
How to build a (quite general) linguistic

J o C a l d e r
Univers i ty of E d i n b u r g h

Language Technology Group
2 Buccleuch Place

Ed inburgh
Scot land

J . C a l d e r C e d . a c . uk

diagram editor

A b s t r a c t

We propose a design for an editor, Thistle, which al-
lows the construction and manipulation of a wide va-
riety of linguistic (and other) diagrams and a general
method for attaching semantics to such diagrams.
This design represents a generalization of all systems
proposed in the computational linguistic literature
of which we are aware. We discuss theoretical and
practical problems which have hindered the develop-
ment of such systems to date and then indicate how
our approach deals with those problems. We offer
an illustrative range of applications for this design.
The current implementation permits instances of the
editor for linguistic theories such as HPSG, varieties
of CCG, DRT, and various kinds of tree diagram.
The display engine may be used to deliver diagrams
via the World Wide Web..An appendix gives an al-
most complete specification for a significant class of
diagrams.

All of the classes of diagram described or men-
tioned here are available as on-line demonstrations
via:

http ://www. itg. ed. ac. uk/software/
thistle/demos/index, html

1 I n t r o d u c t i o n

We propose a novel design, Thistle, for an editor
for diagrams representing various kinds of linguistic
information. We argue for the compromises we sug-
gest as a trade-off between generality and usability.
We demonstrate the latter property through a wide
range of applications.

2 M o t i v a t i o n

Within linguistics and computational linguistics, di-
agrams play a crucial role in representing the con-
tent of theories (the use of trees to define inclusion
hierarchies, for example), in standing as informal
demonstrations of the truth of particular claims and,
therefore, in sharing ideas with the community as
a whole. Popular graphical devices include trees,
attribute-value matrices (A V M s) , e.g. (Pollard and
Sag, 1994), and conventions such as those used in
Discourse Representation Theory (DRT) (Kamp and

Reyle, 1993). It has been clear for a number of years
that the linguistic community would benefit from a
general purpose "diagram editor" allowing users to
construct and manipulate diagrams. A large range
of uses exists for such a program, including the de-
bugging of existing grammars, the construction and
delivery of teaching and drilling materials and the
production of diagrams for publication in some me-
dia or other. Even more generally, such a system
offers a way of defining and interacting with docu-
ments with complex structure.

Why hasn't the community produced such an ob-
viously desirable program? First, change has been a
characteristic of the technical devices used in many
branches of linguistics. Further, it seems in principle
impossible to predict which graphical conventions
are likely to gain currency in linguistic discourse and
publications. Moreover, if diagrams can vary in un-
predictable ways, there might seem to be no hope of
providing a uniform interface for the user. A con-
sequence of these factors is that the implementation
and maintenance costs of such a program appear un-
acceptably high, perhaps unquantifiably so.

There seem to be two responses to this situation.
One response, as seen in the tree editors described by
(Paroubek et al, 1992) and by (Calder, 1993) and in
the feature structure editor designed by (Kieffer and
Fettig, 1995), is to fix a relatively small amount of
graphical devices and restrict the operations defined
over, and potential combinations of, those devices
(perhaps to the extent that only operations which
don't violate consistency with respect to a particular
grammar are allowed).

An alternative response is to aim for the generality
of the kind seen in the general field of diagram edit-
ing and visual programming, of which (Viehstaedt
and Minas, 1995), other papers from that source,
and (Myers et al, 1990) are good examples. And, of
course, constructing diagrams by hand in a generic
drawing package represents a common, but in ex-
tremis measure. There are several reasons why, for
our purposes, generality is a disadvantage.

First, generality in this context typically goes
along with complexity in the mathematical objects

76

to be depicted, often requiring the use of sophisti-
cated layout algorithms, cf. (Battista et al, 1994).
Second, there is a corresponding complexity in the
specification of diagrams. That complexity may re-
quire arbitrary computation to be performed and
therefore demand the power of an unrestricted pro-
gramming language to describe that computation.
Finally, it seems to be an assumption of such ap-
proaches that the well-formedness of a diagram
should equate with the consistency of the interpre-
tation of that diagram in the domain represented
by the diagram. See (Serrano, 1997) for a clear
s tatement of this position. This is much too strong
a requirement in the cases of interest to us: one
may wish to construct an inconsistent AVM, for ex-
ample, precisely to verify that some other processor
correctly detects the inconsistency. One may also
wish to construct diagrams in formalisms which are
undecidable, for example formulae in first or higher
order logics. In that situation, it cannot make sense
to ask an editor to enforce consistency. In the end, in
an appropriately general system, it should be possi-
ble to decide on a case-by-case basis whether consis-
tency with respect to the domain in question should
be enforced.

We discuss in the next section how the design we
present here obviates these problems, and allows the
inexpensive and portable implementation of an ap-
propriately general editor.

3 D e s i g n

We provide in this section a high-level specification
of the editor. Details of implementation are given in
section 5.

3.1 A s s u m p t i o n s

We make two basic assumptions. First, the well-
formedness of diagrams is stated in terms of a con-
text free grammar. This point will be illustrated be-
low. Such an assumption is entirely in accord with
practice in the areas of the specification of syntax
and semantics of linguistic and semantic formalisms,
including the graphical conventions used by such
formalisms. Second, there is a small set of graph-
ical primitives to state the layout of diagrams and
a means for labelling parts of diagrams. Our con-
text free assumption above means that, generally,
we can require the layout problem to be determin-
istic for each proper subpart of a diagram and thus
for diagrams as a whole, as well.

3.1.1 G r a p h i c a l p r i m i t i v e s
Our current specification makes use of three kinds of
primitives. Leaf elements which specify the typeface
in which to set a sequence of characters, for example
p l a i n , i t a l i c , et cetera (a total of seven). Shape
primitives surround a single figure, for example with
brackets of various kinds or with a box or circle and

so on (a total of five). Layout primitives arrange
one or more figures into larger diagrams, and these
provide for vertical, horizontal, tree and array lay-
outs (six primitives). 1 So, leaf primitives are fully
specified by a series of characters; layout primitives
take one or more operands each of which may be
any of the primitives; shape primitives require a sin-
gle operand. 2 These primitives have been selected
on the grounds of generality, while preserving the
property that layout is deterministic.

3.1.2 S p ec i fy in g d i a g r a m s

In addition to specifying layout, we also need to in-
dicate when a type of diagram has variable subparts,
and what types of diagram may appear in those sub-
parts. To take a particular example, we may wish
to say that a drs consists of a universe, which is a
collection of referents, and its conditions. Each of
the conditions may be atomic, an implication or of
still other types. As a point of terminology, where
any number of diagrams may appear in a particu-
lar location, we will say that the diagrams that may
occur there represent a repeating type.

Each of the elements in italic above indicates the
type of a particular subpart of a larger diagram, and
constitute a context free rule relating a diagram and
its subparts. In the abstract (i.e. ignoring details of
layout) and with the usual interpretation of Kleene
star, we end up with the following characterization: 3

(1) drs ~ referent* condition*

In order for the content of a diagram to be inter-
pretable, we allow the subparts of a diagram to be
named, for example (and again in the abstract):

(2) drs -4 universe:referent*
conditions:condition*

The names of subparts must be unique within any
one type of diagram. All that remains is for such
specifications to include layout information. A pos-
sible specification would then be as follows, where
square brackets delimit sequences of specifications,
and hbox and vbox provide horizontal and vertical

fin general, these primitives may take options to control
details of layout, for example the selection of smaller or larger
fonts, or alignment within layouts. In examples here, these
options have been suppressed for clarity. Similarly, primitives
for controlling the appearance of branches and horizontal and
vertical padding are not described here.

Available tree layouts include the "standard" vertical ori-
entation commonly used in linguistic presentations, and hor-
izontally disposed dendro- (or clado-)grams.

2See Figure 2 for an example of a tree described fully using
some of these primitives.

3Details of the concrete syntax our prototype adopts are
given in section 5 below.

77

dispositions.

drs -+ box(vbox([hbox(universe:referent*),
l i n e ,
vbox(conditions:condition")
]))

(3)
In some cases (see for example the treatment of

trees shown in the Appendix), more than one type of
diagram may appear in some position in a diagram.
In this case, one may specify a 'union' of diagram
types. Overall (and ignoring labels), a grammar of
diagrams allow two kinds of production rules:

(4) M --+ Cl . . . C m , m > 1

N ~ C ~ I . . . I C , , n > 1

where M and N are non-terminal symbols and the
rewrite for any non-terminal is unique. C is a non-
terminal or terminal symbol. 4 The first states that a
diagram of type M consists exactly of subdiagrams
of types C 1 . . . C m . The second, a diagram union
states that diagram types C 1 . . . C , are alternative
ways of realizing a diagram of type N. It is clear that
any context free grammar can be rewritten so as to
fall within this class. This choice of organization
contributes greatly to the simplicity of the editor's
user interface.

The labelling of subparts of a diagram allows the
content of a diagram to be represented in terms of
sets of paths through t h e diagram. In general, a
path is a sequence of elements of one of the following
forms (where t is a diagram type, v the name of a
subpart and n an integer):

(5) tv ~vn

The first assigns a diagram type and picks out a
subpart of the diagram. The second references the
nth diagram within a repeating type. A path may
be terminated by a pair t s where s is a sequence of
characters. So, a path such as

(6) drs conditions i implication left

refers to the LHS DRS in an implication which ap-
pears as the (say) first element in tile conditions of
a DRS. Similarly

(7) drs universe 1 id "x"

identifies the content of the first referent in a DRS's
universe.

Ultimately, this type of specification is interest-
ingly reminiscent of proposals for "rule-to-rule" se-
mantics, for example (Gazdar et al, 1985), where

4 For completeness, a t r ea tmen t of te rminals is required and
can be given straightforwardly in te rms of a rb i t ra ry sequences
over a limited alphabet .

the interpretation (and in our case that can be taken
to mean "graphical interpretation") of a s tructure is
given in terms of a function of its subparts. More
practically, one effect of the restriction to context
free rules is that it is extremely easy to generate
an SGML document type definition (DTD) (Gold-
farb, 1990) for the content of a particular class
of diagrams. This at once provides a validator for
da ta that the editor may be expected to display and
a means of specifying stream-based communicat ion
protocols between the editor and other applications.
Needless to say, the existence of a declarative spec-
ification of diagram types goes a long way towards
avoiding the problem of obsolescence. In our imple-
mentation, SGML is used as the 'persistence format '
for user's data.

3.2 U s e r i n t e r f a c e

One of the most obvious benefits of the above as-
sumptions is that the range of possible actions a user
may perform on a diagram is extremely limited, re-
gardless of how complex a class of diagrams is. In
general, the actions of the user consist only of se-
lecting a subpart of a diagram and choosing one of
the diagram types allowed at that point or of per-
forming some other action on the selected subpart.
Notice how the grammar is used to constrain the
range of possible types at any one location. The only
"structure-based" editors we are aware of with com-
parable generality are those, such as psgml (Staflin,
1996), which interpret an SGML DTD to determine
allowable material in a context dependent way.

The virtues of this simplicity should be obvious,
but are worth stating. First, for educational pur-
poses, users unfamiliar with some class of diagrams
are explicitly guided through possible choices, in a
way which provides immediate feedback on the con-
sequence of choices. Second, this form of interaction
is efficient. Effectively, the user provides all and only
that information required to fully specify a diagram.
Finally, there will be a corresponding simplicity in
the relationship of the editor with a back-end pro-
cessor controlling the operations of the editor for the
purpose of animating operations over diagrams.

3.3 L i m i t a t i o n s

There are substantial restrictions in the design we
propose. There are many classes of diagrams used
in linguistics which are more complex than trees,
for example autosegmental diagrams, cf. (Bird and
Klein, 1990), state transition diagrams, as used in
finite state morphology, or the networks of Systemic
Functional Grammar. In order to support the con-
struction of diagrams in those particular areas, more
complex systems are inevitably required. Our pro-
posal is not intended to be so general, for precisely
the reasons and benefits discussed above.

On the other hand, there are other limitations

7 8

J ~
V [inf] VP [base, SUBCAT <~>]

to V [base] NP S [fin, comp 1

bother kim
that Sandy walked

Figure 1: From (Pollard and Sag, 1994, p225).

closer to home. A natural operation over attributes
in an AVM is to order them (and their values) in
some way. Similarly, an AVM editor might allow
type constraints as discussed in (Carpenter, 1992)
to be automatically verified. One might build such
information into a diagram specification (and it may
be feasible in some cases to do so automatically).
These limitations stem from the essential part of
our design which separates clearly the graphical con-
ventions at use in some class of diagrams from the
interpretation of the content of diagrams. Under
that view, if one requires some formally equivalent,
but graphically different representation of some in-
formation, it makes sense for the determination of
equivalence to be made by a processor dedicated to
a particular formalism. In other words, issues to do
with the interpretation of a diagram are not to be
decided by the editor. It" is our opinion that the
benefits fully justify this distinction.

4 Applications
This system has been used to deliver drilling mate-
rials to undergraduates studying syntactic trees and
a simplified form of DRT. Figure 6 in the appendix
below shows how an editor based on the relevant
class of diagrams. Experiments reveal (Cox et al,
1998) that viewing dynamic diagrams (perhaps with
an accompanying discussion by one or more people)
enhances performance significantly on tasks such as
syntactic category labelling and tree construction.
This enhancement is seen even when the grammar
rules and categories are novel, and is (most intrigu-
ingly) still significant if no verbal explanation of the
diagrams is provided.

We have also provided an interface to a locally
developed tokenization engine. This tool provides
a graphical interface to complex rules. Off-the-
shelf technology, in the form of an SGML pro-
cessor (Thompson and McKelvie, 1996), provides
a simple mapping to the format required by the
tokenizer. We have developed (on the basis of
(Smithers, 1997)) a treatment of diagrams in (Pol-
lard and Sag, 1994), used to construct Figure 1.
Finally, we have provided Web-based visualization

tools for a major corpus of dialogues (Anne Ander-
son et al, 1991).

Other classes of diagrams for which we have
provided reasonably comprehensive grammars are:
trees with unlimited branching and mult ipar t node
labels; categorial derivations in alternative styles;
metrical trees; cladistic or cluster diagrams.

There are many other kinds of applications which
can be envisaged for such a system. Here we mention
just a few. The "derivation checkers" or tree editors
of (Calder, 1993) and (Paroubek et al, 1992) can be
viewed as a mode in which each action by a user is
verified for consistency with respect to a grammar.
Recasting that mode within the context of delaying
systems for the interpretation of constraint-based
formalisms (e.g. (DSrre and Dorna, 1993)) would
provide a debugger in which the grammar writer
could perform an instantiation and view the results,
perhaps in an animated fashion. On the other hand,
the "off-line" construction of trees would provide a
way of querying tree banks in a more perspicuous
way than via the manual construction of a query in
some query language.

5 I m p l e m e n t a t i o n
The system described here has been implemented in
Java. Figure 6 is a screen capture of an editor in-
stance using a diagram class specification very much
like that given in the Appendix. There, a tree has
been constructed and a partial conversion of another
tree to a DRS has been performed. In this imple-
mentation, a box containing an ellipsis indicates a
position permitting one or more occurrence of a di-
agram type or types, a box containing a question
mark indicates a location allowing a single occur-
fence of the available types, and a question mark on
its own indicates a location where characters may
appear. In the state shown in the figure, the low-
est ellipsis (i.e. the one immediately below 'Pip') is
selected. The state of the buttons labelled by dia-
gram type names reflect the choice open to the user
at that position in structure. On instantiating a di-
agram at a location marked by an ellipsis, a new
diagram is introduced and the location of the ellip-
sis moved rightward or downward according to the
enclosing layout? Ellipses may be hidden (or re-
vealed) by choosing the option Show ... (or Hide ...).
The operation Kill allows the deletion of any selected
diagram, while Yank will be available if the most re-
cently deleted material is of a type compatible with
the currently selected position. Other operations in-
clude preparing a printable form of the image or a
DTD for the class of diagrams.

We use a function-like syntax to indicate the prim-
itives and their operands. To indicate how drawing

5There is also an operation Insert which inserts an ellipsis
to the left or above the current se lect ion.

79

tree(plain("NP"),
[tree(plain("Det"), [italic("the")]),
tree(plain("N"), [italic("cat")])])

Figure 2: A description of a tree in terms of graphi-
cal primitives

d iagram_spec(drs ,
box(

vbox([hbox(va r (un ive r se , [r e f e r e n t])) ,
line(),
vbox(var(conditions, [condition]))

])))

Figure 3: Concrete syntax for DRSs

primitives may be combined, Figure 2 illustrates the
use of a description of a diagram and could be pro-
cessed by th4 editor to draw a subtree of the tree on
the left of Figure 6.

A diagram type is specified by means of a state-
ment such as shown in Figure 3. (Further ex-
amples are given in the Appendix.) A variable
subpart of a diagram is indicated by the syntax
var(name, type) . That is, a diagram of the stated
type may appear in this position and be referred
to by the stated name. The use of square brack-
ets, as in both uses of vat above, is equivalent to
the Kleene star in the abstract formulation of sec-
tion 3.1.2, i.e. any number of diagrams of that type
may occur at this position. As a further illustration,
consider the definitions shown in Figure 4. As their
names suggest, the first of these limits the daughters
of a tree to two, while the second allows any number
of daughters. The last line illustrates the concrete
syntax for diagram unions.

diagram_spec(two_branch,
tree([var(mother, category),

vat(left, leaf or_tree),
vat(right, leaf_or_tree)])

diagram_spec(arbitrarytree,
tree([var(mother, category),

oar(daughter, [leaf_or_tree])]))

diagram_union(t ree_ top , [one_branch,
two_branch])

Figure 4: Some example tree specifications

6 Conclusions, and cur ren t and
fu tu re work

We have presented a design for a linguistic diagram
editor which, although limited in the range of graph-
ics it permits, nevertheless provides a configurable
system of substantial benefit to a wide class of users.
An implementation is available, and already in use
for a wide range of applications.

We have recently extended the system to allow se-
quences of diagrams to be constructed and viewed.
In our current work, development of a back end pro-
cessor for DRSs is in hand. More generally, a range
of potential architectures for interaction are under
consideration. We expect that a variety of kinds of
interaction will be necessary. Evaluation of the ed-
ucational usefulness of the system continues. In the
future, we expect to provide diagram specifications
for still other formalisms, and an interface allowing
the dynamic control of the editor by other programs.
We anticipate that the restriction to context free or-
ganization of diagrams will be acceptable for many
purposes. On the other hand, extensions to the sys-
tem to allow at least some of the diagram types dis-
cussed in Section 3.3 would make the system more
useful still and, in future work, we are keen to exam-
ine strategies which involve the semiautomatic lay-
out of complex diagrams.

Acknowledgements
The work reported here was supported in part by
grant T T T Text Tokenization Tool from the Engi-
neering and Physical Science Research Council and
by grant The Vicarious Learner from the Economic
and Social Research Council. The author would like
to thank Richard Tobin for critical comments on ear-
lier proposals.

A Specificat ion for a DRS and t ree
edi tor

The specifications shown in Figure 4 and 5 pro-
vide an almost complete specification for an editor
like that shown in Figure 6, permitting the editing
of trees with limited branching and DRSs. It has
been simplified by the omission of some options con-
trolling details of alignment and of the definitions
of the diagram types three_branch, imp l i ca t ion ,
r e f e r e n t and equation. The definition of the di-
agram union t r e e _ t o p needs to be extended from
that given in Figure 4. Also not included is the state-
ment of diagram types allowed at the outermost level
and their layout. The options to hbox and b racke t
control the separator used within the horizontal box
and the shape of bracket respectively.

B Screen layout of t he edi tor
Figure 6 shows the on-screen layout of the instance
of the editor discussed in Section 4 above.

80

diagram_union(leaf_or_tree, lone_branch, two_branch, three_branch, lexical, referent])

diagram_spec(one_branch, tree([var(mother, category), var(daughter, leaf_or_tree)S))

diagram_spec(category, plain(var(Name, Text)))
diagram_spec(lexical, italic(var(Lex, Text)))

diagramunion(condition, [atomic, equation, implication, tree_topS)

diagram_spec(atomic, hbox([separator(plain(....)],
[plain(var(relation, Text)),
bracket([delimiter(round)S,
hbox([separator(plain(", "))],

[vat(referents, [referent])]))]]))

Figure 5: Part of a diagram specification for the diagram editor shown in Figure 6.

R e f e r e n c e s

Anne Anderson et al. 1991. The HCRC Map Task
Corpus. Language and Speech, 34.4, pp351-366.

Giuseppe di Battista, Peter Eades, Roberto Tamas-
sin, and Ioannis G. Tollis. 1994. Algorithms for
drawing graphs: an annotated bibliography Com-
putational Geometry Theory and Applications 4,
pp235-282.

Steven Bird and Ewan Klein. 1990. Phonological
events. In Journal of Linguistics, 26, pp33-56.

Jo Calder 1993 Graphical Interaction with
Constraint-based Grammars. In Proceedings
of the Third Pacific Rim Conference on Compu-
tational Linguistics, Vancouver, 22-24th April,
1993, pp160-169.

Bob Carpenter 1992. The Logic off Typed Feature
Structures, Cambridge Tracts in Theoretical Com-
puter Science, Cambridge: University Press.

Jochen D6rre and Michael Dorna. 1993. CUF: A
Formalism for Linguistic Knowledge Representa-
tion in Jochen D6rre (ed.) Computational As-
pects of Constraint-Based Linguistics Description,
ILLC/Department of Philosophy, University of
Amsterdam, DYANA-2 Deliverable R1.2.A.

Richard Cox, Jean McKendree, Richard Tobin and
John Lee. (to appear) Vicarious learning from di-
alogue and discourse: A controlled comparison.
Instructional Science.

Gerald Gazdar, Ewan Klein, Geoffrey Pullum and
Ivan Sag. 1985. Generalized Phrase Structure
Grammar, Basil Blackwell: Oxford.

Charles F. Goldfarb. 1990. The SGML Handbook.
Clarendon Press: Oxford.

Hans Kamp and Uwe Reyle. 1993. From Discourse to
Logic, Kluwer Academic: Dordrecht and London.

Bernd Kiefer and Thomas Fettig. 1995, Fegramed:
An Interactive Graphics Editor for Feature Struc-
tures, Research Report RR-95-06, Universitit des
Saarlandes, Saarbriicken.

Brad A. Myers, Dario Giuse, Roger B. Dannen-
berg, Brad Vander Zanden, David Kosbie, Ed Per-
vin, Andrew Mickish, and Philippe Marchal. 1990.
Garnet: Comprehensive Support for Graphical,
Highly-Interactive User Interfaces. In IEEE Com-
puter 23.11, pp71-85.

Patrick Paroubek, Yves Schabes and Aravind K.
Joshi 1992 XTAG--A Graphical Workbench for
Developing Tree Adjoining Grammars. In Proceed-
ings of the Third Conference on Applied Natural
Language Processing, Trento, Italy, 31 March-3
April, 1992, pp216-223.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. CSLI: Stanford and
University of Chicago Press: Chicago and London.

J. Artur Serrano. 1997. The Use of Semantic
Constraints on Diagram Editors. In Proceedings
off VL'95, 11th International IEEE Symposium
on Visual Languages, Darmstadt, Germany, 5-6
September 1995.

Gulliver Smithers. 1997. A Diagram Editor Specifi-
cation for Head-driven Phrase Structure Gram-
mar. Unpublished dissertation, Department of
Linguistics, University of Edinburgh.

Lennart Staflin. 1996. PSGML, a ma-
jor mode for SGML documents.
See http ://www. lysator, liu. se/
project s/about_psgml, html.

Henry S. Thompson and David McKelvie. 1996.
A software architecture for SGML annotation in
SGML Europe, Graphical Communications Asso-
ciation: Alexandria, VA.

81

File Edit Options

t o_br chl ,, qu tionl on _br n hl

iii

[Vdrs, 1, Tdrs, Vconditions, 2, TContinuation]

I ,~ . . :H . s ? , ¢ *.%$ ~.,.~ . & ' ~ , . ' : ¢ | three_branch!

.X

S

NP VP

PN V1 NP

chased Det N
I I

the cat

S

x VP
I

V0
1

barked

Pip(×, ~)

/

-.I I i

Figure 6: Screen capture of a tree and a DRS constructed using the editor. Although not reflected in this
picture, the selected point of structure is the ellipsis immediately below the word 'Pip'. The shaded words
represents types which are not available at that location. They are: 'lexical', 'category', 'referent' and 'drs'.
The line immediately above the diagrams indicates the path to the currently selected location.

Gerhard Viehstaedt and Mark Minas. 1995. Gener-
ating editors for direct manipulation of diagrams.
In Brad Blumenthal, Juri Gornostaev and Claus
Unger, editors, Proc. 5th International Conference
on Human-Computer Interaction (EWHCI'95),
Moscow, Russia, LNCS 1015, pp17-25. Springer-
Verlag.

82

