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Abstract 

Newly born infants are able to finely 
discriminate almost all human speech 
contrasts and their phonemic category 
boundaries are initially identical, even for 
phonemes outside their target language. A 
connectionist model is described which ac- 
counts for this ability. The approach taken 
has been to develop a model of innately 
guided learning in which an artificial neu- 
ral network (ANN) is stored in a "genome" 
which encodes its architecture and learn- 
ing rules. The space of possible ANNs is 
searched with a genetic algorithm for net- 
works that  can learn to discriminate hu- 
man speech sounds. These networks per- 
form equally well having been trained on 
speech spectra from any human language 
so far tested (English, Cantonese, Swahili, 
Farsi, Czech, Hindi, Hungarian, Korean, 
Polish, Russian, Slovak, Spanish, Ukranian 
and Urdu). Training the feature detec- 
tors requires exposure to just one minute 
of speech in any of these languages. Cate- 
gorisation of speech sounds based on the 
network representations showed the hall- 
marks of categorical perception, as found 
in human infants and adults. 

1 Introduction 
Precocious abilities in newborn infants are fre- 
quently taken as evidence for pre-specification of the 
representations that  support those abilities. The 
prespecifications of these representations is innately 
determined, presumably in the genome of the indi- 
vidual. One such ability is that  of newborn infants 
to be universal listeners, able to discriminate speech 
contrasts of all languages. This is all the more re- 
markable since the low-pass filtered speech sounds 

that foetuses hear in utero vary widely between dif- 
ferent languages. 

Eimas et al. (1971) showed that  1-4 month old 
infants displayed categorical perception of the syl- 
l a b l e s / b a / a n d / p a / .  That  is to say, infants carve 
up the phonetic space into a set of categories with 
sharp boundaries. Variants of a phoneme, such as 
/ b / ,  are not discriminable, even though they dif- 
fer acoustically by the same amount as / p /  and 
/ b /  (although see (guhl, 1993)). More recent re- 
search has shown that  the categories are univer- 
sal, so that  English-learning infants can discriminate 
non-native contrasts in Czech (Trehub, 1973), Hindi 
(Werker, Gilbert, Humphrey, ~ Tees, 1981), Nth- 
lakampx (Werker & Tees, 1984a), Spanish (Aslin, 
Pisoni, Hennessy, ~ Percy, 1981).and Zulu (Best, 
McRoberts, ~ Sithole, 1988). This suggests that  in- 
fants develop an initial representation of speech that  
is universal and largely insensitive to the particular 
language to which they are exposed. The ability to 
discriminate some non-native speech contrasts de- 
clines after the age of 10-12 months (Werker ~ Tees, 
1984a). 

Such rapid learning can be defined in terms of 
a taxonomy developed in the field of animal be- 
haviour. Mayr (1974) suggested that  programs of 
development form a continuum of flexibility in their 
response to environmental stimulation. He distin- 
guished between "open" and "closed" programs of 
development. "Closed" programs of development 
rely on environmental input to a relatively small 
degree, producing highly stereotyped behaviour. 
Precedents of rapidly learned "closed" development 
abound and are also termed "innately guided" learn- 
ing e.g. imprinting in geese and ducks and song ac- 
quisition in birds (Marler, 1991). "Open" programs, 
on the other hand, are responsive to a much broader 
range of stimulation and can produce a broader 
range of responses. The presence of one type of 
developmental program does not preclude the exis- 
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tence of the other, however. Just because a duckling 
has imprinted on its mother does not mean that  it is 
unable to learn to recognise new objects later in life. 
Similarly, the rapid learning of speech sounds by in- 
fants does not preclude later tuning of the speech 
representation. In fact, we would argue that  it aids 
such development by ensuring that  later language- 
specific fine-tuning of the representation does not en- 
counter local minima, which would be catastrophic 
for linguistic development. 

To quote from a recent review (Jusczyk, 1992): 

Jusczyk and Bertoncini (1988) proposed 
that  the development of speech perception 
be viewed as an innately guided learning 
process wherei,n the infant is primed in cer- 
tain ways to seek out some type of signals 
as opposed to others. The innate prewiring 
underlying the infant's speech perception 
abilities allows for development to occur 
in one of several directions. The nature 
of the input helps to select the direction 
that  development will take. Thus, learning 
the sound properties of the native language 
takes place rapidly because the system is 
innately structured to be sensitive to corre- 
lations of certain distributional properties 
and not others. 

In order to make explicit what is meant by "in- 
nately guided learning" and "innate prewiring" we 
have developed a connectionist model of innately 
guided learning. The approach taken has been to en- 
code an artificial neural network (ANN) in a genome 
which stores its architecture and learning rules. The 
genomic space of possible ANNs is searched for net- 
works that  are well suited to the task of rapidly 
learning to detect contrastive features of human 
speech sounds using unsupervised learning. Impor- 
tantly, networks start  life with a completely random- 
ized set of connections and therefore have no repre- 
sentational knowledge about speech at the level of 
individual connections. The network must therefore 
use its architecture and learning rules in combina- 
tion with auditory input to rapidly converge on a 
representation. 

The model a t tempts  to explain how innate con- 
straints on a neural network could allow infants to 
be sensitive to a wide range of features so soon after 
birth, and to develop the same initial features what- 
ever their target language. It also exhibits other 
features typically associated with human speech per- 
ception, namely categorical perception and patterns 
of phoneme confusability similar to that  of humans. 
The model does not account directly for the much 

slower, roughly year-long process by which some fea- 
tural distinctions are lost. It is possible that  features 
are never lost and that  units which represent infor- 
mation that  is redundant in the target language are 
ignored by higher level processing, as suggested by 
Werker and Tees (Werker 8z Tees, 1984b). 

2 O v e r v i e w  o f  t h e  M o d e l  

The goal of the model is to create a neural network 
that  takes speech spectra as input and develops the 
same representation of speech whatever the language 
it is exposed to. Furthermore we avoid hard-wiring 
the connections in the network. Rather, the net- 
work employs a set of unsupervised learning rules 
that  converge on the same representation whatever 
the initial set of connection strengths between neu- 
rons in the network. It is important  that  the learn- 
ing is unsupervised as the developing infant has no 
teaching signal as to the contrasts present in speech. 
In essence this model of early speech perception em- 
bodies Waddington's (1975) principle of epigenesis, 
or what Elman et al. (1996) have more recently de- 
scribed as architectural /computat ional  innateness. 

The approach we have taken is to encode the prop- 
erties of neural networks in a genome and to evolve, 
by a process called a genetic algorithm, a popula- 
tion 0f neural networks that  respond in the appropri- 
ate way to speech spectra. Initially, a population of 
50 genomes are randomly generated. Each of these 
networks is presented with speech spectra and we 
quantify how well its neuronal engram of speech en- 
codes the incoming signal. This number is called the 
"fitness" of a network. For the task of representing 
speech sounds we want a network that  is responsive 
to the salient aspects of the speech signal, in par- 
ticular those necessary for identification of speech 
segments. A network that  is good at representing 
speech will encode tokens of the same acoustic seg- 
ment as similarly as possible and different segments 
as differently as possible. 

The initial population performs very poorly on the 
task, but some networks perform better than others. 
Two parents are randomly selected from the popula- 
tion with a probability tha t  increases with increas- 
ing fitness. The parental genomes are spliced to- 
gether to form one child network that  is then tested 
to find its fitness. The child network then replaces 
the network that  has the lowest fitness in the pop- 
ulation. Each gene also has a small chance of mu- 
tating to a new value after sexual reproduction, so 
that  new genes are constantly entering the collective 
gene pool, otherwise the evolutionary process would 
simply be a re-shuffling of genes present in the initial 
population. The process of parental selection, sexual 
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reproduction, mutat ion of the offspring and evalua- 
tion of the offspring is repeated for several thousand 
generations. Genes that  are useful for the task at 
hand, as specified by the fitness function, increase 
in frequency in the population, while genes that  are 
not useful decline in frequency. Within a few hun- 
dred generations the networks in the population de- 
velop representations that  have a high fitness value, 
as illustrated in Figure 1. 
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Figure 1: Increase in the mean fitness of the popu- 
lation with increasing number of generations, where 
a generation is defined as the production of one new 
network. Initially networks perform very poorly, but 
selection improves the population rapidly. 

Clearly, the encoding scheme used to store the 
properties of neural networks critically affects how 
well the networks may perform on any given task. 
The encoding scheme we have chosen is very flex- 
ible, storing information about the architecture of 
a network and its learning properties. Architecture 
defines what neurons may be connected to other neu- 
rons, and this presupposes some way of grouping 
neurons such that  these gross patterns of connec- 
tivity can be defined. For the purposes of defining 
network architecture, therefore, the network is sub- 
divided into subnetworks. The genome specifies how 
many subnetworks there are, how many neurons are 
in each subnetwork what subnetworks are connected 
to one another, and given that  two subnetworks are 
connected, what learning rule is used in connections 
between neurons in those subnetworks. 

3 D e s c r i p t i o n  o f  t h e  M o d e l  

The model builds on previous connectionist models, 
particularly the broad class of models known as in- 
teractive activation with competition (IAC) models 
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(see Grossberg (1978) for review). An IAC network 
consists of a collection of processing units divided 
into several competitive pools. Within pools there 
are inhibitory connections and between pools there 
are excitatory connections. Connections are interac- 
tive because one pool interacts with other pools and 
in turn is affected by those pools. Because of these 
interactions the activity of units in IAC networks de- 
velop over time, sometimes settling into steady pat- 
terns of activation. Inhibitory connections within a 
pool mean that  one unit at a t ime dominates the oth- 
ers in a winner-take-all fashion. The TRACE model 
of speech perception is possibly the most successful 
and best known example of such models (McClelland 
& Elman, 1986). 

Although similar to IAC networks, the models de- 
scribed here have three major  modifications: 

L e a r n i n g  Each network learns using n~any differ- 
ent, unsupervised learning rules. These use only 
local information, and so are biologically plau- 
sible. 

F l e x i b l e  A r c h i t e c t u r e  Every network is split into 
a number of separate subnetworks. This allows 
exploration of different neuronal architectures, 
and it becomes possible to use different learn- 
ing rules to connect subnetworks. Subnetworks 
differ in their "time-constants" i.e. respond to 
information over different time-scales. 

G e n e t i c  S e l e c t i o n  Networks are evolved using 
a technique called genetic connectionism 
(Chalmers, 1990). Using a genetic algorithm 
allows great flexibility in the type of neural net- 
work that  can be used. All the attributes of 
the neural network can be simultaneously opti- 
mised rather than just  the connections. In this 
model the architecture, learning rules and time- 
constants are all optimised together. 

3.1 G e n o m e  D e s i g n  a n d  S e x u a l  
R e p r o d u c t i o n  

The genome has been designed to have two chromo- 
somes stored as arrays of numbers. One chromosome 
stores the attributes of each subnetwork, such as the 
number of units in the subnetwork, the subnetwork 
time constant and the indices of the other subnet- 
works to which the subnetwork projects. The other 
chromosome stores learning rules which are used to 
modify connections between individual units. 

During sexual reproduction of two networks the 
two chromosomes from each parent are indepen- 
dently recombined. In recombination, a point within 
a chromosome array is randomly chosen, and all the 
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information up to that  point is copied from the pa- 
ternal chromosome and the rest of the chromosome 
is copied from the maternal chromosome creating 
a hybrid chromosome with information from both 
parents. Clearly, the subnetwork and learning rule 
chromosomes must be the same length for sexual 
recombination to occur, so not all pairs of parents 
can reproduce. Parents must be sexually compatible 
i.e. must have the same number of subnetworks and 
learning rules. 

3.2 D y n a m i c s  

The dynamics of all units in the network are gov- 
erned by the first order equation 

da~ ~ s~n s 
vn dt = 2-~wiJ a j - a ~  (1) 

s,j  

Where v,~ is the t ime constant for subnetwork n, 
a~ is the activity of the j th  unit in subnetwork s, a~ 

is the activity of the i th unit in subnetwork n, u~.~" 

is the synaptic strength between the j t h  unit in sub- 
network s and the i th unit in subnetwork n. In other 
words, the rate of change in the activation of a unit 
is a weighted sum of the activity of the units which 
are connected to the unit i, minus a decay term. If 
there is no input to the unit its activity dies away 
exponentially with t ime constant r~. The activity of 
a unit will be steady when the activity of the unit is 
equal to its net input. Activities were constrained to 
lie in the range 0.0, < a < 1.0. Network activity for 
all the units was updated in a synchronous fashion 
with a fixed time-step of 10 ms using a fourth or- 
der Runge-Kutta  integration scheme adapted from 
Numerical Recipes (Press, Flannery, Teukolsky, & 
Vetterling, 1988). 

3.3 A r c h i t e c t u r e  

Architecture defines the gross pattern of connectiv- 
ity between groups of units. The architecture has to 
be stored in a "genome" to allow it to evolve with a 
genetic algorithm, and one very flexible method of 
encoding the architecture is to create a subnetwork 
connectivity matrix. If there are n subnetworks in 
the network, then the subnetwork connectivity ma- 
trix will be an n by n matrix. The column num- 
ber indicates the subnetwork from which connections 
project, and the row number indicates the subnet- 
works to which connections project. 

Complex architectures can be represented using 
a subnetwork connectivity matrix. The matr ix al- 
lows diagonal elements to be non-zero, allowing a 
subnetwork to be fully connected to itself. In ad- 
dition, the subnetwork connectivity matr ix is used 
to determine which learning rule will be used for 

the connections between any pair of subnetworks. If 
an element is zero there are no connections between 
two subnetworks. A positive integer element indi- 
cates that  subnetworks are fully connected and the 
value of the integer specifies which one of the many 
learning rules to use for that  set of connections. A 
simple architecture is shown in Figure 2 alongside 
its corresponding subnetwork connectivity matrix.  

3.4 L e a r n i n g  R u l e s  

Learning rules are of the general form shown in equa- 
tion 2. They are stored in the network genome in 
groups of seven coefficients k0 to k6 following the 
representation used by Chalmers (1990). 

Awij = l(ko + klai + k2aj + k3aiaj + 

k4wij + k5aiwij + k6ajwij) (2) 

In Equation 2, •wij is the change in synaptic 
strength between units j and i, l is the learning rate, 
ai is the activity of unit i, aj is the activity of unit 
j and wlj is the current synaptic strength between 
units j and i. The learning rate l is used to scale 
weight changes to small values for each t ime step 
to avoid undesirably rapid weight changes. The co- 
efficients in this equation determine which learning 
rule is used. For example, a Hebbian learning rule 
would be represented in this scheme with k3 > 0 and 
k0 < 0 a n d  kl = k2 = k4 = k5 = k6 = 0. Connec- 
tions between units using this learning rule would 
be strengthened if both units were simultaneously 
active. A network has several learning rules in its 
genome stored as a set of these coefficients. Weight 
values are clipped to avoid extremely large values de- 
veloping over long training periods. The range used 
was -1 .0  < wij < +1.0. 

3.5 T r a i n i n g  a n d  E v a l u a t i o n  o f  F i t n e s s  

Networks were trained and evaluated using digi- 
tised speech files taken from the DARPA TIMIT 
Acoustic-Phonetic Continuous Speech Corpus 
(TIMIT) as described in Garofolo et al. (1990). 
All networks were constrained to have 64 input 
units because speech sounds were represented as 
power spectra with 64 values. This was an artificial 
constraint imposed by the format  of the spectra. 
The power spectra were calculated with the OGI 
speech tools program MAKEDFT 1 (modified to 
produce the correct output  format) with a window 
size of 10 ms and with successive windows adjacent 
to one another. For these simulations 8 output  
subnetworks were used to represent features because 

1Available from http://www.cse.ogi.edu. 

Nakisa ~ Plunkett 773 Evolution of Speech Representations 



i j ,, s.b,,0 / :  / 

{oooooo ........... oooooo) 

C = 

0 0 0 0 0 0 0 0 0 \ 
0 0 0 0 1 0 0 3 0 

] 
0 0 0 1 0 0 0 0 0 
2 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 3 0 0 
1 0 0 3 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 
0 0 2 0  0 2 0 1 2 
0 0 0 0 0 0 0 2 0 

• $ 1 l b n e t  I . S u b  t 2  . 

Figure 2: Example to lllu~ra~e the archl tec tur~ encoding scheme showing a network of 9 subnetworks and its 
corresponding subnetwork connectivity matrix. Subnetwork 1 and 2 are the input and output  subnetworks, 
respectively. Arrows represent sets of connections and the type of learning rule employed by those sets of 
connections. There are three learning rules used; solid arrow (learning rule 1~, dashed arrow (learning rule 2) 
and dotted arrow (learning rule 3). Some subnetworks are fully connected to themselves, such as subnetwork 
8 (since C88 = 1), while others are information way-stations, such as subnetwork 5 (C55 = 0). 

this is roughly the number claimed to be necessary 
for distinguishing all human speech sounds by some 
phoneticians (Jakobson ~ Waugh, 1979). 

All the connections, both within and between sub- 
networks, were initialised with random weights in 
the range -1.0 to +1.0. Networks were then exposed 
to a fixed number of different, randomly selected 
training sentences (usually 30). On each time-step 
activity was propagated through the network of sub- 
networks to produce a response activity on the out- 
put units. All connections were then modified ac- 
cording to the learning rules specified in the genome. 
On the next time-step a new input pattern corre- 
sponding to the next time-slice of the speech signal 
was presented and the process of activity propaga- 
tion and weight modification repeated. The process 
of integrating activities and weight updates was re- 
peated until the network had worked its way through 
all the time-slices of each sentence. 

In the testing phase activation was propagated 
through the network without weight changes• The 
weights were frozen at the values they attained at 
the end of the training phase. Testing sentences 
were always different from training sentences• When 
a time-slice corresponded with the mid-point of a 
phoneme, as defined in the TIMIT phonological 
transcription file, the output  unit activities were 
stored alongside the correct identity of the phoneme. 
Network fitness was calculated using the stored out- 
put  unit activities after the network had been ex- 
posed to all the testing sentences. The fitness func- 
tion f was 
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N N 
f = E i  E j = i + l  dist(5~, 6~). s 

N ( N  - 1) (3) 

Where s = -4-1 if i and j are different phonemes 
and s = - 1  if i and j are the identical phonemes, 
5~ and 5~ were the output  unit activities at the mid- 
point of all N phonemes and dist was euclidean dis- 
tance. This fitness function favoured networks that  
represented occurrences of the same phoneme as sim- 
ilarly as possible and different phonemes as differ- 
ently as possible. A perfect network would have all 
instances of a given phoneme type mapping onto the 
same point in the output  unit space and different 
phonemes as far apart  as possible. Note that  con- 
stant output  unit activities would result in a fitness 
of 0.0. An ideal learning rule would be able to find 
an appropriate set of weights whatever the initial 
starting point in weight space. Each network was 
trained and tested three times from completely dif- 
ferent random initial weights on completely different 
sentences. This reduced random fitness variations 
caused by the varying difficulty of t raining/test ing 
sentences and the choice of initial weights. 

Evolution was carried out with a population of 
50 networks. Genomes were initially generated with 
certain limits on the variables. All genomes had 16 
input subnetworks and 8 output  subnetworks with 
t ime constants randomly distributed in the range 
100 ms to 400 ms. The input subnetworks had 
4 units each and the output  subnetworks had 1 
unit each. Each network started with 10 different 
learning rules with integer coefficients randomly dis- 
tr ibuted in the range -2 to --t-2. Subnetwork con- 
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nectivity matrices were generated with a probabil- 
ity of any element being non-zero of 0.3. If an el- 
ement was non-zero, the learning rule used for the 
connections between the subnetworks was randomly 
selected from the 10 learning rules defined for the 
network. The networks were also constrained to be 
feed-forward, as shown in Figure 3. 

Featural Output 

0 Hz ~ 8 kHz 

Spectral Input 

Figure 3: Architectural constraints on the evolution- 
ary process. The networks were all feed-forward, 
with no "hidden" units and a fixed number of in- 
put units (64) and output  units (S). Input units 
were grouped into subnets of 4 units each and each 
input unit carried information from one of the 64 
frequency values in the speech spectra ranging from 
0 to 8 kHz. 

4 R e s u l t s  

All results shown are from the best network evolved 
(fitness=0.45) after it had been trained on 30 En- 
glish sentences corresponding to about  2 minutes of 
continuous speech. Figure 4 shows the response of 
this network to one of the T I M I T  testing sentences. 
From the response of the feature units to speech 
sounds (see Figure 4) it was clear that  some units 
were switched off by fricatives, and some units were 
switched on by voicing, so both excitation and inhi- 
bition play an impor tant  part  in the functioning of 
the feature detectors. The feature unit responses did 
not seem to correlate directly with any other stan- 
dard acoustic features (e.g. nasal, compact ,  grave, 
flat etc.). An analysis of the frequency response of 
the eight feature detectors (see Figure 5) showed 
tha t  each unit had excitatory projections from sev- 
eral frequency bands. Generally, the frequency re- 

sponses were mutual ly  exclusive so tha t  each unit 
responded to slightly different sounds, as one would 
expect. 
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Figure 5: Complex frequency response of all eight 
feature units to pure tones. Feature units 2 and 3 
receive strong excitatory inputs from low frequencies 
(below 4 kHz) and are therefore activated by voicing. 

4.1 C r o s s - L i n g u l s t l c  P e r f o r m a n c e  

In order to determine the cross-linguistic perfor- 
mance of the "innate" features evolved on English 
speech, sound files of the news in several languages 
were obtained from the Voice of America F T P  site 
( f t p . v o a . g o v ) .  Since phonological transcription 
files were not available for these files they could not 
be used to test the network, because the t imes of the 
phoneme mid-points were unknown. All the VOA 
broadcast languages 2 were used as training files, and 
the network was tested on 30 American English sen- 
tences found in the T I M I T  speech files. The t ime- 
courses of development for four languages are shown 
in Figure 6. Maximum fitness was reached after 
training on any language for roughly 20 sentences 
(each lasting about  3 seconds). 

All of the human languages tested seemed to be 
equally effective for training the network to represent 
English speech sounds. To see whether any sounds 
could be used for training, the network was trained 
on white noise. This resulted in slower learning and 
a lower fitness. The fitness for a network trained on 
white noise never reached tha t  of the same network 
trained on human speech. An even worse impedi- 
ment  to learning was to train on low-pass filtered 
human speech. 

4.2 C a t e g o r i c a l  P e r c e p t i o n  

Categorical perception of some phonemes is a ro- 
bust phenomenon observed in both infants and 

2English, Cantonese, Swahili, Farsi, Czech, Hindi, 
Hungarian, Korean, Polish, Russian, Slovak, Spanish, 
Ukrdnian and Urdu. 
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Figure 4: Network response to the sentence "Agricultural products are unevenly distributed" (TIMIT speech 
file tes t /dr3 / fkms0/sx l40) .  Input units are fed with sound spectra and activate the feature units. Activity 
is shown as a greyscale (maximum activity is portrayed as black) with t ime on the horizontal axis. Phone 
and word start  and end times as listed in TIMIT are shown in the bot tom two panels. This is the same 
network as shown in Figure 5. 
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Figure 6: Network performance increases to its fi- 
nal value after presentation of just  20 sentences re- 
gardless of the language used to train the network. 
The six curves show the learning curves for a net- 
work tested on 30 sentences of English having been 
trained on English, Cantonese, Swahili, Farsi, white 
noise and low-pass filtered English. 

adults. We tested the network on a speech contin- 
uum ranging between two phonemes and calculated 
the change in the representation of the speech tokens 
along this continuum. Note that  this model simply 
creates a representation of speech on which identifi- 
cation judgements are based. It does not identify 
phonemes itself. All that  the model can provide 
is distances between its internal representations of 
different sounds. Categorical perception can be ex- 
hibited by this network if the internal representation 
exhibits non-linear shifts with gradual changes in the 
input i.e. a small change in the input spectrum can 
cause a large change in the activity of the output  
units. 

Using a pair of real / ~ /  and / s /  spectra from a 
male speaker, a series of eleven spectra were created 
which formed a linear continuum from a p u r e / . f / t o  
a p u r e / s / .  This was done by linearly interpolating 
between the two spectra, so the second spectrum 
in the continuum was a linear sum of 0.9 times the 
/ . f /  spectrum plus 0.1 times t h e / s / s p e c t r u m .  The 
next spectrum was a linear sum of 0.8 times t h e / . f /  
spectrum plus 0.2 times t h e / s / s p e c t r u m ,  and so on 
for all nine intermediate spectra up to the p u r e / s / .  
Each of the eleven spectra in the continuum were 
individually fed into the input of a network tha t  had 
been trained on 30 sentences of continuous speech in 
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English. The output  feature responses were stored 
for each spectrum in the continuum. The distances 
of these feature vectors from the pu re / J~ / and  pure 
/ s / a r e  shown in Figure 7. 

1.0 

0.8 

0.6 

0.4 

0.2 

0 . 0 = . .  . I  

l~h/ 
Input Spectrum 

Figure 7: Response of the network to input on a / f /  
- / s /  continuum. Circles show the distance from a 
pure / J~ /and  triangles show the distance from a pure 
/s/. 

Clearly, the distance of the p u r e / j ~ / f r o m  itself is 
zero, but moving along the continuum, the distance 
from the pure / .~ / increases  steadily until it reaches 
a maximum for the p u r e / s /  (distances were scaled 
such that  the maximum distance was 1). Figure 7 
shows that  the representation is non-linear. That  
is, linear variations in the input spectrum do not 
result in linear changes in the activity of the feature 
units. Compared to the spectral representation of 
the /J~/- / s /  continuum, the network re-represents 
the distances in the following ways: 

• There is a discontinuity in the distances which 
occurs closer to t h e / J ~ / t h a n  t h e / s / .  

• The distance from the representation of a pure 
/ s / r e m a i n s  small for spectra that  are a third of 
the way toward the pure/ .~/ .  

A classifier system using this representation would 
therefore shift the boundary between the two 
phonemes toward If~ and be relatively insensitive 
to spectral variations that  occurred away from this 
boundary. These are the hallmarks of categorical 
perception. 

4.3 Similarity Structure of  the  
Representat ion  

A consequence of any representation is its effect on 
similarity judgements. Miller and Nicely (1955) used 
this fact in an elegant experiment designed to infer 
the manner in which humans identify sixteen En- 
glish consonants. They asked subjects to identify 
CV pairs where the consonant was one of the six- 
teen being tested and the vowel w a s / a I / ,  as in fa- 
ther. By adding noise to the stimuli at a constant 
loudness and varying the loudness of the speech 
they could control the signal to noise ratio of the 
stimuli and measure the number and type of errors 
produced. Subjects produced a consistent pattern 
of errors in which certain pairs of consonants were 
more confusable than others. For example, the fol- 
lowing pairs were highly confusable: m-n ,  f-0, v-~, 
p - t -k ,  d-g, s - f ,  z-  5. When clustered according to 
confusability the consonants formed three groups: 
voiceless, voiced and nasal consonants. Confusabil- 
ity was greatest within each group and smallest be- 
tween groups. 

Since our model did not classify phonemes it was 
not possible to create a phoneme confusability ma- 
trix using the same method as Miller and Nicely. 
However, it was possible to create a clustering dia- 
gram showing the similarity structure of the repre- 
sentations for each phoneme. If given noisy input, 
phonemes whose representations are closest together 
in the output  space will be more easily confused than 
phonemes that  lie far apart. Since a cluster analy- 
sis of many thousands of phoneme tokens would not 
be clear, a centroid for each phoneme type was used 
as the input to the cluster analysis. Centroids were 
calculated by storing the input and output  represen- 
tations of phonemes in 1000 TIMIT sentences. Clus- 
ter analyses for the spectral input representation and 
the featural output  representation are shown in Fig- 
ure 8. 3 

From Figure 8 it is clear that  the featural out- 
put representation broadly preserves the similarity 
structure of the spectral input representation despite 
the eight-fold compression in the number of units. 
In both the input and output  representations the 
phonemes can be divided into three classes: frica- 
tives/affricates, vowels/semi-vowels, and other con- 
sonants. Some phonemes are shifted between these 
broad categories in the output  representation, e.g. 
t, 0 and f are moved into the fricative/affricate cat- 
egory. The reason for this shift is that  t occurs with 

3It should be noted that for stops, TIMIT transcribes 
closures separately from releases, so /p /  would be tran- 
scribed /pcl p/. The results shown here are for the re- 
leases, hence their similarity to fricatives and affricates. 
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a high token frequency, so by pulling it apart from 
other frequently occurring, spectrally similar conso- 
nants, the fitness is increased. 

Both spectral and featural representations showed 
a high confusability for m-n, f-0, d-g, s-J ~, as found 
in the Miller and Nicely experiments. There were 
discrepancies, however: the stops p-t-k were not 
particularly similar in either the input or output rep- 
resentations due to an artifact of the representations 
being snapshots at the mid-points of the stop release. 
In human categorisation experiments, phonemes are 
judged on the basis of both the closure and the re- 
lease, which would greatly increase the similarity of 
the stops relative to other phonemes. In the input 
representation, v-6 are fairly close together, but 
are pulled apart in the output representation. Both 
these phonemes had low token frequencies, so this 
difference may not be a result of random variation. 
In Figure 8 3 is not shown because it occurred very 
infrequently, but the centroids of z- 3 were very close 
together, as found by Miller and Nicely. 

Input Representation 

sh 

I 

Output Representation 

Figure 8: Similarity structure of the spectral and 
featural representations. Labels are TIMIT ASCII 
phonemic codes: dx-r, q-?, jh-d3, ch-~, zh-3, th-0, 
dh-0, em-rn, en-~, eng-~, nx-r, hh-h, hv-~, el- 
!, iy-il, ih-I, eh-e, ey-ej, aa-ct, ay-aj, ah-A, ao-o, 

oy-3j, uh-u, uw-m, ux-u, er- U ax-o, ix-i, axr-~, 
ax-h-o. 

5 Discussion 

By developing an appropriate architecture, time- 
constants and learning rules over many generations, 
the task of learning to represent speech sounds is 
made more rapid over the course of development of 
an individual network. Evolution does all the hard 

work and gives the network a developmental "leg- 
up". However, having the correct innate architec- 
ture and learning rules is not sufficient for creating 
good representations. Weights are not inherited be- 
tween generations so the network is dependent on 
the environment for learning the correct representa- 
tion. If deprived of sound input or fed acoustically 
filtered speech input, the model cannot form mean- 
ingful representations because each network starts 
life with a random set of weights. But given the 
sort of auditory input heard by an infant the model 
rapidly creates the same set of universal features, 
whether or not it is in a noisy environment and what- 
ever the language it hears. 

We envisage that this method of creating a quick 
and dirty initial representation of sounds by innately 
guided learning is not specific to humans. Clearly, 
humans and other animals have not been selected 
for their ability to discriminate the phonemes of En- 
glish. But we would expect results similar to those 
presented here if the selection criterion were the abil- 
ity to discriminate a wide range of spectrally dis- 
similar sounds in the environment from only limited 
exposure to their patterns of regularity e.g. discrim- 
ination of the maternal call from other conspecific 
calls, and the sound of predators from everyday en- 
vironmental noises. It is therefore unsurprising that 
animals have been found, after suitable training, to 
discriminate some phonemes in similar ways as do 
humans (Kuhl & Miller, 1975). 

The advantages of innately guided learning over 
other self-organising networks are that it is much 
faster and is less dependent on the "correct" environ- 
mental statistics. It also offers an account of how in- 
fants from different linguistic environments can come 
up with the same featural representation so soon af- 
ter birth. In this sense innately guided learning as 
implemented in this model shows how genes and the 
environment could interact to ensure rapid develop- 
ment of a featural representation of speech on which 
further linguistic development depends. 
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