulation). Studies of spatial 
and temporal lexeme acquisition among young chil- 
dren native in various European and Middle East- 
era languages (Johnston and Slobin, 1979), (Weist, 
1991),(Khanji and Weist, 1996) indicate that sub- 
ject groups of mean age as low as 30 months may 
correctly r associate pictures with spoken sentences 
such as "The parrot is in/on the cage ". 

SLanguage-specificity to this extent does not violate 
the requirements of the L0 task. While the Regier 
system was successfully applied to a number of natu- 
ral languages, acquisition for a given language was per- 
formed independently of other training, utilising an out- 
put network encoding (and subtle adjustments to in- 
ternal feature detector parameters) specific to that lan- 
guage. Syntactic variations are a similar limitation of 
system generality. 

rCorrectness is here a matter of statistically signif- 
icant deviation from random performance, there being 
typically two alternative language fragments offered with 
a pair of images. 
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2.4 Relationship to Feature Binding 

Issues of visual search and object recognition must 
necessarily assume greater importance with in- 
creases in the complexity of the scene - with con- 
sequent difficulty in tagging of TR and LM - but 
some linkage must be provided between object iden- 
tification and location if spatially based semantics 
are to be encoded and processed. (Treisman, 1996), 
notes that object instantiation requires construc- 
tion from more elementary features (such as shape 
and colour) and maintenance of the resulting entity 
through displacement or continuous motion. While 
the exact neural mechanisms which mediate bind- 
ing are unknown, the most likely candidates are 
thought to involve temporary cell assemblies selected 
by focussed attention - with activations correspond- 
ing to the attended object remaining undiminished 
and those away from this region being suppressed. 
Propagation of these activations through a global 
location map provides the common reference point 
needed to link disparate representations (Treisman 
and Gelade, 1980}. 

Significantly, the cognitive framework discussed 
above was introduced to explain performance degra- 
dation of visual search within cluttered domains 
with complex feature conjunctions, and is closely 
aligned with the neural mechanisms considered in 
the following sections. A model based upon selec- 
tive attention thus has the advantage of a unified 
approach to the disparate processing requirements 
of the problem, while providing a sound base for ex- 
tensions to more complicated input scenes and lin- 
guistic phenomena. 

3 S e l e c t i v e  V i s u a l  A t t e n t i o n  

It is well known that primate visual cortex receives 
information from the optic nerve at a rate well 
above the region's storage and processing capacities. 
Some mechanism of selective attention, whereby a 
small but important subset of the visual field may 
be given detailed processing is therefore necessary. 
Visual processing is typically decoupled into two 
regimes (Niebur and Koch, 1997): 

• A pre-attentive phase, during which parallel ex- 
traction of elementary features is performed 

• An attentive phase, during which the more 
salient or conspicuous stimuli within the field 
are processed in sequence, input from other 
stimuli being suppressed during this processing. 

Attentional processing thus requires some selec- 
tion mechanism based upon the elementary features 

extracted during the pre-attentive phase - with pos- 
sible external input from some other neural region or 
sensory'domain s. However, the selection mechanism 
need not be spatially sequential, and two types of 
covert 9 visual attention are commonly distinguished, 
governed largely by the nature of the (perhaps au- 
tomatic) search task being undertaken by the vi- 
sual system. Focal attention (Niebur and Koch, 
1995),(Niebur and Koch, 1997) is a sequential search 
through a series of progressively less salient loca- 
tions, selection being driven primarily from below 
- saliency being determined from the contributions 
of elementary features extracted during the pre- 
attentive phase. In contrast, dispersed or feature- 
based attention (Usher and Niebur, 1996), (Niebur 
and Koch, 1997) is spatially parallel, but regarded as 
sequential within some feature space - the selection 
relying upon some ~top-down" signal to highlight a 
particular conjunction of features. 

3.1 Neural Gating - The Saliency Map 

Regardless of whether saliency is an emergent prop- 
erty of the input scene or imposed (perhaps con- 
sciously) from some other cortical region, each model 
requires that selection and suppression of stimuli be 
realisable in a neurally plausible structure. Most 
location-based attentional models are at present 
based upon the saliency map, introduced by (Koch 
and Ullman, 1985). While no localised neural im- 
plementation of this structure has been discovered, 
there is strong evidence for the existence of a mech- 
anism based upon several elementary features ex- 
tracted from the image (Niebur and Koch, 1997), 
and unit activations within the map are computed 
from a weighted sum of feature map outputs -  giv- 
ing a measure of "conspicuity" within each unit's 
receptive field 10. 

(Niebur and Koch, 1995) employ a total of eight 
input maps based upon orientation, intensity, chro- 
matic components and temporal change - along with 
provision for "external" (i.e. top-down) inputs to 

s (Koch and Ullman, 1985) suggest that attentional 
control may be located as peripherally as the LGN, re- 
lying upon back-projections from cortical feature maps. 

911igh resolution visual processing is dependent upon 
alignment of fovea and stimulus, normally achieved in 
primates through rapid eye and head movements in a 
process known as overt attention (Niebur and Koch, 
1997). Neither mechanism is considered in this brief 
review, and our model assumes that covert attentional 
shifts are sufficient to capture phenomena of interest - 
a simplification which must break down for wide field 
moving trajectors but is otherwise plausible. 

i°Note the similarity to the raasterfeature map of Fea- 
ture Integration Theory (Treisman and Gelade, 1980). 
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account for cueing effects. The most salient fea- 
ture in the input field is then computed by means 
of a winner-take-all network over the map, select- 
ing the unit with the highest activation and sup- 
pressing output from the remaining units through 
recurrent connections. In addition, the winning unit 
is itself inhibited over time, allowing attention to 
shift to a salient (but previously unattended) stim- 
ulus even if the scene remains unchanged. This in- 
hibition serves also to prevent the immediate return 
of attention to a previously attended site, in accor- 
dance with psychophysical evidence (Posner and Co- 
hen, 1984),(Tipper et. al., 1991). 

3.2 Neura l  G a t i n g -  Object  Representation 

(Fujita et. ai., 1992) found through cell record- 
ings that neurons within infero-temporal (IT) cortex 
are organised into columns with optimal selectivity 
toward abstractions of known objects (simple geo- 
metric shapes, differential shading etc.) with acti- 
vation significantly greater when presented with the 
abstracted or minimalist image rather than a de- 
tailed photograph of a similar object. On anatomi- 
cal (i.e. resource limitation) grounds, these findings 
suggest that objects may be represented through a 
combination of no more than 10O0 of these elemental 
pictures, with adaptation of representations occur- 
ring as necessary 11. 

Usher and Niebur's model of feature-based atten- 
tion (Usher and Niebur, 1996) receives input from 
the entire visual field through such activated IT cor- 
tex cell assemblies, with the search task guided by 
weak "tol>-down" activation of the favoured feature 
class from a similar representation in working mem- 
ory (here taken to be pre-frontal cortex). While an 
explicit saliency map is not employed, the attended 
stimulus is again determined through competitive 
selection among the input representations (here ob- 
ject cell assemblies). In a cluttered field, top-down 
activation may provide a winning advantage to the 
favoured object. 

3.3 Modulation at the Focus of Attention 

Once the most salient stimulus has been selected 
from among its competitors, some mechanism must 
be employed to facilitate passage of its associated 
input data to "higher" cortical centres while sup- 
pressing passage of competing input. In the Niebur 
and Koch model (Niebur and Koch, 1995), a modu- 
lating signal from the saliency map is propagated via 

11 Note that these columns have low spatial selectivity 
- existing well along this visual processing hierarchy - 
and are sensitive to such stimuli regardless of their posi- 
tion in the field. 

recurrent connections back to the region of primary 
visual cortex (V1) associated with the winning unit. 
Enhanced activation is thus re-propagated along the 
visual pathways, giving this input stream substantial 
advantages in any competitive selection processes 
subsequently encountered 12. Widespread propaga- 
tion of an enhancement signal of this kind to fea- 
tures associated with an object at the most salient 
location in the visual field is thought to underpin 
feature binding (Treisman, 1996). 

4 M o d e l  A r c h i t e c t u r e  

This section introduces a connectionist model for 
spatial lexeme acquisition based upon the atten- 
tional mechanisms discussed above. 0nly the model 
for static concepts is presented here, although few 
changes are necessary to the gross architecture to 
accommodate the dynamic case. As in the Regier 
model, an unstructured output or decision network 
encodes the lexeme representations, receiving in- 
put from neurally inspired processing modules - al- 
though here the object recognition pathway is explic- 
itly considered. The following sections outline the 
gross architecture and functionality of the model, de- 
veloping each substructure in turn before discussion 
of the output network. Implementation and repre- 
sentation issues are examined in section 5. 

4.1 A Conceptual Model for the Static 
Case 

Each static scene may be chaxacterised as a movie 
consisting of repeated presentations of the same 
frame - attention initially focussed upon one object 
(for example the TR) and passing during movie pre- 
sentation to the other (the LM). Network learning 
depends upon presentation of frames exemplifying 
each of these phases, and object tagging (identifi- 
cation of objects as respectively TR and LM) relies 
upon "visual search" initiated by parsing of the lan- 
guage fragment, and subsequent binding of object 
feature and location information. The approach is 
solidly grounded in the Feature Integration Theory 
of Treisman (Treisman and Gelade, 1980), with per- 
ceptual binding mediated through selective atten- 
tion. 

4.2 The Recognition Pathway 

Processing corresponding to the early visual system 
is not explicitly modelled, and system input is pro- 
vided by three unit banks, representing language in- 
put, object recognition and object location. Object 

1~Enhancement of activation is accomplished via tem- 
poral tagging - modulation of the spike train through a 
time-varying Poisson process (Niebur and Koch, 1995). 
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representation is based upon the IT cortex assem- 
blies discussed in section 3.2, with the simplifying 
assumption that input scenes contain only objects 
closely identifiable with a single iconic image - the 
system being restricted to a discrete set of object 
types whose presence is indicated by the activation 
of a single input unit I~. 

Language input is similarly reduced to a bank of 
object units, on the basis that apprehension of the 
object description (for example a simple noun such 
as circle) is sufficient to activate a representation of 
the object, already available in memory as a result 
of exposure to the image. In computational terms, 
the visual object has been tagged as a CIRCLE token, 
and the iconic CIRCLE representation activated, al- 
though the reality is far less neatly partitioned. This 
representation provides top-down activation in much 
the same manner as the working memory module 
of the Usher and Niebur model (Usher and Niebur, 
1996), the mechanisms together reaiising object tag- 
ging through an abstraction of feature-based visual 
search. 

The relationship between language and object in- 
put is shown at the right of figure 2, tagging be- 
ing represented by a conjunction between the lan- 
guage and object units within the binding network 
- the winning conjunction being selected through a 
Winner-Take-All (WTA) network (Feldman, 1982), 
and unwanted, weaker conjunctions being discarded. 
Such selection and suppression mechanisms readily 
allow generalisation of the tagging system to more 
cluttered scenes or sophisticated linguistic phenom- 
ena, particularly as tagging is performed over time 
- greatly reducing problems of cross-talk. 

The robustness of the cell assembly representation 
is here captured through multiple random projec- 
tions from each unit to the binding network, ensur- 
ing with high probability that at least one connec- 
tion with a particular binding unit is realised t4. 

The function of the binding subsystem is illus- 
trated in the following table by the example of of 
figure 1 and the language fragment "circle above 
square". Input from the object assemblies remains 
constant throughout the period, and for the sake of 
brevity is suppressed. For clarity, the number of 
scene frames is limited to four, with change in the 
language input after the second frame: 

ISExtensions to more complicated objects require rep- 
resentation in terms of a weighted combination of these 
iconic 'letters'. The binding mechanisms discussed here 
are in principle sufficient to handle such extensions, but 
pre-processing would necessarily be complex. 

14These reliability arguments are based upon those ad- 
vanced by Feldman (Feldman, 1982). 
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Lang Lang 
Frame Circle Square . Binding 

0 1 0 TR < Circle > 
1 1 0 TR < Circle'> 
2 0 1 LM < Square > 
3 0 1 LM < Square > 

4 . 3  I n t e g r a t i o n  w i t h  t h e  Locat ion  P a t h w a y  

For object tagging to be useful in the present context 
requires some integration of the feature and location 

• based models of selective attention considered in sec- 
tion 3. The mechanisms of the previous section are 
strongly reliant upon feature-based attention (Usher 
and Niebur, 1996), and do not require an explicit 
saliency map. 

Recall that location-based attentional models 
(Niebur and Koch, 1995), construct saliency as a 
weighted sum of several constituent feature maps - 
which while representing anatomically distinct ar- 
eas, provide inherent location binding. The model 
also provides for external input to this map to ac- 
count for cueing - perhaps mediated through repre- 
sentations in working memory - but again the input 
is location bound. 

The current work preserves the global saliency 
map of (Niebur and Koch, 1995), but introduces fea- 
ture based input to the map through the external 
channel of the previous paragraph, as though the 
primitive object cell assemblies of IT cortex were 
merely another feature map contributing to overall 
saliency. Both classes of model (colloquially 'where' 
and 'what'! rely on top-down modulation of acti- 
vation in order to implement the selection of the 
attended region. In the former case, modulation 
takes place through recurrent connections to pri- 
mary visual cortex, and 'where' to 'what' informa- 
tion transfer may take place through binding at  the 
focus of attention - essentially through lock-step re- 
propagation of the modulation along both pathways 
- although this is not required for the present task. 
'What'-to-'where' transfer in the current model is 
based upon an extension of the feature-based model 
of (Usher and Niebur, 1996), with propagation of 
top-down modulation from the IT assemblies to stri- 
ate cortex, and re-propagation as for the 'where'- 
'what' linkages Is. 

lSOnly limited success has been achieved to date in 
elucidating mechanisms of communication between the 
two pathways, although binding of representations neces- 
sarily demands it. The model proposed here is attractive 
and plausible, but remains to be established experimen- 
tally (Niebur, 1997). 
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This mechanism is abstracted in the current model 
so that object-based input is effectively represented 
in another feature map, although some delay to ac- 
count for the traversal of the pathway may be desir- 
able in more sophisticated extensions. However, the 
approach effectively eliminates the need for direct 
input from the object assemblies to the decision net- 
work, as binding has been extended to the saliency 
map. As before, we may characterise this interac- 
tion by examining the bindings realised. The input 
sequence is as before, but suppressed for clarity, and 
location input is restricted to representative vectors 
xl (the square) and x2 (the circle). 

Object Implicit 
Binding Location SM 
Network Input Binding 

TR < Circle > (xl, x2) TR(Zl) 
TR < Circle > (xl, z2) TR(zl) 

LM < Square > (Zl, z2) LM(x2) 
LM < Square > (Xl, X2) LM(x2) 

4.4 Lexeme Binding 

As in the Regier model, lexeme acquisition is ulti- 
mately accomplished through a sparse-coded repre- 
sentation at an unstructured (here randomly con- 
nected) output network. In its purest form, the 
model exerts very tight control over the information 
which is passed to this decision network - object and 
location information being effectively gated by the 
saliency map. This decoupling of the problem both 
simplifies and complicates the issue: binding at the 
output network requires a lower degree conjunction, 
but the lexeme is now in principle a temporal rather 
than spatial conjunction - necessitating a recurrent 
output network. 

Bottom up saliency is of relatively little conse- 
quence in the static case, as the conscious selection 
implied by the object tagging mechanism controls 
the focus of attention, and these considerations can- 
not be over-ridden by an unchanging input scene - 
although decay of the most salient location helps fa- 
cilitate the attention shift. 

Figure 2 shows the gross architecture in its en- 
tirety. Lexemes are represented by individual out- 
put units of the decision network, gated input being 
provided to this network from the saliency map, and 
language input (i.e. encoding of the lexeme itself) 
implicit in the learning mechanism. At this point, 
the network must represent a binding of the form: 

above < TR(zl) ,  LM(x2) >. 

Successful acquisition of such bindings is dependent 
upon the structure of the saliency map and its rela- 
tionship to the output network, and these issues are 
considered in detail in the following sections. 

5 R e p r e s e n t a t i o n  a n d  M o d e l  
I m p l e m e n t a t i o n  

As envisaged by Koch and successive co-authors, it 
is the role of the saliency map to determine the most 
salient input region, and to gate visual input so as 
to highlight this attended region for more detailed 
processing. In this way, selective attention is sited 
conceptually amongst detection of elementary fea- 
tures, and decoupled from more sophisticated repre- 
sentations computed further along the visual path- 
way. Yet while the selection mechanism typically 
isolates a salient region for high-resolution represen- 
tation and processing (in part accomplished through 
suppression of competing stimuli}, modulation may 
also be reflected in a relatively low-resolution rep- 
resentation of the entire field - highlighting the at- 
tended object at the expense of less salient ones. As 
the modulating signal is thought to be directed back 
to primary visual cortex, such reduced maps may be 
computed at a number of points along the visual pro- 
cessing hierarchy, as required by the sophistication 
of the relation to be represented 16. 

While acknowledging, therefore, the importance 
of pre-processing as identified by (Regier, 1992), the 
present work does not employ feature extraction ma- 
chinery of the same sophistication. In part, this may 
be justified by noting that much of the computa- 
tional difficulty of the problem is removed once the 
fovea has been positioned - limiting the class of ex- 
amples with which the system may be faced. Yet 
a more powerful justification is philosophical: the 
representations considered below require neither a 
high level of genetic determinism nor a long period 
of inductive learning to become established. 

5.1 Random Receptive Fields 

(Hogan and Diederich, 1994), (Hogan and 
Diederich, 1995) considered a novel class of connec- 
tionist networks in which connectivity is determined 
randomly, in accordance with biologically plausible 
probabilities. Briefly, probability of connection be- 
tween each pair of neurons is dependent upon the 
"distance" between them - the local probability 
being constant within some local radius R of each 

16Notwithstanding the clear separation in this discus- 
sion between the saliency mechanism and further pro- 
cessing, the reduced representations discussed below are 
computed directly from the saliency map on the grounds 
of computational simplicity. 
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unit, and decaying exponentially outside this region. 
This earlier work established that networks of mod- 
erate size may harbour small subnetworks (known as 
candidate architectures) which could be usefully re- 
cruited in the representation of Boolean concepts lr .  

In the present work, the approach is extended to 
produce random receptive field units, receiving pro- 
jections from a high-resolution input map (30 x 30 
units) under similar probability and radius restric- 
tions as those above. Reduced maps of this type 
provide a kind of probabilistic localisation - prox- 
imal objects being represented with high probabil- 
ity, and distal objects being represented with low 
(but still significant) probability. Thus, the repre- 
sentation is flexible within the bounds provided by 
foveal alignment, allowing significant fault tolerance 
in the boundary of each field. Computationally, the 
approach provides a substantial reduction of dimen- 
sion, producing an encoding of the problem allowing 
recruitment at the output network without propa- 
gation of an error signal to the underlying represen- 
tation. 

We conclude this section with an example reduced 
map, demonstrating that simple receptive fields of 
this type are sufficient to discriminate concepts such 
as above is. In the limit of a large number of possible 
projections, the response of each receptive field unit 
may be modelled through the use of Gaussian do- 
main .response units 19 developed for this purpose 
and trainable through gradient-descent. The sig- 
nificance of these simulations therefore lies not in 
the method of acquisition of the representation, but 
rather in the fact that such a representation may 
perform successfully. 

Figure 3 shows the combined (weighted) response 
map of receptive fields for above obtained by train- 
ing on example images showing a smaller object 
above a larger object 2°. As will be clear from the 
graphic, the strong positive response to activation in 
the centre of the upper region ensures that the map 

lrThis approach is based upon evidence from cognitive 
neuroscience - see (Ramachandran, 1993) for a review. 

18Similar representations have also been obtained for 
other English directional concepts such as below, left and 
right. A representation specific to in cannot be demon- 
strated in this way, requiring the attentional mechanism 
to highlight a detectable change of state within the local 
region - the change only appearing over time. 

l~The unit response to the intensity of each input is 
weighted according to a Gaussian function of the dis- 
tance between the input and the unit centre. 

2°Typical training sets include strongly positive exam- 
ples, coupled with a similar number of strongly negative 
examples of the concept, randomly positioned and la- 
belled manually. The network successfully generalises to 
unseen weakly positive examples. 

provides strong identification of prototypical posi- 
tive and negative examples. However, the decaying 
rather than hard-limiting response of the fields pro- 
vides sufficient flexibility that weakly positive exam- 
ples with typical locations and prototypical exam- 
ples with atypical locations are also correctly identi- 
fied. For example, table 5.1 shows results using this 
field, outputs encoded in the interval [0, 1], with 1.0 
indicating a strongly positive result. The approxi- 
mate location of the TR with respect to the LM is 
indicated using points of the compass, and the weak 
positive examples were not assigned a numeric tar- 
get value. 

TR True Network 
Position Value Value 

N 1.0 0.966 
E 0.0 0.066 
W 0.0 0.088 
S 0.0 0.064 

NE N/A 0.357 
NE N/A 0.302 
NW N/A 0.579 

6 C o n c l u s i o n s  

In this work, we have developed a powerful new ar- 
chitecture for modelling the acquisition of spatial 
semantics, providing a number of advantages over 
previous approaches - in particular in its potential 
for application to more cluttered input scenes and 
linguistically complex phenomena. While discussion 
has centred upon a system which caters for static 
concepts, the system is immediately extensible to 
the case of dynamic concepts through the addition of 
a temporal change map to the model input (Niebur 
and Koch, 1995). 

Representations introduced by the model are 
based on simple, probabilistic receptive fields en- 
coding activation of the saliency map, and requir- 
ing limited prior knowledge and learning to be re- 
alised - having also substantial advantages in fault 
tolerance. In forthcoming work we shall present re- 
sults for system learning from a wide range of static 
and dynamic concepts and examine extensions of the 
model to include linguistic description of faces based 
upon the spatial relationship between constituent 
features (for example, the shape and. relative posi- 
tions of nose, mouth and eyes). 
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