
/

/

i
/

II
/

II

l

II

/

/

Modularity in Inductively-Learned Word Pronunciation Systems *

Antal van den Bosch 1, Ton Weijters 2, Walter Daelemans 1

1 ILK / Computational Linguistics
Tilburg University

P.O. Box 90153
NL-5000 LE Tilburg

The Netherlands
{ant alb, walt er}@kub, nl

2 Department of Information Technology
Eindhoven University of Technology

P.O. Box 513
NL-5600 MB Eindhoven

The Netherlands
A. J.M.M. Weijt ers@tm, tue.nl

Abstrac t
In leading morpho-phonological theories and
state-of-the-art text-to-speech systems it is
assumed that word pronunciation cannot be
learned or performed without in-between anal-
yses at several abstraction levels (e.g., mor-
phological, graphemic, phonemic, syllabic, and
stress levels). We challenge this assump-
tion for the case of English word pronunci-
ation. Using IGTR~B, an inductive-learning
decision-tree algorithms, we train and test
three word-pronunciation systems in which the
number of abstraction levels (implemented as
sequenced modules) is reduced from five, via
three, to one. The latter system, classifying
letter strings directly as mapping to phonemes
with stress markers, yields signitlcemtly better
generali~tion accuracies than the two multi-
module systems. Analyses of empirical results
indicate that positive utility etfects of sequenc-
ing modules are outweighed by cascading er-
rors passed on between modules.

1 Introduction
Learning word pronunciation can be a hard task
when the relation between the spelling of a language
and its corresponding pronunciation is many-to-
many. The English writing system and its pronunci-
ation are a notoriously complex example, mused by
an apparent conflict between analog~/and inconsis-
~enc~/:

Analogy. When two words or word chunks have a
similar spelling, they tend to have a slmil~r pro-
nunciation. This tendency (which generalises to
other language tasks as well) is usually referred
to as the analogy principle(De Saussure, 1916;
Yvon, 1996; Daelemans, 1996).

*This research was partially performed by the first
and second author at the Department of Computer Sci-
ence of the Universiteit Manstricht (The Netherlands),
and partially in the context of the "Induction of Lin-
guistic Knowledge" research programme, partially sup-
ported by the Foundation for Language Speech and Logic
(TSL), funded by the Netherlands Organization for Sci-
entific Research (NWO).

Inconsis tency. Much of the analogy in English
word pronunciation is disrupted by productive
and complex word morphology, word stress, and
gmphematics.

Influential pre-Chomskyan]ingu~tic theories have
been pointing at the analogy principle as the under-
lying principle for language learning (De Sanssure,
1916), and at induction as the reasoning method
for generalising from learned instances of language
tasks to new instances through analogy (Bloomfield,
1933). However, methods and resources (e.g., com-
puter technology) were not available then to demon-
strate how induction through analogy could be em-
ployed to learn and model language tasks. Partly
due to this lack of demonstrating power, Chomsky
later stated

". . . I don't see any way of explaining the
resulting final state [of language learning]
in terms of any proposed general devel-
opmental mecha, i~_m that has been sug-
gested by artificial intelligence, sensorimo-
tot mechanisms, or anything else" (Chore-
sky, in (Piatelll-Palmadni, 1980), p. 100).

Chomsky's argument is based on the assump-
tion that generic learning methods such as induc-
tion cannot discover autonomously essential levels
of abstraction in language processing tasks. Ap-
pl;ed to morpho-phonology, the argument states that
generic learning methods are not able to discover
morphology, graphematies, and stress patterns au-
tonomonsly when learning word pronunciation, al-
though this knowledge appears essential. Phonologi-
cal and morphological theories, influenced by Chom-
skyan theory across the board since the publica-
tion of spy. (Chomsky and Halle, 1968), have gen-
erally adopted the idea of abstraction levels in var-
ious guises (e.g., levels, tapes, tiers, grids) (Gold-
smith, 1976; Liberman and Prince, 1977; Kosken-
niemi, 1984; Mohanan, 1986). Although there is no
general consensus on which levels of abstraction can
be discerned in phonology and morphology, there is
a rough, global agreement on the fact that words
can be represented on different abstraction levels as

van den Bosch, Weiflers and Daelemans 185 Modul,~rity in Word Pronunciation systems

Antal van den Bosch, Ton Weijters and Walter Daelemans (1998) Modularity in Inductively-Learned Word Pronunciation
Systems. In D.M.W. Powers (ed.) NeMLaP3/CoNLL98: New Methods in Language Processing and Computational Natural
Language Learning, ACL, pp 185-194.

strings ofletters, graphemes, morphemes, phonemes,
syllables, and stress patterns.

According to these leading morpho-phonological
theories, systems that (learn to) convert spelled
words to phonemic words in one pass, i.e., without
making use of abstraction levels, axe assumed to be
unable to generalise to new cases: going through
the relevant abstraction levels is deemed essential to
yield correct conversions of previously unseen words.
This assumption implies that if one wants to build
a system that converts text to speech, one should
implement explicitly the relevant levels of abstrac-
tion. Such explicit implementations of abstraction
levels can indeed be witnessed in many state-of-the-
art speech synthesisers, implemented as (sequential)
modules (Allen, Hunnicutt, and Klatt, 1987; Daele-
mans, 1988).

In this paper we challenge the assumption that
levels of abstraction must be made explicit in learn-
ing and performing the word-pronunciation task.
We do this by applying an inductive-learning al-
gorithm from machine learning to word pronunci-
ation. From a wealth of existing algorithms in ma-
chine learning (Mitchell, 1997), we choose IGTlt~B
(Daelemans, Van den Bosch, and Weijters, 1997), an
inductive-learning decision-tree learning algorithm.
IGTR~.E is a fast algorithm which has been demon-
strated to be applicable to language tasks (Van
den Bosch and Daelemans, 1993; Van den Bosch,
Daclemans, and Weijters, 1996; Daelemans, Van den
Bosch, and Weijters, 1997). We construct IGTRE~
decision trees for word pronunciation, and perform
empirical tests to estimate the trees' generalisation
accuracy, i.e., their ability to process new, unseen
word-pronunciation instances correctly.

Rather than constructing and testing a single sys-
tem, our approach is to test dflferent moduiari-
sations of the word-pronunciation task systemati-
cally, to allow for an empirical comparison of word-
pronunciation systems with and without the explicit
learning of abstraction levels. First, we train (by
inductive learning) and test a word-pronunciation
model reflecting linguistic assumptions on abstrac-
tion levels quite closely: the model is composed of
five sequentially-coupled modules. Second, we train
and test a model in which the number of modules
is reduced to three, integrating two pairs of levels
of abstraction. Third, we train and test a model
performing word pronunciation in a single pass, i.e.,
without modular decomposition.

The paper is structured as follows: first, in Sec-
tion 2 we provide a description of IGTREE, the data
on which the IGTRI~B is trained and tested, and the
applied experimental methodology. Second, in Sec-
tion 3 we introduce the three word-pronunciation
systems, and for each system we describe the exper-
iments performed and discuss the results obtained.
In Section 4 we compare the three systems and anal-
yse the consequences of modularisation. Section 5

briefly mentions related work on inductive learning
of word pronunciation. Section 6 summarises the
results obtained and lists some points of discussion.

2 A l g o r i t h m , D a t a , M e t h o d o l o g y

2.1 Algor i thm: I G T R E E

IGTR~.E (Daelemans, Van den Bosch, and Weij-
ters, 1997) is a top-down induction of decision trees
(TDIDT) algorithm (Breiman et al., 1984; Quinlan,
1993). TDIDT is a widely-used method in super-
vised machine learning (Mitchell, 1997). IGTREE
is designed as an optlmi~ed approximation of the
instance-based learning algorithm IBI-IQ (Daele-
mans and Van den Bosch, 1992; Dademans, Van
den Bosch, and Weijters, 1997). In I6TR~E, infor-
mation gain is used as a guiding function to com-
press a data base of instances of a certain task into
a decision tree 1. Instances are stored in the tree as
paths of connected nodes ending in leaves which con-
tain classification information. Nodes are connected
via arcs denoting feature values. Information gain
is used in IGTREE to determine the order in which
feature values are added as arcs to the tree. Informa-
tion gain is a function from information theory, and
is used similarly in ID3 (Qululan, 1986) and c4.5
(Qnlnlan, 1993).

The idea behind computing the information gain
of features is to interpret the training set (i.e., the
set of task instances for which all classifications ave
given and which are used for training the learning
algorithm) as an information source capable of gen-
erating a number of messages (i.e., classifications)
with a certain probability. The information entropy
H of such an information source can be compared
in turn for each of the features characterlsing the
instances (let n equal the number of features), to
the average information entropy of the information
source when the value of those features axe known.
Data-base information entropy H(D) is equal to the
number of bits of information needed to know the
classification given an instance. It is computed by
equation 1, where p~ (the probability of classifica-
tion i) is estimated by its relative frequency in the
training set.

= - p j o g 2 p , (I)
i

To determine the information gain of each of the n
features f x . . . fn, we compute the average informa-
tion entropy for each feature and subtract it from
the information entropy of the data base. To com-
pute the information entropy for a feature fl, given
in equation 2, we take the weighted average informa-
tion entropy of the data base restricted to each pos-
sible value for the feature. The expression DLf~=~]

X IGTB.BE can function with any feature weighting
method, such as gain ratio (QuinIaa, 1993); for all ex-
periments reported here, information gain was used.

van den Bosch, Weijters and Daelemans 186 Modularity in Word Pronunciation systems

I

I

I

I

I

I

l
|

I

I

I

/

|

/

/

/

refers to those patterns in the data base that have
value vj for feature f~, j is the number of possible
values of f~, and V is the set of possible values for
feature /~. Finally,]DI is the number of patterns in
the (sub) data base.

'v,/EV

Information gain of feature fi is then obtained by
equation 3.

G(y,) = IZ(D) - H(Z~t~,]) (3)

In IGTREE, feature-value information is stored in the
decision tree on arcs. The first feature values, stored
as arcs connected to the tree's top node, axe those
representing the values of the feature with the high-
est information gain, followed at the second level of
the tree by the values of the feature with the second-
highest information gain, etc., until the classifica-
tion information represented by a path is unambigu-
ous. Knowing the value of the most important fea-
ture may already uniquely identify a classification, in
which case the other feature values of that instance
need not be stored in the tree. Alternatively, it may
be necessary for disambiguation to store s long path
in the tree.

Apart from storing uniquely identified class labels
at leafs, IGTREE stores at each non-terminal node in-
formation on the most probable classification given
the path so far. The most probable classification is
the most frequently occurring classification in the
subset of instances being compressed in the path
being expanded. Storing the most probable class
at non-terminal nodes is essential when processing
new instances. Processing a new instance involves
traversing the tree by matching the feature values of
the test instance with arcs the tree, in the order of
the feature information gain. Traversal ends when
(i) a leaf is reached or when (fi) matching a feature
value with an arc fails. In case (i), the classification
stored at the leaf is taken as output. In case (ii),
we use the most probable classification on the last
non-terminal node most recently visited instead.

2.2 D a t a Acquis i t ion a n d P rep roces s ing

The resource of word-pronunciation instances used
in our experiments is the CELEX lexical data base
of English (Burnage, 1990). All items in the cgLv.x
data bases contain hyphenated spelling, syllabified
and stressed phonemic transcriptions, and detailed
morphological analyses. We extracted from the En-
giish data base of CZLZX all the above information,
resulting in a data base containing 77,565 unique
items (word forms with syllabified, stressed pronun-
ciations and morphdogical segmentations).

For use in experiments with learning algorithms,
the data is preprocessed to derive fixed-size in-
stances. In the experiments reported in this paper

van den Bosch, Weijters and Daelemans 187

different morpho-phonological (sub)tasks are inves-
tigated; for each (sub)task, an instance base (train-
ing set) is constructed containing instances produced
by windowing (Sejnowski and Rosenbezg, 1987) and
attaching to each instance the classification appro-
priate for the (sub)task under investigation. Table 1
displays example instances derived from the sample
word booking. With this method, for each (sub) task
an instance base of 675,745 instances is built.

In the table, six classification fields axe shown, one
of which is a composite field; each field refers to one
of the (sub)tasks investigated here. M stands for
morphological decomposition: determine whether a
letter is the initial letter of a morpheme (class '1')
or not (class 'O'). x is graphemic parsing2: deter-
mine whether a letter is the first or only letter of a
grapheme (class '1') or not (class '0'); a grapheme is
a cluster of one or more letters mapping to a single
phoneme. G is grapheme-phoneme conversion: de-
termine the phonemic mapping of the middle letter.
y is syllabification: determine whether the middle
phoneme is syllable-initial, s is stress assignment:
determine the stress level of the middle phoneme.
Finally, GS is integrated grapheme-phoneme conver-
sion and stress assignment. The example instances
in Table 1 show that each (sub)task is phrased as a
classification task on the basis of windows of letters
or phonemes (the stress assignment task s is inves-
tigated with both letters and phonemes as input).
Each window represents a snapshot of a part of a
word or phonemic transcription, and is labelled by
the classification associated with the middle letter of
the window. For example, the first letter-window in-
stance __book is linked with label '1' for the morpho-
logical segmentation task (M), since the middle letter
b is the first letter of the morpheme book;, the other
instance labelled with morphological-segmentation
class '1 ~ is the instance with i in the middle, since
i is the first letter of the (inflectional) morpheme
ing. Classifications may either be binary ('1' or
'0') for the segmentation tasks (M, A, and y), or
have more values, such as 62 possible phonemes (~)
or tbxee stress markers (primary, secondary, or no
stress, s), or a combination of these classes (159 com-
bined phonemes and stress markers, Gs).

2.3 Methodo logy

Our empirical study focuses on measuring the abil-
ity of the IQTP~Z learning algorithm to use the
knowledge accumulated during learning for the clas-
sification of new, unseen instances of the same
(sub)task, i.e., we measure their generalisation accu-
racy. (Weiss and Kulikowski, 1991) describe n-fold
cross valida~iolz (~z-fold cv) as a procedure for mea-

2Graphemic parsing is not represented in the CELBX
data. We used an automatic alignment algorithm
(Daelemans and Van den Bosch, 1997) to determine
which letters axe the first o~ only letters of a grapheme.

Modularity in Word Pronunciation systems

instance
number

1
2
3
4

7

letter-window instances
left

context I focus
- '_ _ " b

_ _ b o

_b o o
boo k
oo k i
o k i n

k i n g

fight
context
~ o k
o k i
k i n
i n g
n g _
g

J classifications

II M A Q s Gs
1 1 / b / 1 / b / 1
o 1 lul o lulO
o o i - I o I-IO
o l l k l OlklO
1 1 IU 0 IWO
0 1 I ~ 1 0 I~10
0 0 I-I, ,,0 I-I0

phoneme-window instances

context focus
_ /b/
- fi>l Inl

I(>l lul I'1
fi>l Inl I'1 Ikt
lul I'1 Ikl I11
I - I Ikl I~1 I~1
Ikl Id I~JI I'1

fight elassif.
context Y s

/u/ /-/ /k/ 1 1
/- / /k/ /U 0 0
/k/ h / / ~ / 0 0
/~/ /~ / / - / 1 0
/ ~ / /-/ . 0 0
/- / _ 0 0

- 0 0

Table 1: Example of instances generated from the word booking, with dassificstious for all of the subtasks
investigated, viz. M, A, Q, Y, s, and Gs.

suzing generalisation accaxacy. For our experiments
with IGTRBE, we set up 10-fold cv experiments con-
sisting of five steps. (i) On the basis of a data set, n
paxtitionings axe generated of the data set into one
tra~ing set containing ((n - 1) / n) t h of the data set,
and one test set contslnlng (l / n) th of the data set,
per partitioning. For each partitioning, the three
following steps axe repeated: (ii) Information-gain
values for all (seven) features axe computed on the
basis of the trAi~ing set (cf. Subsection 2.1). (iii)
IQTRE~. is applied to the trai~i~g set, yielding an
induced decision tree (el. Subsection 2.1). (iv) The
tree is tested by letting it classify all instances in the
test set, which results in a percentage of incorrectly
classified test instances. (v) When each of the n folds
has produced an error percentage on test material,
a mean generalisation error of the leaxned model is
computed. (Weiss and Kulikowski, 1991) argue that
by using n-fold cv, preferably with n _> 10, one can
retrieve a good estimate of the true generalisation
error of a leaxning algorithm given an instance base.
Mean results can be employed further in significance
tests. In our experiments, n = 10, and one-tailed t-
tests axe performed.

3 T h r e e w o r d - p r o n u n c i a t i o n

a r c h i t e c t u r e s

Out experiments axe grouped in three series, each
involving the application of IGTR~.B to a paxticu-
la~ word-pronunciation system. The a~chitectures
of these systems axe displayed in Figure 1. In the
following subsections, each system is introduced, an
outline is given of the experiments performed on the
system, and the results a~e briefly discussed.

3 . 1 M-A-G-Y-S

The axchitectu~e of the M-A-G-Y-S system is inspixed
by SGUND1 (Hunnicutt, 1976; Hunnicutt, 1980),
the word-pronunciation subsystem of the MIT~kLK
text-to-speech system (Allen, Hunnicutt, and Klatt,
1987). When the MITALK system is faced with an un-
known word, sounD1 produces on the basis of that

van den Bosch, Weijters and Daelemans 188

word a phonemic transcription with stress markers
(Allen, Hunnieutt, and Klatt, 1987). This word-
pronunciation process is divided into the following
five processing components:

1. morphological segmentalion, which we imple-
ment as the module referred to as M;

2. graphemic parsing, module A;
3. grapheme-phoneme conversion, module G;
4. sfllabifica~ion, module y;
5. stress assignment, module s.

The axchiteeture of the M-A-G-Y-S system is visu-
alised in the left of Figure 1. It can be seen that the
representations include direct output from previous
modules, as well as representations from eaxlier mod-
ules. For example, the s module takes as input the
syllable boundaries generated by the Y module, but
also the phoneme string generated by the G module,
and the morpheme boundaxles generated by the M
module.

M-A-G-Y-S is put to the test by applying IGTREE
in 10-fold cv experiments to the five subtasks, con-
necting the modules after tr~i~i~g, and measuring
the combined score on correctly classified phonemes
and stress maxkers, which is the desired output of
the word-pronunciation system. An individual mod-
ule can be trained on data from C~.L~.X directly as
input, but this method ignores the fact that mod-
ules in a working modular system can be expected
to generate some amount of error. When one module
generates an error, the subsequent module receives
this error as input, assumes it is correct, and may
generate another error. In a five-module system, this
type of cascading errors may seriously hamper gen-
eralisation accuracy. To counteract this potential
disadvantage, modules can also be trained on the
output of previous modules. Modules cannot be ex-
pected to leaxn to repair completely random, irreg-
ular errors, but whenever a previous module makes
con.sistent errors on a specific input, this may be
recoguised by the subsequent module. Having de-
tected a consistent error, the subsequent module is

Modularity in Word Pronunciation systems

I

I

I

I

I

I

I

I

I

k

k

k

II

II

II

II

II

II

II

wdtten~

phoneme transcnp~on
wffn stress

wr~en wo~

phonemic ~ar, scnpeon
with slre~s

written word

phonerr~c Wanscdp~on
w~ s,~ss

M - morpholog~e analysis

A - 9raphernk: ~

G - gra~erne-pho~eme
conversion

Y - s ~ n

S - s~asm~

com~n~ gr~-pho.
GS- convegonan~

stress ass~nmer~t

Figure 1: Architectures of the three investigated word-pronunciation systems. Left: M-A-G-Y-S; middle:
M-G-S; right: GS. Rectangular boxes represent modules; the letter in the box corresponds to the subtask as
listed in the legends (far right). Arrows depict data flows from the raw input or a module, to s module or
the output.

J

12.0 -

10.0 -

8.0

8.0

4.{)

2.0

0.0

7.67
5-

5,14 I 5.25

1.N)

,

M A d V S

10.59

Figure 2: Generalisation errors on the M-A-G-Y-$
system in terms of the percentage of incorrectly alas-
sifted test instances by IGTREE on the five subtasks
M, A, G, Y, and s, and on phonemes and stress mark-
ers jointly (PS).

then able to repair the error and continue with suc-
cessful processing. Earlier experiments performed
on the tasks investigated in this paper have shown
that classification errors on test instances are indeed
consistently and significantly decreased when mod-
ules are trained on the output of previous modules
rather than on data extracted directly from C~.LP.X
(Van den Bosch, 1997). Therefore, we train the M-A-
G-Y-S system, with IGTRE~., by training the modules
of the system on the output of predeceasing modules.
We henceforth refer to this type of training as adap-
tive tra;-;-g, referring to the adaptation of a module
to the errors of a predecessing module.

Figure 2 displays the results obtained with IGTREE
under the adaptive variant of M-A-G-Y-S. The fig-
ure shows all percentages (displayed above the bars;
error bars on top of the main bars indicate standard

van den Bosch, Weijters and Daelemans 189

deviations) of incorrectly classified instances for each
of the five subtasks, and a joint error on incorrectly
classified phonemes with stress markers, which is the
desired output of the system. The latter classifica-
tion error, labelled PS in Figure 2, regards classifi-
cation of an instance as incorrect if either or both
of the phoneme and stress marker is incorrect. The
figure shows that the joint error on phonemes and
stress markers is 10.59% of test instances, on aver-
age. Computed in terms of transcribed words, only
35.89% of all test words are converted to stressed
phonemic transcriptions flawlessly. The joint error
is lower than the sum of the errors on the G subtask
and the s subtask, 12.95%, suggesting that about
20% of the incorrectly classified test instances in-
volve an incorrect classification of both the phoneme
and the stress marker.

8.2 M-G-S

The subtasks of graphemic parsing (A) and
grapheme-phoneme conversion (G) are clearly re-
lated. While A attempts to parse s letter string
into grsphemes, G converts gzaphemes to phonemes.
Although they axe performed independently in M-
A-G-Y-S, they can be integrated easily when the
elass-'l'-instances of the A task are mapped to theiI
associated phoneme rather than '1', and the class-
'0'-instances axe mapped to a phonemic null, /- / ,
rather than '0' (of. Table 1). This task integration
is also used in the NETTALK model (Sejnowski and
Rosenberg, 1987). A similar argument can be made
for integrating the syllabification and stress assign-
ment modules into a single stress-assignment mod-
ule. Stress markers, in our definition of the stress-
assignment subtask, are placed solely on the posi-
tions which are also marked as syllable boundaries
(i.e., on syllable-initial phonemes). Removing the

Modularity in Word Pronunciation systems

g

_0=

12.0

10.0

8.0

6.0.

4,0-

2,0.

0.0

7.86

M G S PS

Figure 3: Generalisation e r r o r s on the M-G-S system
in terms of the percentage of incorrectly classified
test instances by IGTREE on the three snbtasks M,
G, and s, and on phonemes and stress markers jointly
(PS).

12"0 l

10.0
g
~ 6.0] 7.41

=~
¢0 3.79 3.97
=~ 4.0- g

2.0-

0,0 .
G S PS

Figure 4: Percentage of generalisation ezrozs made
by IGTRBE on the GS task, in terms of the percent-
age incorrectly classified test instances as well as on
phonemes and stress assignments computed sepa-
rately.

syllabification subtask makes finding those syllable
boundaries which are rdevant for stress assignment
an integrated paxt of stress assignment. Syllabifica-
tion (Y) and stress assignment (s) can thus be inte-
grated in a single stress-ussignment module s.

When both pairs of modules are reduced to sin-
gle modnles, the three-modnle system M-G-S is ob-
tained. Figure 1 displays the architecture of the
M-G-S system in the middle. Experiments on this
system axe performed analogous to the experiments
with the M-A-G-Y-S system; Figuxe 3 displays the av-
erage percentages of generalisation errors generated
by mTRP.E on the three subtasks and phonemes and
stress markers jointly (the error bar labelled PS).

Removing graphemic parsing (A) and syllabifica-
tion (Y) as explicit in-between modules yields bet-
ter accuracies on the grapheme-phoneme conver-
sion (G) and stress assignment (s) subtasks than
in the M-A-G-Y-S system. Both differences are sig-
nltlcant; for G, (t(19) = 43.70,p < 0.001), and for
S (t(19) = 32.00,p < 0.001). The joint accaxacy
on phonemes and stress markers is also significantly
better in the M-G-S system than in the M-A-G-Y-S
system (g(37.50,p < 0.001). Ditferent from M-A-G-
Y-S, the sum of the errors on phonemes and stress
markers, 8.09%, is hardly more than the joint er-
ror on PSs, 7.86%: there is haxdly an overlap in
instances with incorrectly classified phonemes and
stress markers. The percentage of flawlessly pro-
cessed test words is 44.89%, which is maxkedly bet-
ter than the 35.89% of M-A-G-Y-S.

3.3 G S

GS is a single-module system in which only one clas-
sification task is performed in one pass. The GS
task integrates grapheme-phoneme conversion and
stress assignment: to classify letter windows as cor-
responding to a phoneme wi~h a stress marker (PS).
In the GS system, a PS can be either (i) a phoneme

or a phonemic null with stress marker '0', or (ii)
a phoneme with stress marker '1' (i.e., the first
phoneme of a syllable receiving primary stress), or
(iii) a phoneme with stress marker '2' (i.e., the first
phoneme of a syllable receiving secondary stress).
The simple architecture of GS, which does not reflect
any linguistic expert knowledge about decomposi-
tions of the word-pronunciation task, is visualised
as the rightmost architectaxe in Figure 1. It only
assumes the presence of letters at the input, and
phonemes and stress maxkers at the output. Ta-
ble 1 displays example instance PS classifications
generated on the basis of the word booking. The
phonemes with stress markers (PSs) axe denoted by
composite labels. For example, the first instance in
Table 1, __book, maps to class label ~b/l , denot-
ing a / b / which is the first phoneme of a syllable
receiving primary stress.

The experiments with GS were performed with the
same data set of word pronunciation as used with M-
X-G-Y-S and M-G-S. The number of PS classes (i.e.,
all possible combinations of phonemes and stress
markers) occurring in this data base of tasks is 159.
Figure 4 displays the generalisation errors in terms
of incorrectly classified test instances. The figure
also displays the percentage of classification errors
made on phonemes and stress markers computed
separately.

IGTEEE yields significantly better generalisation
accuracy on phonemes and stress markers, both
jointly and independently. In terms of PSs, the accu-
racy on GS is significantly better than that of M-G-S
with (t(19) = 40.48,p < 0.001), and that of M-A-
G-Y-S with (~(19) = 6.90,p < 0.001). Its accuracy
on flawlessly transcribed test words, 59.38%, is also
considerably better than that of the modnlax sys-
tems. Compared to accuracies reported in related
zeseaxch on learning English word pronunciation (Se-
jnowski and Rosenbezg, 1987; Wolpert, 1990; Diet-

van den Bosch, Weijters and Daelemans 190 Modularity in Word Pronunciation systems

I

I

|

l

l

I

l

I

I

I

I

I

/

/

/

,4

,4

A

500000

4O0OOO

--~ 300000

E= 2ooooo c:

100000

S

S
G

G

G)
M M

I~A-G-Y-S M-G-$ C~

Figure 5: Average numbers of nodes in the decision
trees generated by IGTREE for the M-A-G-Y-S, M-
G-S, and Gs systems. Compartments indicate the
numbers of nodes needed for the trees of the subtasks
specified by their labels.

terich, Kiid, and Bakifi, 1995; Yvon, 1996) and on
general quality demands of text-to-speech applica-
tions, an error of 3.79% on phonemes and 30.62%
on words can be considered adequate, though still
not excellent (¥von, 1996; Van den Bosch, 1997).

4 Comparisons of M-A-G-Y-S,
M-G-S, and GS

We have given significance results showing that, un-
der our experimental conditions and using IGTREE
as the learning algorithm, optimal generalisation ac-
curacy on word pronunciation is obtained with GS,
the system that does not incorporate any explicit
decomposition of the word-pronunciation task. In
this section we perform two additional comparisons
of the three systems. First, we compare the sizes of
the trees constructed by IGTREE on the three sys-
tems; second, we analyse the positive and negative
effects of learning the subtasks in their specific sys-
tems' context.

T r e e sizes
An advantage of using less or no decompositions in

terms ofcomputationul ei~ciency is the total amount
of memory needed for storing the trees. Although
the applieation of IGTREE generally results in small
trees that fit well inside small computer memories
(for out modulax (sub)tasks, tree sizes waxy from
64,821 nodes for the M-modules to 153,678 nodes
for the G-module in M-A-G-Y-S, occupying 453,747
to 1,075,746 bytes of memory), keeping five trees in
memory would not be a desirable feature for a sys-
tem optimised on memory use. Figure 5 displays
the summed number of nodes for each of the four
IGTReE-tramed systems under the adaptive vaxiant.
Each bax is divided into compartments indicating
the amount of nodes in the trees generated for each
of the modular subtasks.

van den Bosch. Weijters and Daelemans 191

Figure 5 shows that the model with the best gen-
eralisation accuracy, GS, is also the model taking up
the smallest number of nodes. The amount of nodes
in the single Gs tree, 111,062, is not only smaller
than the sum of the amount of nodes needed for
the G and s modules in the M-G-S system (204,345
nodes); it is even smaller than the single tree con-
structed for the G subtask in the M-G-S system
(125,182 nodes).

A minor difference in tree size can be seen between
the trees built for the G-module in the M-G-S system,
125,182 nodes, and the G-module in the M-A-G-Y-S
system, 153,678 nodes. A similar difference can be
seen for the s-modules, taking up 79,163 nodes in
the M-G-S system, and 96,998 nodes in the M-A-G-
Y-S system. The size of the trees built for modules
appears to increase when the module is preceded by
more modules, which suggests that IGTREE is faced
with a more complex task, including potentially er-
roneous output from more modules, when building
a tree for a module further down a sequence of mod-
ules.

Ut i l i ty effects
The paxticunax sequence of the five modules as in

the M-A-G-Y-S system reflects a number of assump-
tions on the utilit~l of using output from one subtask
as input to another subtask. Morphological knowl-
edge is useful as input to grapheme-phoneme conver-
sion (e.g., to avoid pronouncing ph in loophole a s / f / ,
or red in barred a s / t ed /) ; graphemic parsing is use-
ful as input to grapheme-phoneme conversion (e.g.,
to avoid the pronunciation of gh in through); etc.
Thus, feeding the output of a module A into a subse-
quent module B implies that one expects to perform
better on module B with A's input than without.
The accuracy results obtained with the modules of
the M-A-G-Y-S, M - G - S , a n d GS systems can serve as
tests for their respective underlying utility assump-
tions, when they axe compared to the accuracies ob-
tained with their snbtasks learned in isolation.

To measure the utility/effects of including the out-
puts of modules as inputs to other modules, we per-
formed the following experiments:

1. We applied IGTREE in 10-fold cv experiments to
each of the five subtasks M, A, G, Y, and s, only
using letters (with the M, A, G, and s snbtasks)
or phonemes (with the Y and the s subtasks)
as input, and their respective classification as
output (cf. Table 1). The input is directly ex-
tracted from CELEX. These experiments pro-
vide the baseline score for each subtask, and
axe referred to as the isolated experiments.

2. We applied IGTIIEE in 10-fold Cv experiments
to all subtasks of the M-A-G-Y-S, M-G-S, aald GS
systems, training end testing on input extracted
directly from CP.LEX. The results from these ex-
periments reflect what wound be the accuracy of

Modularity in Word Pronunciation systems

~ a t i o n error
isolated [ideal (utility) I actual (utility)

M-A-G-Y-S
M 5.14 5.14 (o.oo) 5.14 (0.00)
A 1.39 1.66 (--0.27) 1.50 (--0.11)
Q 3.72 3.68 (+0.04) 7.67 (-3.95)
y 0.45 0.75 (-0.30) 2.63 (-2.16)
s 7.96 2.67 (+5.29) 5.28 (+2.68)

M-G-S
M 5.14 5.14 (0.00) 5 .14 (O.O0)
G 3.72 3.66 (+0.06) 3.99 (-0.27)
s 7.96 3.97 (+3.99) 4.10 (+3.86)

GS
o 3.721 - - 3.79 (-0.07)
s 4.71 I - - 3.97 (+0.74)

Table 2: Overview of utility effects of learning sub-
tasks (M, A, G, Y, and s) as modules or partial tasks
in the M-A-O-Y-S, M-O-S, and GS systems. For each
module, in each system, the utility of tra;~ing the
module with ideal data (middle) and actual, modu-
lar data under the adaptive variant (fight), is com-
pared against the accuracy obtained with learning
the subtasks in isolation (left). Accuracies are given
in percentage of incorrectly classified test instances.

the modular systems when each module would
perform perfectly flawless. We refer to these ex-
periments as ideal

With the results of these experiments we mea-
sure, for each subtask in each of the three systems,
the utility effect of including the input of preceding
modules, for the ideal case (with input straight from
CP.LEX) as well as for the actual case (with input
from preceding modules). A utility effect is the dif-
ference between IGTItEE'S generalJsation error on the
subtask in modular context (either ideal or actual)
and its accuracy on the same subtask in isolation.
Table 2 lists all computed utility effects.

For the ease of the M-A-G-Y-S system, it can
be seen that the only large utility effect, even in
the ideal case, could be obtained with the stress-
assignment subtask. In the isolated case, the input
consists of phonemes; in the M-A-G-Y-S system, the
input contains morpheme boundaries, phonemes,
and syllable boundaries. The ideal positive effect
on the s module of 5.29% less errors turns out
to be a positive effect of 2.68% in the actual sys-
tem. The latter positive effect is outweighed by a
rather large negative utility effect on the grapheme-
phoneme conversion task of -3 .95%. Both the A and
y subtasks do not profit from morphological bound-
aries as input, even in the ideal case; in the actual M-
A-G-Y-S system, the utility effect of including mor-
phological boundaries from M and phonemes from G
in the syllabification module Y is markedly negative:

-2.16%.
In the M-G-S system, the utility effects are gen-

erally less negative than in the M-A-G-Y-S system.
There is a small utility effect in the ideal case
with including morphological boundaries as input
to grapheme-phoneme conversion; in the actual M-
Q-S system, the utility effect is negative (-0.27%).
The stress-assignment module benefits from includ-
ing morphological boundaries and phonemes in its
input, both in the ideal case and in the actual M-G-
S system.

The Gs system does not contain separate mod-
ules, but it is possible to compare the errors made
on phonemes and stress assignments separately to
the results obtained on the subtasks learned in isola-
tion. Grapheme-phoneme conversion is learned with
almost the same accuracy when learned in isolation
as when learned as partial task of the Gs task. Learn-
ing the grapheme-phoneme task, IGTR~.~. is neither
helped nor hampered significantly by learning stress
assignment simultaneously. There is a positive util-
ity effect in learning stress assignment, however.
When stress assignment is learned in isolation with
letters as input, IGTI~B classifies 4.71% of test in-
stances incorrectly, on average. (This is a lower error
than obtained with learning stress assignment on the
basis of phonemes, indicating that stress assignment
should take letters as input rather than phonemes.)
When the stress-assignment task is learned along
with grapheme-phoneme conversion in the Gs sys-
tem, a marked improvement is obtained: 0.74% less
classification errors are made.

Snmmaxising, comparing the accuracies on modu-
lax subtasks to the accuracies on their isolated coun-
terpart tasks shows only a few positive utility effects
in the actual system, all obtained with stress as-
signment. The largest utility effect is found on the
stress-assigument subtask of M-G-S. However, this
positive utility eifect does not lead to optimal ac-
curacy on the s subtask; in the Gs system, stress
assignment is performed with letters as input, yield-
ing the best accuracy on stress assignment in our
investigations, viz. 3.97% incorrectly classified test
instances.

5 R e l a t e d w o r k

The classical NETTXLE paper by (Sejnowski and
P~osenberg, 1987) can be seen as a primaxy source
of inspiration for the present study; it has been so
for a considerable amount of related work. Although
it has been cfiticised for being vague and presumptu-
ons and for presenting generalisation accuracies that
can be improved easily with other learning meth-
ods (Stanfill and Waltz, 1986; Wolpert, 1990; Weij-
ters, 1991; Yvon, 1996), it was the first paper to
investigate gtapheme-phoneme conversion as an in-
teresting application for general-purpose learning al-
gofithms. However, few reports have been made on

van den Bosch, Weijters and Daelemans 192 Modularity in Word Pronunciation systems

ss

|

m

m

m

II

I

m

IE

I
/

/

/

II

I

I

/

I

/

/

/

the joint accuracies on stress markers and phonemes
in work on the NETTALK data. To our knowledge,
only (Shsvlik, Mooney, and Towell, 1991) and (Di-
etterich, Hild, and Bnkiri, 1995) provides such re-
ports. In terms of incorrectly processed test in-
stances, (Shavlik, Mooney, and Towcll, 1991) ob-
tain better performance with the back-propagation
algorithm trained on distributed output (27.7% er-
rors) than with the IV3 (Qnlnlan, 1986) decision-tree
algorithm (34.7% errors), both trained and tested
on small non-overlapping sets of about 1,000 in-
stances. (Dietterich, Hild, and Baklri, 1995) re-
ports similar errors on similarly-sized tradning and
test sets (29.1% for BP and 34.4% for Iv3); with a
larger training set of 19,003 words fxom the NETT&LK
data and an input encoding tlfteen letters, previous
phoneme and stress classifications, some domain-
specific features, and error-correcting output codes
IV3 generates 8.6% errors on test instances (Diet-
terich, Hild, and Bakiri, 1995), which does not com-
pare favourably to the results obtained with the
NETTALK-Iike GS task (a valid comparison cannot
be made; the data employed in the current study
contains considerably more instances).

An interesting counterargument against the repre-
sentation of the word-pronunciation task using fixed-
size windows, put forward by Yvon (Yvon, 1996), is
that an induetive-leaxning approach to grapheme-
phoneme conversion should be based on associating
vaxiable-length chunks of letters to variable-length
chunks of phonemes. The chunk-based approach
is shown to be applicable, with adequate accu-
racy, to several corpora, including corpora of French
word pronunciations and, as mentioned above, the
NBTTALK data (Yvon, 1996). Experiments on other
(larger) corpora, comparing both approaches, would
be needed to analyse their differences empirically.

6 D i s c u s s i o n

We have demonstrated that a decision-tree learning
algorithm, IGTREP., is able to learn English word pro-
nuneiation with modest to adequate generalisation
accuracy: the less the leanting task is decomposed in
subtasks, the more adequate the generalization accu-
racy obtained by IGTP,.EE is. The best generalisation
accuracy is obtained with the GS system, which does
not decompose the task at all. The general disad-
vantage of the investigated modular systems is that
modules do not perform their tasks flawlessly, while
their expert-based decompositions do assume flaw-
less performance. In practice, modules produce a
considerable amount of irregular errors which cause
subsequent modules to generate subsequent 'cascad-
ing' errors. Only the subtask of stress assignment is
shown to be learned more successfully on the basis
of modular input.

The best-performing system, Gs, is trained to map
windows of letters to combined class labels repre-

seating phonemes and stress maskers. Compared
to the M-A-G-Y-S and M-G-S systems, the Gs sys-
tem (i) lacks an explicit morphological segmenta-
tion and (ii) learns stress assignment jointly with
grapheme-phoneme conversion on the basis of let-
ter windows rather than phoneme windows. These
two advantageous properties of the ~s system lead
to three suggestions. First, it appears better to leave
morphological segmentation an implicit snbtask; it
can be left to the learning algorithm to extract the
necessary morphological information needed to dis-
ambiguate between alternative pronunciations di-
rectly from the letter-window input. Second, letter-
window instances provide the most reliable source of
input for both grapheme-phoneme conversion sad
stress assignment. Third, stress assignment and
grapheme-phoneme conversion can be integrated in
one task, i.e., to map letter instances to 'stressed
phonemes'.

A warning on the scope of these suggestions needs
to be issued. The results described here are not
only dependent of the resource (tELEX) and the
(sub)task definitions (classification of windowed in-
stances), but also on the use of IQTI~EE as the learn-
ing algorithm. The CEL~.X data appears robust sad
provides an abundance of English word pronunci-
ations, not an inappropriately skewed subset of the
English vocabulary. The windowing method appeass
a salient method to rephrase language tasks as clas-
sification tasks based on fixed-length inputs. It is
not cleat, however, to what extent IGTREE can be
held responsible for the low accuracy on M-A-G-Y-
S a n d M-G-S; IGTREE may be negatively sensitive
in terms of generalisation accuracy to irregular ex-
rots in the input of a modular subtask. Although
irregulax errors axe an inherent problem for modu-
lax systems, other leaxning algorithms may be able
to handle such errors differently. Experiments with
back-propagation learning applied to the same mod-
nlar systems show siginficantly worse performance
than that of IQTRv.E (Van den Bosch, 1997). It
might be possible that instance-based learning algo-
ritkms (e.g., IBI-IG (Daelemans and Van den Bosch,
1992; Daelemans, Van den Bosch, and Weijters,
1997)), which have been demonstrated to outper-
form IGTREE on several language tasks (Daelemans,
GiIlis, and Durieux, 1994; Van den Bosch, Dacle-
roans, and Weijtets, 1996; Van den Bosch, 1997),
perform better on the modular systems. Although
such systems trained with IBI-IG would be compu-
rationally rather inefficient (Van den Bosch, 1997),
employing IBI-IG in learning modulas subtasks may
lead to other differences in accuracy between modu-
lax systems.

A conclusion to be drawn from our study is that
it is possible to learn the complex language task of
English word pronunciation with a general-purpose
inductive-learning algorithm, with an adequate level
of generalisation accuracy. The results suggest that

van den Bosch, Weijters and Daelemans 193 Modularity in Word Pronunciation systems

the necessity of decomposing word-pronunciation
in several subtasks should be reconsidered case-
fully when designing an accuracy-oriented word-
pronunciation system. Undesired errors generated
by sequenced modules may outweigh the desired pos-
itive utility effects easily.

A c k n o w l e d g e m e n t s

We thank Eric Postma, Maria Wolters, David Aha,
Bertjan Busser, Jskub Zavrel, and the other mem-
bers of the Tilburg ILK group for fruitful discus-
sions.

References

Allen, J., S. Hunnicutt, and D. Klatt. 1987. From test
to speech: The MITaik system. Cambridge, UK: Cam-
bidge University Press.

Bloomfield, L. 1933. Language. New York: Holt, Rine-
hard and Winston.

Breiman, L., J. Friedman, R. Ohlsen, and C. Stone.
1984. Classification and regression trees. Belmont,
CA: Wadsworth International Group.

Burnage, G., 1990. CBLBX: A guide for users. Centre
for Lexical Information, Nijmegen.

Chomsky, N. and M. Halle. 1968. The sound pattern of
English. New York, NY: Harper and Row.

Daelemems, W. 1988. Grafon: A grapheme-to-phoneme
system for Dutch. In Proceedings T, velflh Inter-
national Conference on Computational Linguistics
(COLING-88), Budapest, pages 133-138.

Daelemans, W. 1996. Experience-driven language ac-
quisition and processing. In M. Van der Avoird and
C. Corsius, editors, Proceedings of the CLS Opening
Academic Year 1996-1997. Tilbexg: CLS, pages 83-
95.

Daelemans, W., S. Gillis, and G. Durieux. 1994. The
acquisition of stress: a data-oriented approach. Com-
putational £ inguistics, 20(3):421-451.

Daelemans, W. and A. Van den Bosch. 1992. Generali-
sation performance of backpropagation learning on a
syllabification task. In M. F. J. Drossaers and A. Ni-
jholt, editors, TWLT3: Connectionism and Natural
Language Processing, pages 27-37, Enschede. Twente
University.

Daelemans, W. and A. Van den Bosch. 1997. Language-
independent data-oriented grapheme-to-phoneme con-
version. In J. P. H. Van Santen, R. W. Sproat, J. P.
Olive, and J. Hirschberg, editors, Progress in Speech
Processing. Berlin: Springer-Verlag, pages 77-89.

Daclemans, W., A. Van den Bosch, and A. Weijters.
1997. IGTree: using trees for classification in lazy
learning algorithms. Artificial Intelligence Revietv,
11:407-423.

De Saussure, F. 1916. Course de linguistique g~n~rale.
Paris: Payot. edited posthumously by C. Bully and
A. Riedimger.

Dietterich, T. G., H. Hi]d, and G. Baklzi. 1995. A com-
parison of Iv3 and backpropagation for English text-
to-speech mapping. Machine Learning, 19(1):5-28.

Goldsmith, J. 1976. An overview of autosegmentul
phonology. Linguistic Analysis, 2:23-68.

Hunnicutt, S. 1976. Phonological rules for a text-to-
speech system. American Journal of Computational
Linguistics, Microfiche 57:1-72.

Hunnicutt, S. 1980. Grapheme-phoneme rules: a review.
Technical Report STL QPSR 2-3, Speech Transmis-
sion Laboratory, KTH, Sweden.

Koskenniemi, K. 1984. A general computational model
for wordform recognition and production. In Proceed-
ings of the Tenth International Conference on Compu-
tational Linguistics / ~nd Annual Conference of the
ACL, pages 178-181.

Liberman, M. and A. Prince. 1977. On stress and lin-
guistic rhythm. Linguistic Inquiry, (8):249-336.

Mitchell, T. 1997. Machine learning. New York, N'Y:
McGraw Hill.

Mohanan, K. P. 1988. The theoey of lez~cal phonology.
Dordxecht: D. Reidel.

Piatelli-Palmarini, M., editor. 1980. Language learning:
The debate bettveen Jean Piaget and Noam Chon,~k-y.
Cambridge, MA: Harvard University Press.

Qulnlan, J. R. 1986. Induction of decision trees. Ma-
chine Learning, 1:81-206.

Qulnlan, J. R. 1993. c4.5: Programs for machine learn-
ing. San Marco, CA: Morgan Kanfmann.

Sejnowski, T. J. and C. S. Rosenberg. 1987. Parallel net-
works that learn to pronounce English text. Complez
Syster~, 1:145-168.

Shavlik, J. W., R. J. Mooney, and G. G. Towell. 1991.
Symbolic and neural learning algorithms: An experi-
mental comparison. Machine Learning, 6:111-143.

Stanfdl, C. and D. Waltz. 1986. Toward memory-based
reasoning. Communications of the ACM, 29(12):1213-
1228.

Van den Bosch, A. 1997. Learning to pronounce mritten
~vords, a study in inductive language learning. Ph.D.
thesis, Uulversiteit Maastricht.

Van den Bosch, A. and W. Daclemans. 1993. Data-
oriented methods for grapheme-to-phoneme conver-
sion. In Proceedings of the 6th Conference of the
EA CL, pages 45-53.

Van den Bosch, A., W. Daelemans, and A. Weij-
ters. 1996. Morphological analysis as .¢lassi$.ca-
tion: an inductive~learning approach. In K. Oflszer
and H. Somers, editors, Proceedings of NeMLaP-~,
Ankara, Turkey, pages 79-89.

Weijters, A. 1991. A simple look-up procedure supe-
rior to NETtalk? In Proceedings oJICANN.91, Espoo,
Finland.

Weiss, S. and C. Kulikowski. 1991. Computer system8
that learn. San Mateo, CA: Morgan Kaufmann.

Wolpert, D. H. 1990. Constructing a generalizer supe-
rior to NETtalk via a mathematical theory of gener-
a~ation. Neural Networks, 3:445-452.

Yvon, F. 1996. Peononcer par analogie: motivation,
forrnalisation et ~valuation. Ph.D. thesis, Ecole Na-
tionale Sup~rieure des T~l~communication, Paris.

van den Bosch, Weijters and Daelemans 194 Modularity in Word Pronunciation systems

II

l

I

I

I

I

I

I

l

I

II

