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Abstract 
This paper discusses the range of ways in which 
spoken dialogue system components have been 
evaluated and discusses approaches to evalua- 
tion that attempt to integrate component eval- 
uation into an overall view of system perfor- 
mance. We will argue that the PARADISE 
(PARAdigm for Dialogue System Evaluation) 
framework has several advantages over other 
proposals. 

I Introduction 
Interactive spoken dialogue systems are based on many 
component technologies: speech recognition, text-to- 
speech, natural language understanding, natural language 
generation, and database query languages. While eval- 
uation metrics for these components are well under- 
stand (Sparck-Jones and Galliers, 1996; Walker, 1989; 
Hirschman et al., 1990), it has been difficult to develop 
standard metrics for complete systems that integrate all 
these technologies. One problem is that there are so many 
potential metrics that can be used to evaluate a dialog sys- 
tem. For example, a dialog system can be evaluated by 
measuring the system's ability to help users achieve their 
goals, the system's robustness in detecting and recover- 
ing from errors of speech recognition or of understanding, 
and the overall quality of the system's interactions with 
users (Danieli and Gerbino, 1995; Hirschman and Pao, 
1993; Polifroni et al., 1992; Price et al., 1992; Simp- 
son and Fraser, 1993). Another problem is that dialog 
evaluation is not reducible to transcript evaluation, or to 
comparison with a wizard's reference answers (Bates and 
Ayuso, 1993; Polifroni et al., 1992; Price et al., 1992), 
because the set of potentially acceptable dialogs can be 
very large. 

Current proposals for dialog evaluation metrics are 
both objective and subjective. The objective metrics 
that have been used to evaluate a dialog as a whole in- 
clude (Abella, Brown, and Buntschuh, 1996; Ciaremella, 
1993; Danieli and Gerbino, 1995; Hirschman et al., 1990; 
Hirschman et al., 1993; Polifroni et al., 1992; Price et al., 
1992; Smith and Hipp, 1994; Smith and Gordon, 1997; 
Walker, 1996): 

• percentage of correct answers with respect to a set 
of reference answers 

• transaction success, task completion, or quality of 
solution 

• number of turns or utterances; 

• dialogue time or task completion time 

• mean user response time 

• mean system response time 

• frequency of diagnostic error messages 

• percentage of "non-trivial" (more than one word) 
utterances. 

• mean length of "non-trivial" utterances 

Objective metrics can be calculated without recourse 
to human judgement, and in many cases, can be calcu- 
lated automatically by the spoken dialogue system. One 
possible exception is task-based success measures, such 
as transaction success, task completion or quality of solu- 
tion metrics, which can be either an objective or a subjec- 
tive measure depending on whether the users' goals are 
well-defined at the beginning of the dialogue. This is the 
case in controlled experiments, but in field studies, deter- 
mining whether the user accomplished the task requires 
subjective judgements. 

Subjective metrics require subjects using the system or 
human evaluators to categorize the dialogue or utterances 
within the dialog along various qualitative dimensions. 
Because these metrics are based on human judgements, 
such judgements need to be reliable across judges in order 
to compete with the reproducibility of metrics based on 
objective criteria. Subjective metrics can still be quanti- 
tative, as when a ratio between two subjective categories 
is computed. Subjective metrics that have been used in- 
clude (Danieli and Gerbino, 1995; Hirschman and Pao, 
1993; Simpson and Fraser, 1993; Danieli et al., 1992; 
Bernsen, Dybkjaer, and Dybkjaer, 1996) : 

• Implicitrecovery (IR): the system's ability to use di- 
alog context to recover from errors of partial recog- 
nition or understanding. 

• Explicit Recovery: the proportion of explicit recov- 
ery utterances made by both the system system turn 



correction (STC), and the user, user turn correction 
(UTC). 

• Contextual appropriateness (CA): the coherence of 
system utterances with respect to dialog context. 
Utterances can be either appropriate (AP), inappro- 
priate (IP), or ambiguous (AM). 

• Cooperativity of system utterances: classified on the 
basis of the adherance of the system's behavior to 
Grice's conversational maxims (Grice, 1967). 

• Correct and Partially Correct Answers. 

• Appropriate or Inappropriate Directives and Diag- 
nostics: directives are instructions the system gives 
to the user, while diagnostics are messages in which 
the system tells the user what caused an error or why 
it can't do what the user asked. 

• User Satisfaction: a metric that attempts to captures 
user's perceptions about the usability of the system. 
This is usually assessed with multiple choice ques- 
tionnaires that ask users to rank the system's perfor- 
mance on a range of usability features according to 
a scale of potential assessments. 

Both the objective and the subjective metrics have been 
very useful to the spoken dialogue community in com- 
paring different systems for carrying out the same task, 
but these metrics are also limited. 

One widely acknowledged limitation is that the use of 
reference answers makes it impossible to compare sys- 
tems that use different dialog strategies for carrying out 
the same task. The reference answer approach requires 
canonical responses (i.e., a single "correct" answer) to be 
defined for every user utterance. Thus it is not possible to 
use the same reference set to evaluate a system that may 
choose to give a summary as a response in one case, ask 
a disambiguating question in another, or respond with a 
set of database values in another. 

A second limitation is that various metrics may be 
highly correlated with one another, and provide redun- 
dant information on performance. Determining correla- 
tions requires a suite of metrics that are widely used, and 
testing whether correlations hold across multiple dialogue 
applications. 

A third limitation arises from the inability to tradeoff 
or combine various metrics and to make generalizations 
(Fraser, 1995; Sparck-Jones and Galliers, 1996). For 
example, consider a comparison of two train timetable 
information agents (Danieli and Gerbino, 1995), where 
Agent A in Dialogue 1 uses an explicit confirmation strat- 
egy, while Agent B in Dialogue 2 uses an implicit confir- 
mation strategy: 

(1) User: I want to go from Torino to Milano. 
Agent A: Do you want to go from Trento to Milano? 
Yes or No? 
User: No. 

(2) User: I want to travel from Torino to Milano. 
Agent B: At which time do you want to leave from 
Merano to Milano? 
User: No, I want to leave from Torino in the evening. 

Danieli and Gerbino found that Agent A had a higher 
transaction success rate and produced less inappropriate 
and repair utterances than Agent B. In addition, they 
found that Agent A's dialogue strategy produced dia- 
logues that were approximately twice as long as Agent 
B's, but they could not determine whether Agent A's 
higher transaction success or Agent B's efficiency was 
more critical to performance. 

The ability to identify factors that affect performance is 
a critical basis for making generalizations across systems 
performing different tasks (Cohen, 1995; Sparck-Jones 
and Galliers, 1996). It would be useful to know how 
users' perceptions of performance depend on the strategy 
used, and on tradeoffs among factors such as efficiency, 
speed, and accuracy. In addition to agent factors such as 
the differences in dialogue strategy seen in Dialogues 1 
and 2, task factors such as database size and environmen- 
tal factors such as background noise may also be relevant 
predictors of performance. 

In the remainder of this paper, we discuss the PAR- 
ADISE framework (PARAdigm for Dialogue System 
Evaluation) (Walker et al., 1997), and that it addresses 
these limitations, as well as others. We will show that 
PARADISE provides a useful methodology for evaluat- 
ing dialog systems that integrates and enhances previous 
work. 

2 Integrating Previous Approaches to 
Evaluation in the PARADISE 
Framework 

MAXIMIZE USER SATISFACTION 

MAXIMIZE TASK MINIMIZE COSTS 
SUCCESS 

~ MF~SOIIES 

Figure 1: PARADISE's structure of objectives for spoken 
dialogue performance 

The PARADISE framework for spoken dialogue evalua- 
tion is based on methods from decision theory (Keeney 
and Raiffa, 1976; Doyle, 1992), which supports combin- 



ing the disparate set of performance measures discussed 
above into a single performance evaluation function. The 
use of decision theory requires a specification of both the 
objectives of the decision problem and a set of measures 
(known as attributes in decision theory) for operational- 
izing the objectives. The PARADISE model is based on 
the structure of objectives (rectangles) shown in Figure 1. 

At the top level, this model posits that performance can 
be correlated with a meaningful external criterion such 
as usability, and thus that the overall goal of a spoken 
dialogue agent is to maximize an objective related to us- 
ability. User satisfaction ratings (Kamm, 1995; Shriberg, 
Wade, and Price, 1992; Polifroni et al., 1992) are the 
most widely used external indicator of the usability of a 
dialogue agent. 

The model further posits that two types of factors 
are potential relevant contributors to user satisfaction, 
namely task success and dialogue costs. PARADISE uses 
linear regression to quantify the relative contribution of 
the success and cost factors to user satisfaction. The task 
success measure builds on previous measures of transac- 
tion success and task completion (Danieli and Gerbino, 
1995; Polifroni et al., 1992), but makes use of the Kappa 
coefficient (Carletta, 1996; Siegel and Castellan, 1988) 
to operationalize task success. 

The cost factors consist of two types. The efficiency 
measures arise from the list of objective performance 
measures used in previous work as described above. 
Qualitative measures try to capture aspects of the qual- 
ity of the dialog. These are based on both objective and 
subjective measures used in previous work, such as the 
frequency of diagnostic or error messages, inappropriate 
utterance ratios, or the proportion of repair utterances. 

The remainder of this section explains the measures 
(ovals in Figure 1) used to operationalize the set of objec- 
tives, and the methodology for estimating a quantitative 
performance function that reflects the objective structure. 
Section 2.1 describes PARADISE's task representation, 
which is needed to calculate the task-based success mea- 
sure described in Section 2.2. Section 2.3 describes the 
cost measures considered in PARADISE, which reflect 
both the efficiency and the naturalness of an agent's dia- 
logue behaviors. Section 2.4 describes the use of linear 
regression and user satisfaction to estimate the relative 
contribution of the success and cost measures in a single 
performance function. Finally, Section 2.5 summarizes 
the method. 

2.1 Tasks as Attribute  Value Matrices  

A general evaluation framework requires a task represen- 
tation that decouples what an agent and user accomplish 
from how the task is accomplished using dialogue strate- 
gies. PARADISE uses an attribute value matrix (AVM) 
to represent dialogue tasks. The AVM consists of the 
information that must be exchanged between the agent 
and the user during the dialogue, represented as a set of 

ordered pairs of attributes and their possible values. 1 
As a first illustrative example, consider a simplification 

of the train timetable domain of Dialogues 1 and 2, where 
the timetable only contains information about rush-hour 
trains between four cities, as shown in Table 1. This AVM 
consists of four attributes (abbreviations for each attribute 
name are also shown). 2 In Table 1, these attribute-value 
pairs are annotated with the direction of information flow 
to represent who acquires the information, although this 
information is not used for evaluation. DUring the dia- 
logue the agent must acquire from the user the values of 
DC, AC, and DR, while the user must acquire DT. 

attribute possible values information flow 
depart-city (DC) Milano, Roma, Tofino, Trento to agent 
arrival-city (AC) Milano, Roma, Tonno, Trento to agent 
depart-range (DR) morning,evening to agent 
depart-time (DT) 6am,8am,6pm,8pm to user 

Table 1: Attribute value matrix, simplified train timetable 
domain 

A 1: Hello, This is Train Enquiry Service. DC,AC,DR,DT 
Please speak after the tone. DC,AC,DR,DT 
Which information do you need? DC,AC,DR,DT 

UI : I want to go from Torino to Milano. DC,AC 
A2: Do you want to go from Trento to Milano? DC,AC 

Yes or No? DC,AC 
U2: No. DC,AC 
A3: Do you want to leave from Trento? DC 

Yes or No? DC 
U3: No. DC 
A4: Where do you want to leave from? DC 
U4: I want to leave from Torino. DC 
A5: Do you want to leave from Torino? DC 

Yes or No? DC 
U5: Yes. DC 
A6: Do you want to go to Milano? AC 
U6: Yes. AC 
A7: At which time do you want to leave? DR 
U7: I want to travel in the evening. DR 
A8: Do you want to leave between 6 and 9 p.m.? DR 

Yes or No? DR 
U8: Yes. DR 
A9: There is a train leaving at 8:00 p.m. DT 

Figure 2: Agent A dialogue interaction (Danieli and 
Gerbino, 1995) 

Like previous approaches to evaluation, performance 
evaluation using PARADISE requires a corpus of dia- 
logues between users and the agent, in which users ex- 
ecute a set of scenarios. Each scenario execution has 
a corresponding AVM instantiation indicating the task 
information requirements for the scenario, where each 
attribute is paired with the attribute value obtained via 
the dialogue. 

~For infinite sets of values, actual values found in the exper- 
imental data constitute the required finite set. 

2The AVM serves as an evaluation mechanism only. We are 
not claiming that AVMs determine an agent's behavior or serve 
as an utterance's semantic representation. 



B 1: Hello, This is Train Enquiry Service. DC,AC,DR,DT 
Please speak after the tone. DC,AC,DR,DT 
Which information do you need? DC,AC,DR,DT 

U1 : I want to travel from Torino to Milano. DC,AC 
B2: At which time do you want to leave 

from Merano to Milano? DC,AC, DR 
U2: No, I want to leave from Tofino 

in the evening. DC, DR 
B3: Do you want to leave from Torino 

between 6 and 11 p.m? DC, DR 
Please answer Yes or No. DC, DR 

U3: Yes. DC, DR 
B4: A train leaves at 8 p.m. DT 

Figure 3: Agent B dialogue interaction (Danieli and 
Gerbino, 1995) 

attribute actual value 
depart-city Torino 
arrival-city Milano 
depart-range evening 
depart-time 8pm 

Table 2: Attribute value matrix instantiation, scenario 
key for Dialogues 1 and 2 

For example, assume that a scenario requires the user 
to find a train from Torino to Milano that leaves in the 
evening, as in the longer versions of Dialogues 1 and 2 in 
Figures 2 and 3.3 Table 2 contains an AVM corresponding 
to a "key" for this scenario. All dialogues resulting from 
execution of this scenario in which the agent and the 
user correctly convey all attribute values (as in Figures 
2 and 3) would have the same AVM as the scenario key 
in Table 2. The AVMs of the remaining dialogues would 
differ from the key by at least one value. Thus, even 
though the dialogue strategies in Figures 2 and 3 are 
radically different, the AVM task representation for these 
dialogues is identical and the performance of the system 
for the same task can thus be assessed on the basis of the 
AVM representation. 

2.2 Measuring Task Success 

Success at the task for a whole dialogue (or subdia- 
logue) is measured by how well the agent and user achieve 
the information requirements of the task by the end of the 
dialogue (or subdialogue). This section explains how 
PARADISE uses the Kappa coefficient (Carletta, 1996; 
Siegel and Castellan, 1988) to operationalize the task- 
based success measure in Figure 1. 

The Kappa coefficient, ~, is calculated from a confu- 
sion matrix that summarizes how well an agent achieves 
the information requirements of a particular task for a 
set of dialogues instantiating a set of scenarios. 4 For 

3These dialogues have been slightly modified from (Danieli 
and Gerbino, 1995). The attribute names at the end of each 
utterance will be explained below. 

4Confusion matrices can be constructed to summarize the 
result of dialogues for any subset of the scenarios, attributes, 
users or dialogues. 

4 

example, Table 3 shows a hypothetical confusion matrix 
that could have been generated in an evaluation of 100 
complete dialogues with train timetable agent A (perhaps 
using the confirmation strategy illustrated in Figure 2). 5 
When comparing Agent A to Agent B, a similar table 
would also be constructed for Agent B. 

In Table 3, the values in the matrix cells are based 
on comparisons between the dialogue and scenario key 
AVMs. Table 3 summarizes how the 100 AVMs repre- 
senting each dialogue with Agent A compare with the 
AVMs representing the relevant scenario keys. Labels 
vl to v4 in each matrix represent the possible values of 
depart-city shown in Table 1; v5 to v8 are for arrival- 
city, etc. Columns represent the key, specifying which 
information values the agent and user were supposed to 
communicate to one another given a particular scenario. 
Rows represent the data collected from the dialogue cor- 
pus, reflecting what attribute values were actually com- 
municated between the agent and the user. 

Whenever an attribute value in a dialogue (i.e., data) 
AVM matches the value in its scenario key, the number 
in the appropriate diagonal cell of the matrix (boldface 
for clarity) is incremented by 1. The off diagonal cells 
represent misunderstandings that are not corrected in the 
dialogue. Note that depending on the strategy that a spo- 
ken dialogue agent uses, confusions across attributes are 
possible, e.g., "Milano" could be confused with "morn- 
ing." The effect of misunderstandings that are corrected 
during the course of the dialogue are reflected in the costs 
associated with the dialogue, as will be discussed below. 

Given a confusion matrix M, success at achieving the 
information requirements of the task is measured with the 
Kappa coefficient (Carletta, 1996; Siegel and Castellan, 
1988): 

P(A)  - P ( Z )  

1 - P ( z )  

P(A) is the proportion of times that the AVMs for the ac- 
tual set of dialogues agree with the AVMs for the scenario 
keys, and P(E) is the proportion of times that the AVMs 
for the dialogues and the keys are expected to agree by 
chance. 6 When there is no agreement other than that 
which would be expected by chance, ~ = 0. When there 
is total agreement, ~ = 1. x is superior to other mea- 
sures of success such as transaction success (Danieli and 
Gerbino, 1995), concept accuracy (Simpson and Fraser, 
1993), and percent agreement (Carletta, 1996) because 

takes into account the inherent complexity of the task 
by correcting for chance expected agreement. Thus n 
provides a basis for comparisons across agents that are 
performing different tasks. 

5The distributions in the table are roughly based on perfor- 
mance results in (Danieli and Gerbino, 1995). 

6n has been used to measure pairwise agreement among 
coders making category judgments (Carletta, 1996; Krippen- 
doff, 1980; Siegel and Castellan, 1988). Thus, the observed 
user/agent interactions are modeled as a coder, and the ideal 
interactions as an expert coder. 



DATA 
vl 
v2 
v3 
v4 
v5 
v6 
v7 
v8 
v9 

v l0  
v l l  
v12 
v13 
v14 
sum 

KEY 
DEPART-CITY ARRIVAL-CITY DEPART-RANGE DEPART-TIME 

vl v2 v3 v4 v5 v6 v7 v8 v9 v l0  v i i  v12 v13 v14 
22 1 3 

29 
4 16 4 1 
1 1 5 11 1 
3 20 

22 
2 1 1 20 5 
1 I 2 8 15 

45 10 
5 40 

20 2 
1 19 2 4 
2 18 
2 6 3 21 

30 30 25 15 25 25 30 20 50 50 25 25 25 25 

Table 3: Confusion matrix, Agent A 

When the prior distribution of the categories is un- 
known, P(E), the expected chance agreement between 
the data and the key, can be estimated from the distri- 
bution of the values in the keys. This can be calculated 
from confusion matrix M, since the columns represent 
the values in the keys. In particular: 

i=1 

where ti is the sum of the frequencies in column i of M, 
and T is the sum of the frequencies in M (tl + . . .  + tn). 

P(A), the actual agreement between the data and the 
key, is always computed from the confusion matrix M: 

P(A)  - Ei~=l M(i ,  i) 
T 

Given the confusion matrix in Table 3, P(E) = 0.079, 
P(A) = 0.795 and g = 0.777. Given similar calculations 
on a confusion matrix for Agent B, we can determine 
whether Agent A or Agent B is more successful at achiev- 

t ing the task goals. 

2.3 Measuring Dialogue Costs 
As shown in Figure 1, performance is also a function of a 
combination of cost measures. Intuitively, cost measures 
should be calculated on the basis of any user or agent di- 
alogue behaviors that should be minimized. PARADISE 
supports the use of any of the wide range of cost measures 
used in previous work, and provides a way of combining 
these measures by normalizing them. 

Each cost measure is represented as a function ci that 
can be applied to any (sub)dialogue. First, consider the 
simplest case of calculating efficiency measures over a 
whole dialogue. For example, let cl be the total number 
of utterances. For the whole dialogue D1 in Figure 2, 
o (D1)  is 23 utterances. For the whole dialogue D2 in 
Figure 3, cl (D2) is 10 utterances. 

To calculate costs over subdialogues and for some of 
the qualitative measures, it is necessary to be able to spec- 
ify which information goals each utterance contributes 
to. PARADISE uses its AVM representation to link the 

information goals of the task to any arbitrary dialogue 
behavior, by tagging the dialogue with the attributes for 
the task. 7 This makes it possible to evaluate any potential 
dialogue strategies for achieving the task, as well as to 
evaluate dialogue strategies that operate at the level of 
dialogue subtasks (subdialogues). 

Consider the longer versions of Dialogues 1 and 2 
in Figures 2 and 3. Each utterance in Figures 2 and 
3 has been tagged using one or more of the attribute 
abbreviations in Table 1, according to the subtask(s) the 
utterance contributes to. As a convention of this type of 
tagging, utterances that contribute to the success of the 
whole dialogue, such as greetings, are tagged with all the 
attributes. Thus the goal of the tagging is to show how 
the structure of the dialogue reflects the structure of the 
task (Carbelrry, 1989; Grosz and Sidner, 1986; Litman 
and Allen, 1990). 

Tagging by AVM attributes is required to calculate 
costs over subdialogues, since for any subdialogue, task 
attributes define the subdialogue. For example, the sub- 
dialogue about the attribute arrival-city (SA) consists of 
utterances A6 and U6, its cost Cl (SA) is 2. 

Tagging by AVM attributes is also required to calculate 
the cost of some of the qualitative measures, such as 
number of repair utterances. (Note that to calculate such 
costs, each utterance in the corpus of dialogues must also 
be tagged with respect to the qualitative phenomenon in 
question, e.g. whether the utterance is a repair. 8) For 
example, let c2 be the number of repair utterances. The 
repair utterances in Figure 2 are A3 through U6, thus 
c2(D1) is 10 utterances and c2(SA) is 2 utterances. The 
repair utterance in Figure 3 is U2, but note that according 
to the AVM task tagging, U2 simultaneously addresses 
the information goals for arrival-city and depart-range. In 

7This tagging can be hand generated, or system generated 
and hand corrected. Preliminary studies indicate that reliability 
for human tagging is higher for AVM attribute tagging than 
for other types of discourse segment tagging (Passonneau and 
Litman, 1997; Hirschberg and Nakatani, 1996). 

8Previous work has shown that this can be done with high 
reliability (Hirschman and Pao, 1993). 



general, if  an utterance U contributes to the information 
goals of  N different attributes, each attribute accounts for 
1/N of  any costs derivable from U. Thus, c2(D2) is .5. 

Given a set of  ci, it is necessary to combine the dif- 
ferent cost measures in order to determine their relative 
contribution to performance. The next section explains 
how to combine ~ with a set of  ci to yield an overall 
performance measure. 

2.4 Estimating a Performance Function 

Given the definition of  success and costs above and the 
model in Figure 1, performance for any (sub)dialogue D 
is defined as follows: 9 

Performance = (~ * .Af(t¢)) - ~ wi  * .Af(ci) 

i = 1  

Here c~ is a weight on ~, the cost functions ci are weighted 
by wi ,  and.Af is a Z score normalization function (Cohen, 
1995). 

The normalization function is used to overcome the 
problem that the values of  ci are not on the same scale as 
~, and that the cost measures ci may also be calculated 
over widely varying scales (e.g. response delay could 
be measured using seconds while, in the example, costs 
were calculated in terms of  number of  utterances). This 
problem is easily solved by normalizing each factor x to 
its Z score: 

N ( x )  - 
O" x 

where cr~ is the standard deviation for x. 
To illustrate the method for estimating a performance 

function, we will use a subset of  the data from Table 3, 
and add data for Agent B, as shown in Table 4. Table 
4 represents the results from a hypothetical experiment 
in which eight users were randomly assigned to com- 
municate with Agent A and eight users were randomly 
assigned to communicate with Agent B. Table 4 shows 
user satisfaction (US) ratings (discussed below), ~, num- 
ber of  utterances (#utt) and number of  repair utterances 
(#rep) for each of  these users. Users 5 and 11 correspond 
to the dialogues in Figures 2 and 3 respectively. To nor- 
malize cl for user 5, we determine that N- is 38.6 and ~rc~ 
is 18.9. Thus, .Af(Cl) is -0.83. Similarly .Af(cl) for user 
11 is-1.51. 

To estimate the performance function, the weights c~ 
and wi must be solved for. Recall that the claim implicit in 
Figure 1 was that the relative contribution of  task success 
and dialogue costs to performance should be calculated by 
considering their contribution to user satisfaction. User 

9We assume an additive performance (utility) function be- 
cause it appears that n and the various cost factors ci are util- 
ity independent and additive independent (Keeney and Raiffa, 
1976). It is possible however that user satisfaction data col- 
lected in future experiments (or other data such as willingness 
to pay or use) would indicate otherwise. If so, continuing use of 
an additive function might require a transformation of the data, 
a reworking of the model shown in Figure 1, or the inclusion of 
interaction terms in the model (Cohen, 1995). 

user agent US ~ el (#utt) e2 (#rep) 
1 A 1 1 46 30 
2 A 2 1 i 50 30 
3 A 2 1 I 52 30 
4 A 3 1 1 40 20 
5 A 4 1 : 23 10 
6 A 2 1 50 36 
7 A 1 0.46 75 30 
8 A 1 0.19 60 30 
9 B 6 1 8 0 

10 B 5 1 15 1 
11 B 6 1 10 0.5 
12 B 5 1 20 3 
13 B 1 0.19 45 18 
14 B 1 ! 0.46 50 22 
15 B 2 0.19 34 18 
16 ; B 2 0.46 40 18 

M e a n ( A ) :  A 2 0.83 49.5 27 
Mean(B) B 3.5 0.66 27.8 10.1 

Mean NA 2.75 0.75 38.6 18.5 

Table 4: Hypothetical performance data from users of  
Agents A and B 

satisfaction is typically calculated with surveys that ask 
users to specify the degree to which they agree with one 
or more statements about the behavior or the performance 
of  the system. A single user satisfaction measure can be 
calculated from a single question, or as the mean of  a 
set of  ratings. The hypothetical user satisfaction ratings 
shown in Table 4 range from a high of  6 to a low of  1. 

Given a set of  dialogues for which user satisfaction 
(US), ~ and the set of  ci have been collected experimen- 
tally, the weights c~ and wi  can be solved for using multi- 
ple linear regression. Multiple linear regression produces 
a set of coefficients (weights) describing the relative con- 
tribution of  each predictor factor in accounting for the 
variance in a predicted factor. In this case, on the basis 
of the model in Figure 1, US is treated as the predicted 
factor. Normalization of  the predictor factors (~ and ci) 
to their Z scores guarantees that the relative magnitude 
of  the coefficients directly indicates the relative contribu- 
tion of  each factor. Regression on the Table 4 data for 
both sets of  users tests which factors ~, #utt, #rep most 
strongly predicts US. 

In this illustrative example, the results of  the regression 
with all factors included shows that only ~ and #rep are 
significant (p < .02). In order to develop a performance 
function estimate that includes only significant factors 
and eliminates redundancies, a second regression includ- 
ing only significant factors must then be done. In this 
case, a second regression yields the predictive equation: 

Performance = . 40.Af(~ ) - . 78.Af(c2) 

i.e., c~ is .40 and w2 is .78. The results also show n is 
significant at p < .0003, #rep significant at p < .0001, 
and the combination of  n and #rep account for 92% of  
the variance in US, the external validation criterion. The 
factor #utt was not a significant predictor of  performance, 
in part because #utt and #rep are highly redundant. (The 
correlation between #utt and #rep is 0.91). 

Given these predictions about the relative contribution 
of  different factors to performance, it is then possible 



to return to the problem first introduced in Section 1: 
given potentially conflicting performance criteria such as 
robustness and efficiency, how can the performance of 
Agent A and Agent B be compared? Given values for 
c~ and wi, performance can be calculated for both agents 
using the equation above. The mean performance of A 
is -.44 and the mean performance of B is .44, suggesting 
that Agent B may perform better than Agent A overall. 

The evaluator must then however test these perfor- 
mance differences for statistical significance. In this case, 
a t test shows that differences are only significant at the p 
< .07 level, indicating a trend only. In this case, an eval- 
uation over a larger subset of the user population would 
probably show significant differences. 

2.5 Summary 
We illustrated the PARADISE framework by using it to 
compare the performance of two hypothetical dialogue 
agents in a simplified train timetable task domain. We 
used PARADISE to derive a performance function for 
this task, by estimating the relative contribution of a set of 
potential predictors to user satisfaction. The PARADISE 
methodology consists of the following steps: 

• definition of a task and a set of scenarios; 

• specification of the AVM task representation; 

• experiments with alternate dialogue agents for the 
task; 

• calculation of user satisfaction using surveys; 

• calculation of task success using to; 

• calculation of dialogue cost using efficiency and 
qualitative measures; 

• estimation of a performance function using linear 
regression and values for user satisfaction, x and 
dialogue costs; 

• comparison with other agents/tasks to determine 
which factors that are most strongly weighted in 
the performance function generalize as important 
factors in other applications; 

• refinement of the performance model. 

Note that all of these steps are required to develop the 
performance function. However once the weights in the 
performance function have been solved for, user satis- 
faction ratings no longer need to be collected. Instead, 
predictions about user satisfaction can be made on the 
basis of the predictor variables, which is illustrated in the 
application of PARADISE to subdialogues in (Walker et 
al., 1997). 

Given the current state of knowledge, many experi- 
ments would need to be done to develop a generalized 
performance function. Performance function estimation 
must be done iteratively over many different tasks and 
dialogue strategies to see which factors generalize. In 
this way, the field can make progress in identifying the 
relationships among various factors and can move to- 
wards more predictive models of spoken dialogue agent 
performance. 

3 Discussion 

In this paper, we reviewed the current state of the art 
in spoken dialogue system evaluation and argued that 
the PARADISE framework both integrates and enhances 
previous work. PARADISE provides a method for deter- 
mining a performance function for a spoken dialogue sys- 
tem, and for calculating performance over subdialogues 
as well as whole dialogues. The factors that can con- 
tribute to the performance function include any of the 
cost metrics used in previous work. However, because 
the performance function is developed on the basis of 
testing the correlation of performance measures with an 
external validation criterion, user satisfaction, significant 
metrics are identified and redundant metrics are elimi- 
nated. 

A key aspect of the framework is the decoupling of task 
goals from the system's dialogue behavior. This requirex 
a representation of the task's information requirements 
in terms of an attribute-value matrix (AVM). The notion 
of a task-based success measure builds on previous work 
using transaction success, task completion, and quality of 
solution metrics. While we discussed the representation 
of an information-seeking dialogue here, AVM repre- 
sentations for negotiation and diagnostic dialogue tasks 
are also easily constructed (Walker et al., 1997). Fi- 
nally, the use of x means that the task success measure in 
PARADISE normalizes performance for task complex- 
ity, providing a basis for comparing systems performing 
different tasks. 
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