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1 Introduction 

In (Boullier 98), we presented range concatena
tion grammars (RCGs), a syntactic formalism 
which is a variant of literal movement gram
mars (LMGs), described in (Groenink 97), and 
which is also related to the framework of LFP 
developed by (Rounds 88) . In fact it may be 
considered to lie halfway between their respec
tive string and integer versions; RCGs retain 
from the string version of LMGs or LFPs the 
notion of concatenation, applying it to ranges 
rather than strings, and from their integer ver
sion the ability to handle only (part of) the 
source text. The basis of RCGs is the notion of 
range, a couple of integers (i „ j} which denotes 
the occurrence of some substring ai+i ..• a; in 
an input string a1 .•• an. Of course, only con
secutive ranges can be concatenated into a new 
range 1• This formalism, which extends CFGs . , 
a1ms at being a convincing challenger as a syn-
tactic base for various tasks, especially in nat
ural language processing. We have shown that 
the positive version of RCGs, as simple LMGs 
or integer indexing LFPs, exactly covers the 
dass PTIME of languages recognizable in de
terministic polynomial time. Since the compo
sition Operations of RCGs are not restricted to 
be linear and non-erasing, its languages (RCLs) 
are not semi-linear. Therefore, RCGs are not 
mildly context-sensitive (Joshi, Vijay-Shanker, 
and Weir 9i) and are more powerful than linear 
context-free rewriting systems (LCFRS) (Vijay-

. 1 Ranges can be generalized to denote couples of state~ 
In some FSA representing ill-formed, incomplete or am
biguous (multi tagged/multi part of speech or word lat
tice) input. 
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Shanker, Weir, and Joshi 87), while staying 
computationally tractable: its sentences can be 
parsed in polynomial time. However, our for
malism shares with LCFRS the fact that deriva
tions are context-free (i.e. the choice of the op
eration performed at each step only depends on 
the object to be derived from). As in the CF 
case, its derived trees can be packed into parse 
forests (Lang 94). Let p be a range. The nodes 
of a CFG parse forest are couples (A, p) while 
for an RCG they have the form (A, PJ where p is 
a vector (!ist) of ranges. Besides its power and 
efficiency, this formalism possesses many other 
attractive properties. RCLs are closed under 
intersectio_n and complementation2• Since this 
~losure property can be reached without chang
mg the structure (grammar) of the constituents 
(i.e. we can get the intersection of two gram
mars G1 and G2 without changing neither G1 

nor G2), it allows for a form of modularity which 
may lead to the design of libraries of reusable 
generic grammatical components. Moreover, 
like CFGs, this formalism can act as a syn
tactic backbone upon which decorations from 
other domains (probabilities, logical terms, fea
ture structures) can be grafted, and last, in our 
opinion, it is very elegant and understandable. 

2 RCGs 

The rewrite rules 1JJo -t 1JJ1 .. . 1JJm of an RCG 
are called clauses. Each component t/Ji = 
A(a:1, ... , a:p) is a predicate. Each argument O:i 

of a predicate is a string of terminal symbols 

~The set T" - L, complementary of L, is defined on 
the basis of "negation by failure" rules . · 



and variables. Variables and arguments in a 
clause are supposed tobe bound to ranges by a 
substitution mechanism. An instantiated clause 
is a clause in which arguments and variables 
are consistently replaced by ranges; its compo
nents are instantiated predicates. For example, 
A((g .. h}, (i .. j), (k .. l})--+ B((g+1 .. h), (i+i .. 
j.1), (k .. [.1)) is an instantiation of the clause 
A(aX, bY c, Zd) -+ B(X, Y, Z) if the source text 
a1 ••. a11 is such that a9+ 1 ::::: a, ai+1 = b, aJ° = c 
and a1 = d. A derive relation is defined on 
strings of instantiated predicates. If an instanti
ated predicate is the LHS of some instantiated 
clause, it can be replaced by thc RHS of that 
instantiated clause. An input string ai ... a11 

is a sentence iff the empty string ( of instanti
ated predicates) can be derived from S((O .. n)) 
where S is the start symbol. The arguments 
of predicates may denote discontinuous or even 
overlapping ranges. Fundamentally, a predicate 
A defines a notion (property, structure, depen
dency, ... ) between its arguments whose ranges 
may be scattered over the source text. What 
is ubetween" its arguments is not the respon
sibility of A, and is described (if at all) some
where eise. RCGs are therefore well suited to 
describe long distance dependencies. Overlap
ping ranges are due to thc non-linearity of the 
forrnalism. For example, the same variable may 
occur in different arguments in the RHS of some 
clause, expressing different views (properties) of 
thc same portion of the source text. 

As an example of an RCG, the following 
set of clauses describes the three-copy language 
{www 1 w E {a,b}*} which is known tobe be
yond the formal power of TAGs. 

(I) 
{ 

S(XYZ) -+ A(X, Y, Z) 
A(aX, aY, aZ) -+ A(X, Y, Z) 
A(bX, bY, bZ) _. A(X, Y, Z) 
A(c,e,c) _. e 

3 RCGs & TAGs 

Within the TAG formalism, if we consider an 
auxiliary tree r and the way it evolves until no 
more adjunction/substitution is possible, we re
alize that some properties of the final tree are al
ready known on r. The yield derived by the part 
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of r to the left (resp. to the right) of its spine 
are contiguous and, the left yield (produced by 
the left part) lies to the left of the right yield in 
the input string. Thus, for any tree r (initial or 
auxiliary) consider its m internal nodes where 
adjunction is allowed3. We decorate each such 
node with two variables Li and ~ ( 1 $ i $ m) 
which are supposed to capture respectively the 
left and right yield of this i 1h node. The root 
and foot of auxiliary trees have no decoration. 
Each terminal leaf has a single decoration which 
is its terminal symbol or e. Afterwards, we col
lect into a string dr the decorations gathered 
during a top-down left-to-right walk in r. If r 
is an auxiliary tree, let d~ and d~ be the part of 
dr gathered before and after the foot of r has 
been hit. With each tree, we associate an RCG 
clause constructed as follows: 

• Its LHS is the predicate S( dr) if r is an 
initial tree (S is the start predicate). 

• Its LHS is the predicate A( d~, d~) if r is an 
auxiliary A-tree. 

• Its RHS is 1/J1 .. . 1/Jm with 1/Ji = Ai(Lit ~) 
if Ai is the label of the ith inside node. 

For example, the following TAG 

Q' 

s 
1 
A 

1 
€ 

where a is the initial tree and ß1, ß2 and ß3 
are the auxiliary trees 4 , defines the language 
{ww 1 w E {a,b}*}, which is translated into 
the strongly equivalent RCG 

S(L1R1) 
A(aL1, aR1) 
A(bL1,bRi) 
A(c, e) 

-+ A(L1, Ri) 
-+ A(L1,Ri) 
-+ A(L1iR1) 
-+ € 

3In TAGs, we assumed that initial trees are all labeled 
by a unique start symbol, say S, which is not used some· 
where eise, that adjunction is not allowed at the root or 
at the foot of any auxiliary tree but is mandatory on 
inside nodes. 

4 Each foot is marked by an *· 



As an example, the arguments of the LHS 
predicate of the second clause have been gath
ered during the following walk in ß1 

~r' <:'fl1 .4~ 
a l J, ~ 

We know (Vijay-Shanker and Weir 94) that 
TAGs, LIGs and HGs are three weakly equiv
alent formalisms though thcy appear to have 
quite different external forms. Groenink has 
shown that HGs can be translated into equiva
lent LMGs. We have shown that transformation 
from TAGs to RCGs also exists. In (Boullier 98) 
we have proposed a transformation from LIGs 
into equivalent RCGs. While the process in
volved to get an equivalent RCG for a TAG or 
an HG is rather straightforward, the equivalence 
proof for LIG is much more complex and relies 
upon our work described in (Boullier 96). This 
is due to the fact that an RCG is a purely syn
tactic formalism in the sense that it only han
dles (part of) the source text, exclusive of any 
other symbol. Therefore the stack symbols of 
LIGs have no direct equivalent in RCGs and the 
translation process needs to understand what 
the structural properties induced by these stack 
symbols are. An interesting property of all these 
translations is that the power of RCGs comes for 
free. In particular, if the input TAG or LIG is in 
some normal form5 , the corresponding RCG can 
be parsed in O(n6 ) time at worst . Moreover, 
in RCGs, the incidence of each clause on the 
total parsing time can be isolated. Of course, 
complicated clauses induce high polynomial ex
ponents. If we look at the clauses generated 
by the translation, some are simple, and few (if 
any) are complicated (and therefore induce an 
exponent of 6). In fact these translations bring 

~ Aulciliarv trees in TAGS are such that thcre are at 
most two int~rnal nodes where the adjunct operation can 
take place or the number of objects in thc right-hand side 
of LIG rules is at most two. 
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new insight and help to understand why and at 
which point the maximum complexity is intro
duced. 

4 RCGs & RNRGs 

Ranked node rewriting grammars (RNRGs) 
(Abe and Mamitsuka 97) are an extension of 
TAGs. They are used to predict the protein 
secondary structure from their amino acid se
quence patterns. These secondary structures, 
the so-called ß-sheet regions in particular, form 
a kind of long distance dependency which can 
be captured by RNRGs. More precisely, it is 
a stochastic version of RNRGs which is used 
in this application6 . The probability of each 
rewrite rule is set by training over a protein 
whose structure is known (corpus) and then 
used to analyze other proteins. RNRGs form a 
strictly growing hierarchy of grammars and lan
guages (RNRLs) which is characterized by an 
integer called its rank. For any k 2:: 1, RN RL(k) 
properly contains RN RL(k-1) . RN RL(O) are 
the CFLs and RN RL(l) are the TALs. 

An RNRG is a labeled tree rewriting system 
that consists of a starting tree and a finite set 
of rewriting rules, A - a, where A is a nonter
minal symbol and a is a tree structure, which 
specifies how a node 11, labeled A, can be rewrit
ten. Some leaves in a, called empty leaves, are 
labeled by a ~ sign. Empty leaves are place
holders which indicate where the children of 11 

must be grafted. The number of children of 11 

and the number of empty leaves in a must be 
equal. This number is the rank. After rewrit
ing, the children of a node are attached to these 
empty leaves in the same order as before rewrit
ing. A tree whose nodes are only labeled by ter
minal symbols is a terminal tree. The tree lan
guage of an RNRG is the set of terminal trees 
which can be derived from the starting tree after 
a finite number of applications of its rewriting 
rules. Its string language is the set of yields of its 
tree language. Note that if an internal node is 
labeled by a terminal symbol, this node cannot 
be rewritten and its labe! does not contribute 

6In fact, for computational considerations, only a sub
class of RNRGs is processed. 



to the string language. 
It is not difficult to transform an RNRG of 

any rank into an equivalent RCG. In fact the 
algorithm is a generalization of the one used for 
TAGs. Once again, no complexity penalty is 
induced by this transformation. 

The previous three-copy language can be de
scribed by an RNRG of rank 2 whose initial tree 
is 

A 

/\ 
c c 

and the set of rewrite rules for the node A is 

t t t 

/1 
a A 

/1 
b A 

/\ 
ü ü 

/\ /\ 
t t 

!\ !\ 
~ a ~ a 

/\ /\ 
~ b ü b 

where t stands for an anonymous terminal sym
bol which labels non leaf nodes. 

Our algorithm exactly yields the RCG la
beled (I). As an example, the arguments of tbe 
LHS predicate of the second clause have been 
gathered during the following walk on the tree 
structure of tbe first rewrite rule for A. The 
variables X, Y and Z denote the left, bottom 7 

and right environment of A. 

t f 

u~. )~ •• 
~ -

The corresponding parser has a cubic time 
comp!exity. This global parsing time can hP, re-

7For a node with 1 + 1 sons, there will be· Y1, ... Yi 
"bottom" variables. 
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duced to linear ifwe remark that the ranges sub
stituted to the variables X, Y and Z in the first 
clause are of equal sizes. Such a property can be 
automatically discovered or explicitly specified. 
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