
A Generalization of Mildly Context-Sensitive Formalisms

Pierre Boullier
INRIA-Rocquencour t

BP 105
78153 Le Chesnay Cedex, France

Pierre.Boullier©inria.fr

1 Introduction

In (Boullier 98), we presented range concatena
tion grammars (RCGs), a syntactic formalism
which is a variant of literal movement gram
mars (LMGs), described in (Groenink 97), and
which is also related to the framework of LFP
developed by (Rounds 88) . In fact it may be
considered to lie halfway between their respec
tive string and integer versions; RCGs retain
from the string version of LMGs or LFPs the
notion of concatenation, applying it to ranges
rather than strings, and from their integer ver
sion the ability to handle only (part of) the
source text. The basis of RCGs is the notion of
range, a couple of integers (i „ j} which denotes
the occurrence of some substring ai+i ..• a; in
an input string a1 .•• an. Of course, only con
secutive ranges can be concatenated into a new
range 1• This formalism, which extends CFGs . ,
a1ms at being a convincing challenger as a syn-
tactic base for various tasks, especially in nat
ural language processing. We have shown that
the positive version of RCGs, as simple LMGs
or integer indexing LFPs, exactly covers the
dass PTIME of languages recognizable in de
terministic polynomial time. Since the compo
sition Operations of RCGs are not restricted to
be linear and non-erasing, its languages (RCLs)
are not semi-linear. Therefore, RCGs are not
mildly context-sensitive (Joshi, Vijay-Shanker,
and Weir 9i) and are more powerful than linear
context-free rewriting systems (LCFRS) (Vijay-

. 1 Ranges can be generalized to denote couples of state~
In some FSA representing ill-formed, incomplete or am
biguous (multi tagged/multi part of speech or word lat
tice) input.

17

Shanker, Weir, and Joshi 87), while staying
computationally tractable: its sentences can be
parsed in polynomial time. However, our for
malism shares with LCFRS the fact that deriva
tions are context-free (i.e. the choice of the op
eration performed at each step only depends on
the object to be derived from). As in the CF
case, its derived trees can be packed into parse
forests (Lang 94). Let p be a range. The nodes
of a CFG parse forest are couples (A, p) while
for an RCG they have the form (A, PJ where p is
a vector (!ist) of ranges. Besides its power and
efficiency, this formalism possesses many other
attractive properties. RCLs are closed under
intersectio_n and complementation2• Since this
~losure property can be reached without chang
mg the structure (grammar) of the constituents
(i.e. we can get the intersection of two gram
mars G1 and G2 without changing neither G1

nor G2), it allows for a form of modularity which
may lead to the design of libraries of reusable
generic grammatical components. Moreover,
like CFGs, this formalism can act as a syn
tactic backbone upon which decorations from
other domains (probabilities, logical terms, fea
ture structures) can be grafted, and last, in our
opinion, it is very elegant and understandable.

2 RCGs

The rewrite rules 1JJo -t 1JJ1 .. . 1JJm of an RCG
are called clauses. Each component t/Ji =
A(a:1, ... , a:p) is a predicate. Each argument O:i

of a predicate is a string of terminal symbols

~The set T" - L, complementary of L, is defined on
the basis of "negation by failure" rules . ·

and variables. Variables and arguments in a
clause are supposed tobe bound to ranges by a
substitution mechanism. An instantiated clause
is a clause in which arguments and variables
are consistently replaced by ranges; its compo
nents are instantiated predicates. For example,
A((g .. h}, (i .. j), (k .. l})--+ B((g+1 .. h), (i+i ..
j.1), (k .. [.1)) is an instantiation of the clause
A(aX, bY c, Zd) -+ B(X, Y, Z) if the source text
a1 ••. a11 is such that a9+ 1 ::::: a, ai+1 = b, aJ° = c
and a1 = d. A derive relation is defined on
strings of instantiated predicates. If an instanti
ated predicate is the LHS of some instantiated
clause, it can be replaced by thc RHS of that
instantiated clause. An input string ai ... a11

is a sentence iff the empty string (of instanti
ated predicates) can be derived from S((O .. n))
where S is the start symbol. The arguments
of predicates may denote discontinuous or even
overlapping ranges. Fundamentally, a predicate
A defines a notion (property, structure, depen
dency, ...) between its arguments whose ranges
may be scattered over the source text. What
is ubetween" its arguments is not the respon
sibility of A, and is described (if at all) some
where eise. RCGs are therefore well suited to
describe long distance dependencies. Overlap
ping ranges are due to thc non-linearity of the
forrnalism. For example, the same variable may
occur in different arguments in the RHS of some
clause, expressing different views (properties) of
thc same portion of the source text.

As an example of an RCG, the following
set of clauses describes the three-copy language
{www 1 w E {a,b}*} which is known tobe be
yond the formal power of TAGs.

(I)
{

S(XYZ) -+ A(X, Y, Z)
A(aX, aY, aZ) -+ A(X, Y, Z)
A(bX, bY, bZ) _. A(X, Y, Z)
A(c,e,c) _. e

3 RCGs & TAGs

Within the TAG formalism, if we consider an
auxiliary tree r and the way it evolves until no
more adjunction/substitution is possible, we re
alize that some properties of the final tree are al
ready known on r. The yield derived by the part

18

of r to the left (resp. to the right) of its spine
are contiguous and, the left yield (produced by
the left part) lies to the left of the right yield in
the input string. Thus, for any tree r (initial or
auxiliary) consider its m internal nodes where
adjunction is allowed3. We decorate each such
node with two variables Li and ~ (1 $ i $ m)
which are supposed to capture respectively the
left and right yield of this i 1h node. The root
and foot of auxiliary trees have no decoration.
Each terminal leaf has a single decoration which
is its terminal symbol or e. Afterwards, we col
lect into a string dr the decorations gathered
during a top-down left-to-right walk in r. If r
is an auxiliary tree, let d~ and d~ be the part of
dr gathered before and after the foot of r has
been hit. With each tree, we associate an RCG
clause constructed as follows:

• Its LHS is the predicate S(dr) if r is an
initial tree (S is the start predicate).

• Its LHS is the predicate A(d~, d~) if r is an
auxiliary A-tree.

• Its RHS is 1/J1 .. . 1/Jm with 1/Ji = Ai(Lit ~)
if Ai is the label of the ith inside node.

For example, the following TAG

Q'

s
1
A

1
€

where a is the initial tree and ß1, ß2 and ß3
are the auxiliary trees 4 , defines the language
{ww 1 w E {a,b}*}, which is translated into
the strongly equivalent RCG

S(L1R1)
A(aL1, aR1)
A(bL1,bRi)
A(c, e)

-+ A(L1, Ri)
-+ A(L1,Ri)
-+ A(L1iR1)
-+ €

3In TAGs, we assumed that initial trees are all labeled
by a unique start symbol, say S, which is not used some·
where eise, that adjunction is not allowed at the root or
at the foot of any auxiliary tree but is mandatory on
inside nodes.

4 Each foot is marked by an *·

As an example, the arguments of the LHS
predicate of the second clause have been gath
ered during the following walk in ß1

~r' <:'fl1 .4~
a l J, ~

We know (Vijay-Shanker and Weir 94) that
TAGs, LIGs and HGs are three weakly equiv
alent formalisms though thcy appear to have
quite different external forms. Groenink has
shown that HGs can be translated into equiva
lent LMGs. We have shown that transformation
from TAGs to RCGs also exists. In (Boullier 98)
we have proposed a transformation from LIGs
into equivalent RCGs. While the process in
volved to get an equivalent RCG for a TAG or
an HG is rather straightforward, the equivalence
proof for LIG is much more complex and relies
upon our work described in (Boullier 96). This
is due to the fact that an RCG is a purely syn
tactic formalism in the sense that it only han
dles (part of) the source text, exclusive of any
other symbol. Therefore the stack symbols of
LIGs have no direct equivalent in RCGs and the
translation process needs to understand what
the structural properties induced by these stack
symbols are. An interesting property of all these
translations is that the power of RCGs comes for
free. In particular, if the input TAG or LIG is in
some normal form5 , the corresponding RCG can
be parsed in O(n6) time at worst . Moreover,
in RCGs, the incidence of each clause on the
total parsing time can be isolated. Of course,
complicated clauses induce high polynomial ex
ponents. If we look at the clauses generated
by the translation, some are simple, and few (if
any) are complicated (and therefore induce an
exponent of 6). In fact these translations bring

~ Aulciliarv trees in TAGS are such that thcre are at
most two int~rnal nodes where the adjunct operation can
take place or the number of objects in thc right-hand side
of LIG rules is at most two.

19

new insight and help to understand why and at
which point the maximum complexity is intro
duced.

4 RCGs & RNRGs

Ranked node rewriting grammars (RNRGs)
(Abe and Mamitsuka 97) are an extension of
TAGs. They are used to predict the protein
secondary structure from their amino acid se
quence patterns. These secondary structures,
the so-called ß-sheet regions in particular, form
a kind of long distance dependency which can
be captured by RNRGs. More precisely, it is
a stochastic version of RNRGs which is used
in this application6 . The probability of each
rewrite rule is set by training over a protein
whose structure is known (corpus) and then
used to analyze other proteins. RNRGs form a
strictly growing hierarchy of grammars and lan
guages (RNRLs) which is characterized by an
integer called its rank. For any k 2:: 1, RN RL(k)
properly contains RN RL(k-1) . RN RL(O) are
the CFLs and RN RL(l) are the TALs.

An RNRG is a labeled tree rewriting system
that consists of a starting tree and a finite set
of rewriting rules, A - a, where A is a nonter
minal symbol and a is a tree structure, which
specifies how a node 11, labeled A, can be rewrit
ten. Some leaves in a, called empty leaves, are
labeled by a ~ sign. Empty leaves are place
holders which indicate where the children of 11

must be grafted. The number of children of 11

and the number of empty leaves in a must be
equal. This number is the rank. After rewrit
ing, the children of a node are attached to these
empty leaves in the same order as before rewrit
ing. A tree whose nodes are only labeled by ter
minal symbols is a terminal tree. The tree lan
guage of an RNRG is the set of terminal trees
which can be derived from the starting tree after
a finite number of applications of its rewriting
rules. Its string language is the set of yields of its
tree language. Note that if an internal node is
labeled by a terminal symbol, this node cannot
be rewritten and its labe! does not contribute

6In fact, for computational considerations, only a sub
class of RNRGs is processed.

to the string language.
It is not difficult to transform an RNRG of

any rank into an equivalent RCG. In fact the
algorithm is a generalization of the one used for
TAGs. Once again, no complexity penalty is
induced by this transformation.

The previous three-copy language can be de
scribed by an RNRG of rank 2 whose initial tree
is

A

/\
c c

and the set of rewrite rules for the node A is

t t t

/1
a A

/1
b A

/\
ü ü

/\ /\
t t

!\ !\
~ a ~ a

/\ /\
~ b ü b

where t stands for an anonymous terminal sym
bol which labels non leaf nodes.

Our algorithm exactly yields the RCG la
beled (I). As an example, the arguments of tbe
LHS predicate of the second clause have been
gathered during the following walk on the tree
structure of tbe first rewrite rule for A. The
variables X, Y and Z denote the left, bottom 7

and right environment of A.

t f

u~.)~ ••
~ -

The corresponding parser has a cubic time
comp!exity. This global parsing time can hP, re-

7For a node with 1 + 1 sons, there will be· Y1, ... Yi
"bottom" variables.

20

duced to linear ifwe remark that the ranges sub
stituted to the variables X, Y and Z in the first
clause are of equal sizes. Such a property can be
automatically discovered or explicitly specified.

References

Naoki Abe, Hiroshi Mamitsuka. 1997. Predict
ing Protein Secondary Structure Using Stocha.stic
Tree Grammars. In Machine Learning, 29, Dec.
1997, pages 275-301.

Pierre Boullier. 1996. Another Facet of LIG
Parsing In Proceedings of the 34th An
nual Meeting of the Association for Computa
tional Linguistics (ACL96}, University of Cal
ifornia Santa Cruz, California, USA, pages.
87-94. See also Research Report No 2858
at http:/ /ww. inria. fr /RRRT/RR-2858. html,
INRIA-Rocquencourt, France, Apr. 1996, 22
pages.

Pierre Boullier. 1998. Proposal for a Nat-
ural Language Processing Syntactic Back
bone. In Research Report No 3342 at
http://ww.inria.fr/RRRT/RR-3342.btml,
INRIA-Rocquencourt, France, Jan. 1998, 41
pages.

Annius V. Groenink. 1997. Surface without Struc
ture, word order and tractability in natural lan
guage analysis. PhD thesis, Utrecht University,
The Nederlands, Nov. 1977, 250 pages.

Aravind K. Joshi, K. Vijay-Shanker, David Weir.
1991. The convergence of mildly context-sensitive
grammatical formalisms. In Foundational Is
sues in Natural Language Processing, P. Seils, S.
Shieber, and T. Wa.sow editors, MIT Press, Cam
bridge, Mass.

Bernard Lang. 1994. Recognition can be harder
than parsing. In Computational Intelligence, Vol.
10, No. 4, pages 486-494.

William C. Rounds. 1988. LFP: A Logic for Lin
guistic Descriptions and an Analysis of its Com
plexity. In ACL Computational Linguistics, Vol.
14, No. 4, pages 1-9.

K. Vijay-Shanker, David J. Weir, Aravind K. Joshi.
1987. Characterizing Structural Descriptions Pro
duced by Various Grammatical Formalisms. In
Proceedings of the 25th },{eeting of the Association
for Computational Linguistics (ACL '81), Stan
ford University, CA, pages 104-111.

K. Vijay-Shanker, David J. Weir. 1994. The equiva
lence of four extensions of context-free grammars.
In Math. Systems Theory, Vol. 27, pages 511-546.

