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Abstract 

We present a method for the extraction 
of stochastic lexicalized tree grammars (S
LTG) of different complexities from exist
ing treebanks, which allows us to analyze 
the relationship of a grammar automati
cally induced from a treebank wrt. its size, 
its complexity, and its predictive power on 
unseen data. 

Processing of different S-LTG is performed 
by a stochastic version of the two-step 
Early-based parsing strategy introduced in 
(Schabes and Joshi, 1991). 

1 Introduction 

In this paper we present a method for the extraction 
of stochastic lexicalized tree grammars (S-LTG) of 
different complexities from existing treebanks, which 
allows us to analyze the relationship of a grammar 
automatically induced from a treebank wrt . its size, 
its complexity, and its predictive power on unseen 
data. The use of S-LTGs is motivated for two rea
sons. First, it is assumed that S-LTG better cap
ture distributional and hierarchical information than 
stochastic CFG (cf. (Schabes, 1992; Schabes and 
\Vaters, 1996)), and second, they allow the factor
ization of recursion of different kinds, viz. extrac
tion of left, right, and wrapping auxiliary trees and 
possible combinations. Existing treebanks are used 
because they allow a corpus-based analysis of gram
mars of realistic size. Processing of different S-LTG 
is performed by a stochastic version of the two-phase 
Early-based parsing strategy introduced in (Schabes 
and Joshi, 1991). 

This abstract describes work in progress. So far, 
we have concentrated on the automatic extraction 
of S-LTGs of different kinds (actually S-LTSG, S
LTIG, and S-LTAG). This phase is completed and 

we will report on first experiments using the Penn
Treebank (Marcus et al., 1993) and Negra, a tree
bank for German (Skut et al., 1997). A first version 
of the two-phase parser is implemented, and we have 
started first tests concerning its performance. 

2 Grammar extraction 

Given a treebank, grammar extraction is the process 
of decomposing each parse tree into smaller units 
called subtrees. In our approach, the underlying de
composition operation 

1. should yield lexically anchored subtrees, and 

2. should be guided by linguistic principles. 

The motivation behind (1) is the observation that 
in practice stochastic CFG perform worse than non
hierarchical approaches, and that lexicalized tree 
grammars may be able to capture both distribu
tional and hierarchical information (Schabes and 
Waters, 1996). Concerning (2) we want to take ad
vantage of the linguistic principles explicitly or im
plicitly used to define a treebank. This is motivated 
by the hypothesis that it will better support the de
velopment of on-line or incremental learning strate
gies (the cutting criteria are less dependent from the 
quantity and quality of the existing treebank than 
purely statistically based approaches, see also sec. 
5) and that it renders possible a comparison of an 
induced grammar with a linguistically based com
petence grammar. Both aspects (but especially the 
latter one) are of importance because it is possible 
to apply the same learning strategy also to a tree
bank computed by some competence grammar, and 
to investigate methods for combining treebanks and 
competence grammars (see sec. 6). 

However, in this paper we will focus on the use of 
existing treebanks using the Penn-Treebank (Mar
cus et al., 1993) and Negra, a treebank for German 
(Skut et al., 1997). First, it is assumed that the 
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treebank comes with a notion of lexical and phrasal 
head, i.e„ with a kind of head principle (see also 
(Charniak, 1997)). In the Negra treebank, head ele
ments are explicitly tagged. For the Penn treebank, 
the head relation has been determined manually. In 
case it is not possible to uniquely identify one head 
element there exists a parameter called DIRECTION 

which specifies whether the left or right candidate 
should be selected. Note that by means of this pa
rameter we can also specify whether the resulting 
grammar should prefer a left or right branching. 

Using the head information, each tree from the 
treebank is decomposed from the top downwards 
into a set of subtrees, such that each non-terminal 
non-headed subtree is cut off, and the cutting point 
is marked for substitution. The same process is then 
recursively applied to each extracted subtree. Due 
to the assumed head notion each extracted tree will 
automatically be lexically anchored (and the path 
from the lexical anchor to the root can be seen as 
a head-chain). FUrthermore, every terminal element 
which is a sister of a node of the head-chain will also 
remain in the extracted tree. Thus, the yield of the 
extracted tree might contain several terminal sub
strings, which gives interesting patterns of word or 
POS sequences. For each extracted tree a frequency 
counter is used to compute the probability p(t) of a 
tree t, after the whole treebank has been processed, 
such that l:t:root(t)=a p(t) = 1, where a denotes the 
root labe! of a tree t. 

After a tree has been decomposed completely we 
obtain a set of lexicalized elementary trees where 
each nonterminal of the yield is marked for substi
tution. In a next step the set of elementary trees 
is divided into a set of initial and auxiliary trees. 
The set of auxiliary trees is further subdivided into 
a set of left, right, and wrapping auxiliary trees fol
lowing (Schabes and Waters, 1995) (using special 
foot note labels, like :lfoot, :rfoot, and :wfoot). Note 
that the identification of possible auxiliary trees is 
strongly corpus-driven. Using special foot note la
bels allows us to trigger carefully the corresponding 
inference rules. For example, it might be possible 
to treat the :wfoot labe! as the substitution labe!, 
which means that we consider the extracted gram
mar as a S-LTIG, or only highly frequent wrapping 
auxiiiary trees wiil be wnsidered. It is also possible 
to treat every foot labe! as the substitution labe!, 
which means that the extracted grammar only al
lows substitution. 

3 Two-phase parsing of S-LTG 

The resulting S-LTG will be processed by a two
phase stochastic parser along the line of (Schabes 

and Joshi, 1991). In a first step the input string 
is used for retrieving the relevant subset of elemen
tary trees. Note that the yield of an elementary tree 
might consist of a sequence of lexical elements. Thus 
in order to support efficient access, the deepest left
most chain of lexical elements is used as index to an 
elementary tree. Each such index is stored in a deci
sion tree. The first step is then realized by means of a 
recursive tree traversal which identifies all (langest) 
matching substrings of the input string (see also sec. 
4). Parsing of lexically triggered trees is performed 
in the second step using an Earley-based strategy. In 
order to ease implementation of different strategies, 
the different parsing operations are expressed as in
ference rules and controlled by a chart-based agenda 
strategy along the line of (Shieber et al., 1995). So 
far, we have implemented a version for running S
LTIG which is based on (Schabes and Waters, 1995). 
The inference rules can be triggered through boolean 
parameters, which allows flexible hiding of auxiliary 
trees of different kinds. 

4 First experiments 

We will briefty report on first results of our method 
using the Negra treebank ( 4270 sentences) and the 
section 02, 03, 04 from the Penn treebank (the first 
4270 sentences). In both cases we extracted three 
different versions of S-LTG (note that no normaliza
tion of the treebanks has been performed): (a) lex
ical anchors are words, (b) lexical anchors are part
of-speech, and (c) all terminal elements are substi
tuted by the constant :term, which means that lex
ical information is ignored. For each grammar we 
report the number of elementary trees, left, right, 
and wrapping auxiliary trees. The following table 
summarizes the results: 

Negra words pos :term 
eiern. trees: 26553 10384 6515 
leftaux trees 184 60 40 
rightaux trees 54 35 25 
wrapping trees 39 36 29 

Penn words pos :term 
eiern. tree: 31944 11979 8132 
leftaux trees 701 403 293 
riuht<>nv t .rPP.Q 649 246 153 ··o···--·· .. ---
wrapping trees 386 306 249 

In a second experiment we evaluated the perfor
mance of the implemented S-LTIG parser using the 
extracted Penn treebank with words as lexical an
chors. We applied all sentences on the extracted 
grammar and computed the following average valnes 
for the first phase: sentence length: 27.54, number 
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of matching snbstrings: 15.93, number of elementary 
trees: 492.77, number of different root labels: 33.16. 
The average run-time for each sentence (measnred 
an a Sun Ultra 2 (200 mhz): 0.0231 sec. In a next 
step we tested the run-time behaviour of the whole 
parser on the same input, however ignoring every 
parse which took langer than 30 sec. (about 20 %). 
The average run-time for each sentence (exhaustive 
mode): 6.18 sec. This is promising, since the parser 
is still not optimized. 

We also tried first blind tests, but it turned ont 
that the current considered size of the treebanks is 
too small to get reliable results on unseen data (ran
domly selecting 10 % of a treebank for testing; 90 % 
for training). The reason is that if we consider only 
words as anchors then we rarely get a complete parse 
result (around 10 %). If we consider only POS then 
the number of elementary trees retrieved through 
the first phase increases causing the current parser 
prototype to be slow (due to the restricted annota
tion schema). 1 A better strategy seems to be the 
use of words only for lexical anchors and POS for 
all other terminal nodes, or to use only closed-class 
words as lexical anchors (assuming a head principle 
based on functional categories). In that case it would 
also be possible to adapt the strategies described in 
(Srinivas, 1997) wrt. supertagging in order to reduce 
the set of retrieved trees before the second phase is 
called. 

5 Related work 

Here we will discuss alternative approaches for con
verting treebanks into lexicalized tree grammars, 
namely the Data-oriented Parsing (DOP) frame
work (Bad, 1995) and approaches based on applying 
Explanation-based Learning (EBL) to NL parsing 
(e.g„ (Samuelsson, 1994; Srinivas, 1997)). 

The general strategy of our approach is similar to 
DOP with the notable distinction that in our frame
work all trees must be lexically anchored and that in 
addition to substitution, we also consider adjunction 
and restricted versions of it. In the EBL approach 
to NL parsing the core idea is to use a competence 
grammar and a training corpus to construct a tree
bank. The treebank is then used to obtain a special
ized grammar which can be processed much faster 
than -the original one at the price of a small lass 
in coverage. Samuelsson (1994) presents a method 
in which tree decomposition is completely autom
atized using the information-theoretical concept of 

1 Applying the same tcst as dcscribed above on POS, 
the average number of elementary trecs retrieved is 
2292.86, i.e„ the number seems to increase by a factor 
of 5. 

entropy, after the whole treebank has been indexed 
in an and-or tree. This implies that a new grammar 
has tobe computed if the treebank changes (i.e., re
duced incrementallity) and that the generality of the 
induced subtrees depends much more on the size and 
variation of the treebank than ours. On the other 
side, this approach seems to be more sensitive to the 
distribution of sequences of lexical anchors than our 
approach, so that we will explore its integration. 

In (Srinivas, 1997) the application of EBL to pars
ing of LTAG is presented. The core idea is to gen
eralize the derivation trees generated by an LTAG 
and to allow for a finite state transducer represen
tation of the set of generealized parses. The POS 
sequence of a training instance is used as the index 
to a generalized parse. Generalization wrt. recur
sion is achieved by introducing the Kleene star into 
the yield of an auxiliary tree that was part of the 
training example, which allows generalization about 
the length of the training sentences. This approach 
is an important candidate for improvements of our 
two-phase parser once we have acquired an S-LTAG. 

6 Future steps 

The work described here is certainly in its early 
phase. The next future steps (partly already 
started) will be: (1) measuring the coverage of an 
extracted S-LTG, (2) incremental grammar induc
tion, (3) combination of a competence grammar and 
a treebank. 1 already applied the same learning 
strategy on derivation trees obtained from a !arge 
HPSG-based English grammar in order to speed up 
parsing of HPSG (extending the work described in 
(Neumann, 1994)). Now 1 am exploring methods 
for merging such an "HPSG-based" S-LTG with one 
extracted from a treebank. The same will also be ex
plored wrt. a competence-based LTAG, like the one 
which comes with the XTAG system (Daran et al., 
1994). 
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