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This paper describes the formalism for 
incorporating emerging linguistic the- 
ory in a joint model of the acous- 
tic/prosody/concept relationships. It 
makes use of binary decision trees to es- 
timate model parameters, the conditional 
probabilities. In doing so, the model re- 
mains general, and can accommodate the 
results of our evolving understanding of the 
interaction between factors that determine 
prosody. While this model has been suc- 
cessful in both speech synthesis and anal- 
ysis applications, it has made use of syn- 
tactic and pragmatic information alone. 
Extension of this model to map prosodic 
structure to other higher order linguis- 
tic structures that more fully describe the 
meaning that an utterance is straightfor- 
ward. As hypotheses are developed in the 
ranking of competing constraints, includ- 
ing focus structure, and in the role of dis- 
course history, they can be integrated into 
the model as features in the binary decision 
tree. 

1 I n t r o d u c t i o n  

Prosody, particularly the placement of phrasing and 
relatively prominent syllables within an utterance, 
is important in human understanding of speech. 
(Boogaartand Silverman, 1992; Price et.al., 1991) 
While great improvements in the prosody of syn- 
thetic speech have been made over the past decade, 
naturalness itself has proved elusive (Boogaartand 
Silverman, 1992; Veilleux, 1994). One reason for the 
remaining diflhrences between synthetic and human 
speech is an incomplete understanding of the map- 
ping between the speaker's intended meaning and 
that meaning's acoustic consequences, which are, in 

part, encoded in the prosodic structure (Price et.al., 
1991). Prosody, therefore, is an important part of 
the route from meaning to speech. In order to see 
how prosody can be improved in automatic speech 
synthesis systems, it is useful to examine what is 
known about the relationship between prosody and 
the acoustic speech signal on the one hand and be- 
tween prosody and the meaning embedded in that 
speech on the other. 

Clearly, prosody is related to the acoustic speech 
signal. In human speech, prosodic phrases and 
prominence are cued by acoustic features such as 
f0 contour and duration. For example, final syllable 
lengthening and a descending f0 pattern on the word 
think (as well as know) will lead the listener to the 
perceive a phrase break between know and I in the 
underlined utterance: 

Don't you think Michael Jordan is great? 
I don't think; I know. 

Furthermore, this sentence might reasonably be 
produced with a pitch accent (e.g. an H*, or rise/fall 
f0 pattern) on the words think and know, lending the 
perception that these two words are more prominent 
than other words in the utterance and that they are 
being contrasted (Prevost, 1996). 

Prosody is also related to higher order linguis- 
tic structures such as the syntax of an utterance. 
In the above example, the main clauses [S I don't 
think] and [S I know] align with major prosodic 
phrase breaks. Other researchers, as well as myself, 
have gainfully used this prosody/syntax relationship 
in both speech synthesis and speech analysis (auto- 
matic recognition and understanding) applications. 
(e.g. (Veilleux, 1996; Wang and Hirschberg, 1992)). 
Also note that the same word string could be used 
to convey the opposite meaning, as in 

What's the capital of Sri Lanka? 
I don't think I know. 



However, this sentence does not have the same syn- 
tactic structure and one would not expect the same 
prosodic structure (e.g. there would be less of a 
"break" after t h ink  in the second example). 

However, just as syntax is not fully determined by 
word choice or order, syntax is not the only factor 
that determines the prosodic structure. For example 
(from (Steedman, 1991)), the sentence 

[S [NP Mary] [VP prefers [NP corduroy]]] 

can be naturally produced with a major phrase 
break bisecting the verb phrase: 

(Mary prefers) (corduroy). 

It is reasonable to conclude that prosody is con- 
strained by factors in addition to (and possibly in 
conflict with) syntax. The following example shows 
that semantic issues also play a role in determining 
prosody. 

Did she come with Bill's wife? 
• No, she came with BILL's sister. 

Bill is inappropriately produced with prosodic 
prominence (denoted by the use of capital letters) 
given the intention of the speaker to directly answer 
the question. Notice that the following pair is per- 
ceived as appropriate: 

Did she come with John's sister? 
No, she came with BILL's sister. 

Considerations of this kind suggest that prosody is 
therefore linked to the syntax and semantics of an 
utterance, which in turn are related to the speaker's 
intentions, or the concept that the speaker wishes to 
convey. Collectively, syntax and semantic structure 
will be referred to here as the information structure 
of an utterance. However, we purposely leave infor- 
mat ion  s t ruc ture  as a loosely defined term that can 
be expanded as our understanding of the relation- 
ship between prosody and the meaning embedded 
in speech evolves. 

Therefore, we find that prosody is related to the 
information structure on one hand and to the acous- 
tic signal on the other. Consequently, prosody can 
be useful as a bridge, or intermediary representation 
between concept and speech. 

This work presents a general methodology for 
deriving a formalism to describe the acoustic/ 
prosody/concept relationships for use in automatic 
spoken language systems, by generating a mapping 
between the acoustics of speech on one hand, and 
a syntactic/semantic representation of the speaker's 

intentions on the other. This computational map- 
ping serves to create an acoustic/ prosody/ con- 
cept model. Most recent applications of this model 
have been in the area of automatic speech recogni- 
tion where the acoust ic/prosody/syntax mapping 1 
was used to decrease word error (Veilleux, 1996). 
However, the mapping is bi-directional, and this 
model can be used for speech synthesis as well as 
for speech analysis (recognition and understanding). 
The method for doing so will be presented after the 
model is described in more detail. 

The consequences of the analysis of the relation- 
ships between information structure, prosody and 
speech described above show that the use of prosody 
in concept-to-speech synthesis (CTS) can not be 
achieved merely as plug-in extension of prosody 
models that have been developed for text-to-speech 
(TTS) systems (e.g. (Veilleux, 1994; Wang and 
Hirschberg, 1992)). Although prosody models could 
be applied after the generation of the word string, 
as in TTS applications, prosodic structure must be 
determined not only by the word string, but also 
by the meaning-specific syntax and semantic struc- 
ture. The lack of mapping between this information 
structure and prosody is partly responsible for the 
persistent unnaturalness in synthetic speech. 

Clearly, there are many aspects of the factors 
that determine prosodic structure that are still to 
be understood. While the acoustic correlates of 
prosody(Pierrehumbert80, 1980; t 'Hart et.al., 1990) 
and the relationships between prosody and syntax 
(e.g. (Selkirk, 1984; BachenkoFitzpatrick, 1990; 
Ostendorf and Veilleux, 1993; Gee and Grosjean, 
1983; Wang and Hirschberg, 1992; Terken and Hirsh- 
berg, 1994)), have been investigated in some length, 
the mapping and interactions between these do- 
mains has not been completely quantified. More- 
over, the effect of other factors such as focus and 
discourse structure on prosody, have not been stud- 
ied as extensively. A strength of the model presented 
here is that it is general, and therefore adaptable 
as our understanding of the prosody/concept and 
prosody/speech relationships improves. This gen- 
erality in the formalism will be pointed out as the 
model is described. 

One more general comment about this model is 
in order before we turn to the details. The formal- 
ism presented here is probabilistic. It is data-driven 
(labeled training data is used to derive model pa- 
rameters, i.e. the probabilities). It therefore has 

1The concept domain was primarily represented by 
syntax, because syntactic structure was readily available 
and its role in constraining prosodic structure is better 
understood. 
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the strengths of corpus-driven approaches in that it 
is informed by a large body of example. It also has 
the characteristic weakness of probabilistic models in 
that it tends to generalize unless otherwise directed 
(e.g. by manipulating misclassification costs, or pro- 
viding constraints to distinguish different events.) 
One other feature of the model presented here is 
that it explicitly incorporates linguistic knowledge 
in the design of decision trees used as probability 
estimators. This serves to cluster data according to 
linguistic context, decreasing the bias towards gen- 
eralizing the most prevalent. 

2 P r o b a b i l i s t i c  M a p p i n g  o f  

A c o u s t i c / P r o s o d y / C o n c e p t  

R e l a t i o n s h i p s  

2.1 Mode l  Formal i sm 

If the task of automatic speech synthesis can be 
framed as that of selecting the most probable acous- 
tic production associated with a text string anno- 
tated for intended meaning, it can be achieved by 
finding 

ar gmaxxp( x]meaning ) . (1) 

That is, by finding the acoustic sequence x that max- 
imizes the joint probability of the acoustic sequence 
given the meaning or concept the speaker wishes to 
convey. For this work, the word string itself is as- 
sumed to have been generated in a prior step. There- 
fore, the acoustic sequence would be a sequence of 
prosody related supra-segmental features. The term 
meaning is quite open to interpretation. For the pur- 
poses of this work, meaning will be assumed to be 
straightforwardly encoded in the information struc- 
ture, that is, the syntax and semantic structure of 
the utterance. For the present, information struc- 
ture (denoted by I in the equations below) repre- 
sents some aspects of the underlying concept that 
are covered by theory (such as syntax) or description 
(such as an instantiation of a focussed constituent). 
This structure will be represented as annotations on 
the text string, which can serve as input to a speech 
synthesis system. What features, beyond syntax, are 
relevant and can be reliably annotated is, of course, 
an open research question, that will probably be an- 
swered over time. Some suggestions for features and 
a method for incorporating them in this probabilis- 
tic model are described in Section 3. So, returning 
to the model derivation, we see that we wish to find 

argmaxxp(x]I), (2) 

that is, the acoustic sequence x that maximizes 
the probability of the acoustics given the informa- 

tional annotation. Inserting prosody as an inter- 
mediary representation, we can re-write this condi- 
tional probability of the acoustics given the informa- 
tion structure in terms of the sequence of abstract 
prosodic labels a. 

p(xlz) =  p(x, alZ) (3) 
a 

This sequence of abstract prosodic labels describe an 
ordered set of prosodic events, such as prominence 
and phrasing. 

In order to capture these prosodic events in a 
computational model, this work uses prosodic labels 
based on the ToBI transcription convention (--Tones 
and Break Indices, see (Silverman et.al., 1992)). The 
ToBI system labels prosodic prominence with a pitch 
accent type (Tone), from a subset of Pierrehum- 
bert's inventory (Pierrehumbert80, 1980). In pre- 
vious work, data with this level of detail was not 
available so the simple label of ± prominence on 
each syllable was used. Prosodic phrasing is cap- 
tured by placing a break index (BI: 0 to 4) at each 
word juncture, to indicate the level of de-coupling 
between the words. For example, the juncture be- 
tween two words in a clitic group would be labeled 
with a 0 break index. At the other end of the spec- 
trum, the junction between two words separated by 
a major prosodic phrase would be labeled with a 
4 break index. Moreover, the ToBI system allows 
one to label prosodic events that are conspicuous in 
spontaneous speech. For example, significant length- 
ening of a final syllable, without the comcommittant 
intonational cues associated with prosodic phrasing 
can be labeled with a diacritic. If these events serve 
a communicative purpose in informal speech (mark- 
ing focus, holding the floor) then future models may 
make use of these labels. 

Applying Bayes' Law to Equation 3: 

p(x l~  = ~ p ( x / a ) p ( a / Z )  (4) 
a 

This form of the equation more clearly reflects 
the use of prosody as an intermediate representa- 
tion, relating the acoustic sequence to the informa- 
tion structure by modeling p(xl I  ) in terms of the 
conditional probability of acoustic sequence given 
the prosodic structure (p(xla)) and the conditional 
probability of prosody given the information struc- 
ture (p(alI)). The model parameters can be esti- 
mated using statistical methods: in this work, using 
an automatically derived binary decision trees. 

In speech synthesis applications, each prosodic 
event can be realized by manipulating the acous- 
tic signal according to a set of context-based f0 



and duration rules (vanSanten, 1993). For exam- 
ple, a syllable labeled with a high pitch accent (H* 
or simply +prominence from this work), would be 
given a rise/fall f0 contour, adjusted according to 
e.g. the duration of the vowel, etc. In such ap- 
plications, p(x/a),  the probability of the acoustic 
parameters given the prosodic labels, is fully deter- 
mined by these rules alone. Although a stochastic 
model of prosody and acoustic features could be use- 
ful in more specifically determining the correlates of 
prosody in f0, duration and vowel quality, it is left 
to future work to incorporate a probabilistic acoustic 
model of prosody in the synthesis algorithm. There- 
fore, with this simplification, the model equation be- 
c o m e s :  

argmaxxp(x[Z) ---- argmaxap(a[Z) (5) 
n 

p(alz) = IIp(a,/  (6) 
i=l 

assuming prosodic labels are independent. 
Or, 

n 

= p(allZ) ~IP(al/al . . .ai_l ,~ ) (7) 
i=2 

assuming a Markov dependency. 
Here [al ...an] is the sequence of n prosodic labels 

in the utterance. The task remains, therefore, to 
find the sequence of prosodic labels with the high- 
est probability given the underlying concept to be 
conveyed I. 

2.2 Decoding Algorithms 

Several decoding algorithms have been proposed to 
find the best sequence a. If prosodic labels are as- 
sumed to be independent, as in Equation 6, the high- 
est probability sequence will be the sequence of high- 
est probability elements p(ai]I). 

Note that, until this point, no assumptions have 
been made about the dependence or independence 
of the sequences of acoustic, prosodic or informa- 
tional events. Such assumptions are certainly in- 
correct. For example, both Prevost(Prevost, 1996) 
and Selkirk(Selkirk, 1997) propose prosodic struc- 
ture that involves a combination of prominence and 
phrase boundary placement to cue meaning-specific 
speech renditions. Furthermore, though useful to 
simplify the decoding problem, independence as- 
sumptions are probably not viable once demands 
on spoken language systems become more sophis- 
ticated. 

Several prosodic models have been developed that 
relax this assumption. For example, work in predict- 
ing prominence by (Ross et.al., 1992) makes use of 

a Markov assumption. Also, a hierarchical model 
(Ostendorf and Veilleux, 1993), makes use of the 
strict layer hypothesis of prosodic phrase structure, 
assuming that a well-formed utterance is comprised 
of major phrases, which are in turn comprised of mi- 
nor phrases. In that work, a dynamic programming 
algorithm (see Figure 2.2) proposes a major phrase 
within an utterance, uses hypothetical minor phrases 
within that major phrase to estimate its probability 
and then, finally, choses the most likely sequence of 
major phrases. The most likely hypothesis of mi- 
nor phrases within each major phrase is determined 
by using probability estimates from a previously de- 
rived binary decision tree. As we will see in the 
next section, the binary decision tree provides esti- 
mates of (p(ak[T(Wi,mprev))), that is, the proba- 
bility of a particular prosodic event (phrase break 
indices here), given the word sequence and the pre- 
vious minor phrase. 

Perceptual experiments have been performed to 
try to investigate whether the hierarchical model de- 
scribed above improves the intelligibility of synthe- 
sized speech. Evaluations of this sort are notably 
difficult, but necessary. Instead of trying to evalu- 
ate the "naturalness" of synthetic speech, Silverman 
et.al. (Silverman, 1993; Boogaartand Silverman, 
1992) have suggested a transcription or response- 
type task to evaluate comprehensibility. Improved 
comprehensibility should manifest itself as improved 
transcription performance. However, in the percep- 
tual experiment used to evaluate the hierarchical 
model, subjects performed similarly well on a tran- 
scription task designed to compare three different 
prosodic phrase break models on an AT&T TTS 
system (the AT&T default, the hierarchical model 
and a random generator)2(.62-.67 correct, a 2 ,~ 0.5), 
including randomly placed breaks. Informal discus- 
sion with human subjects revealed that the task was 
considered very difficult. Although several subjects 
claimed to have understood the sentences, they said 
that they didn't have enough time to transcribe the 
sentence. 

In addition to transcribing the synthetic sen- 
tences, subjects were also asked to check which, of 
five adjectives ("choppy", "okay", had "not enough 
pauses", or "unnatural"), best described the phras- 
ing of the sentences. The results of this experiment 
for twenty subjects are tabulated on Table 1. Over- 
all, more hierarchical model sentences were judged 
to be "okay". However, hierarchical model sentences 
were judged to be "choppy" more often than AT&T 

2Details of the hierarchical model or this experiment 
appear in (Veilleux, 1994), also available as a postscript 
file via http://raven.bu.edu/fimv) 



Dynamic  P r o g r a m m i n g  Rout ine  for  
Prosodic  Parse  Pred ic t ion  

For each word t in unit Ui (t = 1,. .- , l i):  
Compute log pt ( uil (1, t ) []/Vi, Ui_ l ). 
For each n-length sequence of subunits spanning [1,t] (n = 2 , . . . ,  t): 

logpt(uil ...Uin[YVi, Ui-1) = maxs<t logps(Uix, . . . , Ui,n-1 [VI2i, Ui-I ) 
+ logp(uin(s + 1, t)[)4)i, ui(n-D) 

(Computing logp(uin(S + 1, t)l~V~, u~(n_a)) with a recursive call to this routine.) 
Save pointers to best previous break location s. 

To find the most likely sequence, 
p(Ui[)/~)i, Ui_l ) --- maxn logpt, (U/I,---, Uin[~4)i, Ui-1 ) + log q(nlli ). 

Here, the probability q(n[li) provides a length 
constraint. 

sentences, which in turn were more often considered 
to have "not enough pauses". Interestingly, the hi- 
erarchical model sentences were not considered more 
choppy than the random model's sentences, despite 
the minor phrase breaks generated by the hierarchi- 
cal model in addition to major breaks. Moreover, 
the hierarchical model was given significantly more 
"Okay" ratings than the other two models. 

Based on other evaluation metrics, the perfor- 
mance of the hierarchical model is believed to be of 
higher quality in general text-to-speech tasks. Al- 
though there are specific syntactic structures that 
are consistently problematic (e.g. particles and 
prepositions), improved POS labeling and additional 
rules in text-processing can easily reduce these prob- 
lems. Furthermore, this work did not take into con- 
sideration discourse or non-syntax semantic infor- 
mation, and did not alter the AT&T defaults for 
placing prominences (pitch accents). 

2.3 P a r a m e t e r  E s t i m a t i o n  Using Binary  
Decision Trees 

For the hierarchical model, or any future model 
based on the more general acoust ic/prosody/syn- 
tax formalism presented here, we need to have esti- 
mates for p(ai /Z)  in order to decode the most prob- 
able prosodic sequence. Binary decision trees are 
used in this work to estimate p ( a j Z )  for several 
reasons, and are a main feature supporting the gen- 
erality and adaptability of the overall model. First, 
binary trees can be used to map heterogeneous fea- 
tures to prosodic labels. Features can be continuous 
(e.g. degree of syntactic bracketing) or discrete (e.g. 
classes of function word types). Furthermore, the 
features can be inter-dependent, such as location of 
the last predicted phrase boundary or prominence. 
The automatic algorithm which determines the tree 

structure typically chooses features to minimize mis- 
classification of prosodic labels, and as such, can 
indicate how relevant a feature is in the choice of 
a particular prosodic label. Finally, and most im- 
portantly from a theoretical standpoint, a decision 
tree presents a model of the relationship between 
one domain, e.g. information structure (or alterna- 
tively acoustics) and another domain, e.g. prosody. 
As shown below, the path from root node to leaf 
is unique for each token in the input sequence and 
describes a prosodic label as a function of the tree 
features. (Let T(Z) represent a function T of the in- 
formation structure Z). This model therefore allows 
us to map information structure onto prosodic struc- 
ture, or, alternatively, to map acoustic parameters 
onto prosodic structure. 

Binary decision trees, like the one shown in Fig- 
ure 1, are a series of binary questions about features 
(text-derived syntactic, grammatical and pragmatic 
properties in this case). Each data token (a data 
token would be a word pair in trees designed to 
predict prosodic phrase breaks and a single sylla- 
ble to predict :i: prominence), is "dropped" through 
the tree, starting with the root question. In the ex- 
ample shown here, a binary decision tree has been 
grown to predict the phrase break index between 
each word pair. The root node represents the ques- 
tion Is the left word a content word and the right 
word a function word? If the answer is no, the word 
pair is dropped to the lower right node, and exam- 
ined in the light of that node's question (What func- 
tion word class is the right word?). The process is 
repeated until the data token reaches a leaf (termi- 
nal node). In some cases (Wang and Hirschberg, 
1992) the leaf node would be associated with a spe- 
cific prediction, e.g. phrase break index 1, and the 
word pairs shunted to this leaf node would be pre- 

5 



no 

yes ao other content word 
/ ~ - - ~  or default fw 

<=1 

< =  1 

>1 

1 

3 

other S, NP or 
\ADJP/ADVP 

won/ 
over(prep) 

S,NP or 

aux verb, prep, 
\ or default fw 

o t h e r  rst,sec°nd, 
\third or sixth 
\eighth 

other 

other 

'over/their I 

other 

fourth, fifth or 
\~eventh eighth 

det or 
\prep <=1/~--"~\ >1 

) 
first or 

ixth eighth 

Figure 1: Binary decision tree designed to generate the probability of break indices given syntax, p(bilsyntax). 
/~acb data token (a word pair) is shunted along a path from the root to a leaf node. Features include syntaztic 
derivations (e.g. dom_Ift means "what is the highest syntactic constituency that dominates the left word 
but not the right word"), word class type, degree of syntactic bracketing, relative position in the syntax tree 
and relative position in the sentence. The word pairs from the sentence The men won over their enemies are 
shown under their destination leaves. 



Table h Results for subjective judgments by 20 human subjects for nine sentences synthesized using each of 
three prosodic phrase break prediction algorithms (AT~T default, hierarchical model, and randomly placed 
bi'eaks). 

Phrase Break Model choppy 
AT&T default 7 
Hierarchical Model 12 
Random 14 

okay 
16 
23 
16 

not enough 
pauses unnatural 

23 14 
8 17 

17 13 

dicted to be separated by a typical intra-phrase word 
break. However, the approach taken here differs in 
that trees are not used directly to predict phrase 
breaks or prominences. Instead the trees are used 
to generate conditional probability distributions (in 
this example, p(break indexi[T(syntax))). The dis- 
tributions are then used in the computational model 
described above to find the most likely sequence of 
prosodic labels. Again, the advantage of decoding 
the entire sequence is that one is able to explic- 
itly make use of the inter-dependencies in the as- 
signment of specific prosodic labels as in (Ostendorf 
and Veilleux, 1993). Furthermore, focus might be 
marked by a confluence of prominence and phrasing 
(Selkirk, 1997), requiring a relaxation of the assump- 
tion that these events are independent. 

In order to see how a decision tree is used as a 
conditional probability estimator rather than as a 
predictor, recall how such a tree is originally con- 
structed. Binary decision trees, like most statistical 
models, are derived using labeled training data. In 
this case, the training data would be hand-labeled 
prosodically (ToBI) and would be associated with 
features automatically extracted for each data to- 
ken. The tree in the example above was derived to 
estimate the conditional probability of the prosodic 
break indices (bi), given 

• syntactic constituency and derivation rules, 

• part-of-speech classes, 

• and pragmatic rules such as relative location in 
the utterance. 

To generate this p(bi[T(syntax)) tree, data to- 
kens (word pairs) were hand-labeled for prosodic 
break indices, analyzed by an automatic parser and 
other feature extraction programs equipped with e.g. 
function word tables and dictionaries, to produce a 
labeled database. A similar tree was also generated 
to estimate the probability of =k prominence, given 
similar syntactic/pragmatic features. To estimate 

the conditional probabilities between prosodic labels 
and acoustic signal, trees have also been derived us- 
ing acoustic features such as normalized f0, duration, 
and vowel quality (Wightman, 1991). 

After the database is fully labeled, an automatic 
tree-growing algorithm partitions this training data 
based on one of these extracted features (in Figure 1 
the cw-fw feature) into two subsets, each more ho- 
mogeneous with respect to break indices than the 
whole set 3. The partitioning process is repeated on 
each of the subsets, using one of the extracted fea- 
tures and each time producing children subsets that 
are more homogeneous than their parents. Ideally, 
the final subsets, which share a particular syntac- 
tic/ pragmatic context, would contain data where 
all word pairs had been labeled with the same break 
index, prompting only a single prediction. How- 
ever, this is unlikely, since all factors that determine 
prosody are either not yet understood, such as focus 
structure, or can not be known from text, such as 
speaking rate, and thus are not used in the partition- 
ing process. Instead, each of the final subsets has a 
distribution of prosodic labels that can be used to es- 
timate a probability distribution p(a[leafi ). In this 
example, each leaf represents a unique path which 
serves to describe a distribution of prosodic labels as 
a function of the syntax and related features. There- 
fore p(alleaf i ) = p(alW(syntax)). 

One interesting observation from the automatic 
design of the decision tree shown in Figure 1 is the 
selection of the cw-fw feature at the root. Sorin 
(Sorin et.al, 1987) has shown that prosodic phrase 
breaks in French tend to correspond with just cw-fw 
junctions. Although this rule over-generates phrase 
boundaries in English, the choice of this feature in 
the decision tree indicates a persistent correlation. 

~In this case, words pairs spanning a content-function 
word boundary have been found to be associated with 
intonational phrase breaks (indices 3 and 4) and the data 
set that contains word pairs that are cw-~T pairs has 
a higher percentage of 3/4 break index labels than the 
whole data set. 



3 U s e  o f  s e m a n t i c  f e a t u r e s  i n  t h e  

p r o s o d y / c o n c e p t  m a p p i n g  

Previous work has made use of this probabilistic 
model of the relationships between prosody, the 
acoustic signal and information structure (Veilleux, 
1996) but only insofar as information structure could 
be captured using syntax and related features. From 
the examples above, it is clear that prosody, even 
prosodic phrase structure, is not constrained by syn- 
tax alone. What remains to be investigated and in- 
corporated are other factors that constrain prosody 
and are related to the concept the speaker intends 
to convey. 

One such feature of the information structure is 
the placement of focussed constituents in an utter- 
ance. The literature presents a variety of definitions 
of semantic focus, some describing focus in terms of 
semantic intent (Rooth, 1994; Gussenhoven, 1994) 
and others more directly in relationship to given- 
hess (Schwarzschild, 1997). Furthermore, some defi- 
nitions of focus overlap with theme (Prevost, 1996), 
while others do not. In any case, focus is generally 
agreed to be linked to pitch accent placement (e.g. 
(Selkirk, 1984)) and probably to phrase break place- 
ment as well (Selkirk, 1997)). 

This focus/prosody relationship presents an op- 
portunity to generate synthetic speech that has a 
more appropriately assigned prosodic structure, re- 
flecting the underlying meaning to be conveyed. As 
the mapping between prosody and focus is investi- 
gated more fully, results can be incorporated into 
the computational model presented here by simply 
representing focus markings as labeled features in 
the binary tree. 

Some promising work by Selkirk (Selkirk, 1997) 
describes the choice of prosodic phrase structure to 
be the outcome of an ordering of competing factors, 
including focus, syntax and pragmatic constraints. 
While some constraints may be violable (such as the 
alignment of major prosodic breaks with syntactic 
boundaries), the outcome is optimal, i.e. it conforms 
to the constraints of the highest ranked factor (e.g. 
the alignment of a major prosodic phrase boundary 
with the right edge of a focussed constituent). 

Previous use of the acoustic/prosody/syntax 
model has already established the function of syn- 
tactic edges to predict prosodic phrasing (note the 
use of e.g. dom..lft features in the tree given in Fig- 
ure 1). Labeling the right edges of focussed con- 
stituents in training data and growing a binary deci- 
sion tree based on this additional feature, will gener- 
ate probability distributions as functions of the focus 
as well as syntactic and pragmatic structure. If the 

supposition about the relationship between focussed 
constituents and prosodic boundaries is represented 
in data, such a feature should be selected as useful in 
decreasing the mis-classification of prosodic phrase 
break indices between two words in the automatic 
design of a binary tree. Moreover, a ranking implies 
an interaction of factors, each of which can be en- 
coded as binary tree features. The order in which 
the features are selected in the tree structure, as 
well as their co-occurance (or lack of) on a root-leaf 
path, can indicate potential areas of interaction or 
redundancy. In this way, binary decision trees not 
only generate conditional probabilities for synthesis 
models, but also test hypotheses about the relative 
use of a feature in predicting a prosodic label. 

Work by Prevost explicitly addresses the relation- 
ship between theme-rheme and prosodic prominence 
and phrase placement in cases of explicit contrast. 
This work significantly extends previous heuristics 
concerning newness and pitch accent placement. 
Again, training data labeled with theme-rheme no- 
tation, and devising a feature for the decision tree 
growing algorithm to select, would incorporate this 
rule in the estimation of probabilities of prosodic 
structure. 

Another active and related area of research that 
addresses the relationship between higher order lin- 
guistic structure and prosodic structure has been 
explored by (Terken and Hirshberg, 1994) and 
(Nakatani, 1993). The latter work examines the 
placement of accents, as constrained by the interac- 
tion of discourse, surface structure and lexical form. 
Pitch accent placement on pronouns as well as on 
explicit forms in the subject position motivate the- 
ory that describes new and givenness in terms of a 
hierarchical discourse structure (Grosz and Sidner 
1986). Again, the implications of this theoretical 
framework can be extracted as features for generat- 
ing conditional probabilities of prosodic events, with 
reference to the theory. One such feature could be 
an annotation of discourse segmentation in the input 
text. Using this annotation as a feature in the bi- 
nary tree would also serve to allow the tree to chose 
limits on how far back in the history list to look 
for an antecedent. If the pronoun represents a new 
(re-introduced) item within this window, it may be 
more likely to be accented. Again, as a feature in 
a decision tree, this property would be a candidate 
for selection to minimize mis-classification error and 
generate conditional probabilities that are functions 
of the discourse environment. 

In summary, the formalism for incorporating 
emerging linguistic theory in a joint model of the 
acoustic/prosody/concept relationships is described 



here. It makes use of binary decision trees to esti- 
mate model parameters, the conditional probabili- 
ties. The binary decision trees themselves, make use 
of explicit linguistic infdrmation to partition data 
into more homogeneous prosodic contexts. In doing 
so, the model remains general, and can accommo- 
date the results of our evolving understanding of the 
interaction between factors that determine prosody. 
\¥hile this model has been successful in both speech 
synthesis and analysis applications, it has made use 
of syntactic and pragmatic information alone. Ex- 
tension of this model to map prosodic structure to 
other higher order linguistic structures that more 
fully describe the meaning that an utterance is to 
convey is straightforward. As hypotheses are devel- 
oped in the ranking of competing constraints, in- 
cluding focus structure, and in the role of discourse 
history, they can be integrated into the model as 
features in the binary decision tree. 
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