
Packing of Feature Structures for
Optimizing the HPSG~style Gran1mar translated fro1n TAG

Yusuke Miyaof, Kentaro Torisawaf, Yuka Tateisif, Jun'ichi Tsujiift
t Department of Information Science, Graduate School of Science, University of Tokyo•

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
tCCL, UMIST, Manchester, U. K.

E-mail: {yusuke, torisawa, yucca, tsuj ii}©is. s. u-tokyo. ac. jp

1 Introduction

This paper describes a method for packing fea
ture structures, which is used for reducing the
number of constituents generated during pars
ing, and for improving the parsing speed. The
method was developed for optimizing a pars
ing system for XHPSG (Tateisi et al„ 1998)
translated from XTAG (The XTAG Research
Group, 1995). The XHPSG system is a wide
coverage parsing system for English based on
HPSG framework (Pollard and Sag, 1994). This
system is also intended to be used for processing
large amounts of texts, for the purposes such as
information extraction. Current parsing speed
of our system is not suffi.cient enough to achieve
this goal.

Our method improves the parsing speed by
solving the problem which the XHPSG and the
XTAG system have. That is, many lexical en
tries are assigned to a word, and many con
stituents are produced during parsing. The ex
perimental results show that our method leads
to a significant speed-up. The results also sug
gest the possihility of optimizing the XTAG sys
tem by introducing packing offeature structures
and packing of tree structures, although these
operations are not currently so apparent.

2 The XHPSG System

This section describes the current status of the
XHPSG system and the efficiency problem in
the system. Both of the grammar and the parser
in the XHPSG system are implemented with
feature structure description language, LiLFeS
(Makino et al., 1998). The grammar consists
of lexical entries for about 317 ,000 words, and
10 schemata, which follows schemata of the

'This work is partially founded by Japan Society for
the Promotion of Science (JSPS-RFTF96P00502).

104

CKYTable

Orir;lnLl XllPSG SJ>lcm

twfica5on ol
Pad<ed FllSllK9 Sltvetvn"

SJ>ltm w!lh lhe Pacldo& Moowo

Figure 1: Data flow in the parsers for the X 11-
PSG system.

HPSG framework in (Pollard and Sag, 199~)
with slight modifications. The parser is a simplt
CKY-based parser.

Currently, the parsing speed of this system is
not satisfactory, and we need further impro\'e·
ment of the parsing speed. One of the ma
jor reasons of ineffi.ciency is that the XHPSG
system assigns many lexical entries to a sing]C'
word. For example, a noun is assigned 11 lexica!
entries, a verb is assigned 20-30 lexical entries,
and some wor<ls are even assigned more than
100 entries.

This characteristic is inherited from the
XTAG grammar. The XTAG grammar assigns
many elementary trees to a single word, and
there is a one-to-one correspondence between a
lexical entry in XHPSG and an elementary tree
in the XTAG grammar. The XTAG system ap
plies a POS tagger before parsing in or<ler to
overcome this ineffi.ciency by reducing the num·
her of lexical entries assigned to a word. How
ever, this method sacrifices the soundness of the

[

wtord l PHON ("w•lkcd")
1u6

llEAD VMODE wmod<-i•d
MAINV ioolu•

SYNSEM[LOCICAT [LASS .„--,;;;---] l
[

SUBJ (aon)]
VAL CO MPS ()

SPR (}

[
„.,. 1 PHON (" w•lkcd") _

•t:r6
VMODE •modc...ppa.rl

SYNSEM[LOC[CAT [HEAD r ~i;;~~r.~] l
[slBJ (••••)]

VAL COMPS ()
SPR ()

Figure 2: Two of the lexlcal entries for an En
glish verb "walked". Underlined values are dif
ferent. Most of the features are omitted for sim
plicity.

wortl
PHON (" walked ")

c, SYNSEM[LOCICAT [llEAD [f.~~N~RI]]
PASS J

[
SUBJ (••••)]

VAL COMPS ()
SPR ()

„= cf11 r21 G1i
.O.~ ~m~t;T,°6oofe4a1 iooleo•), (unodc...pfGrft plu, pla,)}

Figure 3: A packed feature structure for the lex
ical entries shown in Figure 2.

parsing process. In the case that the tagger fails
to assign the correct POS to a word, correct syn
tactic structures may not be created even when
the grammar potentiilly covers such structures.

To solve the same problem, we propose a
new method described in the next section. The
method can gain a similar effect, but does not
sacrifice the soundness of parsing.

3 Packing of Feature Structures

The left hand side of Figure 1 illustrates the
data flow of the original parser of the XHPSG
system. There are two major operations, unifi
cation and factoring. When we apply a schema
to daughters, a unification operation is per
formed, and a mothcr is created. ~A.. set of moth
ers are reduced to a smaller set of feature struc
t ures by facto ring operation 1 , and these con-

1 A factoring operation in a CI\Y parser for CFG
reduces the number of constituents by identifying con
stituenls described by the identical non-terminals. The
operation plays a crucial role for avoiding an exponential

105

createJ>FS(F)
C:==J_, v:=(), 5:=()
for each f E features(F)

if f E DisjFentures then
v :={follo11(C, f))fJv
5 := {follow(F, f))tJ5 '

else
F' :=follow(F ,f)
(C',v', {5'}) =createJ>FS(F')
C :=Cu[! C'J
v :== vfJv', 5 := 6tJ5'

end..if
end_for
return (C,v,{5})

Figure 4: Algorithm for creating new packed
feature structure from a feature structure. '©'
denotes the concatenation operation of se
quences.

stituents are put into CKY table.
The right hand side of Figure 1 illustrates

the parser with the packing module. The
unification and the factoring operation in the
original parser wa.s replaced by unification of
packed feature structures and dynamic packing.
These operations are more efficient than the cor·
responding one, because multiple appUcation~
of schemata are reduced to one unification or
packed feature structures, and multiple opera ·
tions of factoring are reduced to one dynamic
packing. In addition, dynamic packing reduces
the constituents further than the factoring op·
eration.

With a simple example, now we see how fea·
ture structures are packed into one. Figure 2
shows two of the lexical entries that the XH PSG
system assigns to an English verb "walked'".
These lexical en tri es correspond to distinct ele·
mentary trees of XTAG. They are different in
only a few features, whil~ each feature structure
has over 100 features. That is, most of them
have equivalent values, so that it is redundant
to have each of them as two independent featurC'
structures.

For these feature structures, a packed feature
structure is described as in Figure 3. C speci
fies the common part of the original two feature

explosion of the time complexity of the parsing of CFG.
In the case of HPSG, the similar effect can be accorn·
plished by the factoring operation, which iden tifies lhe
constituents with equivalent feature structures in this
ca.se. We have observed that parsing time with syntar
tic grammars can be reduced significant!y, though this
operation does not lead to a reduction of compulational
Lime complexity Lo polynomial.

pack_f ea ture ..s tructures (P :F S)
P:FS' := r/J
for each P = (C, v, D.) E P:FS

if P' = (C',v',D.') E P:FS' such that
C' is equivalent to C and,
for each i(O < i < /,:)
paths(C, ni) = -paths{C1

, nl)
where v = (no , · · ·, 11~) and v' = (nb, · · ·, n~)

then
D." := D. u D.'
P:FS' := (P:FS'\{P'})U {(C,v,D.")}

else
P:FS' := P:FS' u {P}

end_if
end.for
return P:FS'

Figure 5: Algorithm for packing a set of packed
feature structures.

uni f y _packed_feature ..s tructures (P1 , P2)

Pi= (Ci.v1,D.1)
P2 = (C2, V2, ll.1)
il := <P
if success C :=Ci U C2 then

v := v1 0v2
for each 01 E ll.1 and 62 E D.2

o :;:; copy((v1uoi)fl(v2u62)) .. U1
D. := ll. u {o}
Cancel the side-effect of U
occuring during computation of U1 •

end_for
end_if
return (C, v, ß)

Figure 6: Algorithm for unifying two packed
feature structures.

structures. v expresses the nodes2 in the fea
ture structure, to which disjunctive structures
are incorporated. The nodes are expressed as
tags for structure sharings such as ITJ. ,6. ex
presses a set of different values, that come to
the position specified by the nodes in v. Hence,
the original feature structures are obtained by
unifying one of the elements of ,6. to the nodes
in v. A packed feature structure holds exactly
the equivalent information of the original fea
ture structures with a smaller data size.

4 Algorithms

This section describes three algorithms, (l)con
version of a feature structure to a packed feature
structure, (2)packing of packed feature struc-

2Though feature structures are expressed in a conven
tional matrix-like notation, they can be seen as directed
graph with a root whose nodes and arcs are labeled. Fea
tures are labels for arcs and the labels for nodes are called
types.

106

tures and (3)unification of packed feature struc
tures.

The last two algorithm requires packed fea
ture structures as their inputs and the first al
gorithm is used for convert non-disjunctive fea
ture structures to such inputs to the two algo
rithms. Figure 4 shows the first algorithm for
converting a feature structure to a new packed
feature structure. vVe assume that a packed fea
ture structure is given as a triple (C, v, .6.) as
described in Section 3. The input to this al
gorithm is a (non-disjunctive) feature structure
and a set of features, to which the disjunction is
introduced. In the figure, F is a feature struc
ture and DisjFeatures is a set of features. The
function follo\l(F, j) returns the node in F
reached by the feature f from a root of F. What
the algorithm does is to split F into two parts,
the first part is C and the other part is a set of
nodes and a set of substructures represented by
v and ,6. respectively.

Figure 5 shows the algorithm for packing al
ready packed feature structures. In the fig
ure, P FS denotes a given set of packed feature
structures, and P FS' denotes a newly created
set of packed feature structures. The function
paths(F, n) returns a set of all the paths to the
node n in F. The algorithm for packing lexical
entries is straightforwardly obtained from this
algorithm and the previous algorithm.

Figure 6 shows the algorithm for unifying two
packed feature structures. The overall algo
rithm is similar to the one in (Kasper, 1987),
although data structures for disjunctive feature
structures are different. Intui tively, we first
unify common parts (C1 and C2), and next
check consistency of each combination of dis
juncts in .6.1 and .6.2. The operator U de
notes the unificaHon of non-disjunctive feature
structures3 . The unification is regarded as an
destructive procedure in the figure. lt has a
side effect to the input feature structures. For
instance, suppose that feature structures stored
in the variables F and F' have the nooes stored
in the variable n and n' as their substructure
and that for some path rr fol/ow(F, rr) = n,
J ol low(F', rr) = n' an d n :/:. n'. After perform
ing the . unifi~ation FUF',.the values of F,F',n
and n' are automatically updated and, as a re
sult of the update, F = F' and n = n' hold.
In the algorithm in the figure, this type of si<le-

3 Unification of tuples is a tuple of the results of the
unification of corresponding elements of the tuples.

Features incorporated from XTAG
PRO, CASE, PRON. REFL, VMODE, l\IAJNV, EXTRACT,
TRANS, PASS, PERF, PROG, ASSIGN_CASE, JNV

Other features
HEADPHON, MARKING, CONT, TRF

Table 1: Specified features for the experiments.

arsing time m avg. (sec.
est set est set

2.31 14.45
1.29 5.88
1.79 2.46

The experiments are performed on Alpha Station 500

(500MHz CPU, 256MB Memory), and the times are
measured in User Time.

Table 2: Results of the experiments.

effects is assumed to occur for the values stored
in the variables such as C1,C2,v1,v2,81 and 82.
The rnechanisrns for the side-effect and its can
celing are similar to the execution rnechansims
of Prolog, including backtracking. They are also
irnplernented in LiLFeS. The copy is a procedure
to create a distinct feature structure equivalent
to the input feature structure and the newly cre
ated feature structure is free frorn the side-effect
of the unification against the original input fea
ture structure.

5 Experiments

This section shows the experimental results
of the current implernentation of our packing
method. Experiments are performed by spec
ifying features originated in XTAG and a few
other features as in Table 1.

The packing module .is irnplemented with
LiLFeS, and is incorporated into the XH
PSG systern. We compared the parsing
times of (l)Test set A (337 sentences, 8.37
words/sentence)4 and (2)Test set B (16 sen
tences, 11.88 words/sentence)5 , between the
(l)New System (with the packing rnodule) and
the (2)0ld System (without the packing rnod
ule). The parsers of both systems are simple
CKY-based parsers. As Table 2 shows, the pars
ing speed improves by 1.79 times in Testset A,
and 2.46 times in Testset B, which consists of

4 Test set Ais bundled in the XTAG systern for check
ing the grammar.

5Test set B is a subset of Test set A. The subset
consists of 16 sentences, each of which costs more than
10 second!' to parse.

107

sentences costing much time to parse. In Test
set A, the nurnber of lexical entries is reduced
by 35.3%, and that of constituents in the CI\Y
table by 46. 7% on average.

6 Conclusion and Future Work

We proposed a method for packing feature
structures by introducing disjunctions into fea
ture structures. This method reduces the num
ber of lexical entries in HPSG grarnrnars and
constituents created during parsing. As a result,
we achieved 1. 7 4 tim es irnprovement in parsing
time for the test corpus bundled in the XTAG
systern. We expect to gain the sirnilar effect
with the XTAG system by applying our packing
method, though it is currently not so apparent.

For realizing a practical parsing system, we
are currently integrating our packing method
with other two optimization techniques: (l)irn
plementation with a native compiler version of
LiLFeS (Makino et al., 1998), and (2)compila
tion of HPSG to CFG (Torisawa and Tsujii,
1996). As a result of the latter optimization,
current XHPSG system can parse sentences in
the ATIS corpus in 1.12 seconds on average
without any POS taggers. Further speed-up is
expected by integrating our rnethod to this sys
tem.

References
Robert T. Kasper. 1987. A unification method

for disjunctive feature descriptions. In Proc. 26th
ACL, pages 235-242.

Takaki Makino, Minoru Yoshida, Kentaro Torisawa,
and Jun'ichi Tsujii. 1998. LiLFeS - towards
a practical HPSG parser. In Proc. of COLING
ACL '98. To appear.

C. Pollard and 1. A. Sag. 1994. Head-Driven Phrase
Structure Grammar. University of Chicago Press.

Yuka Tateisi, Kentaro Torisawa, Yusuke Miyao, and
Jun'ichi Tsujii. 1998. Translating the XTAG En
glish grammar to HPSG. In Proc. TAG+ Work
shop.

The XTAG Research Group. 1995. A lexicalized
tree adjoining grammar for Eng!ish. Tedmirnl re
port, IRCS Report 95-03, University of Pennsyl
vania, March.

Kentaro Torisawa and Jun'ichi Tsujii . 1996. Com
puting phrasal-signs in HPSG prior to parsing. In
Proc. 16th COLING, pages 949-955.

