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We describe here an algorithm for detect- 
ing subject boundaries within text based 
on a statistical lexical similarity measure. 
Hearst has already tackled this problem 
with good results (Hearst, 1994). One of 
her main assumptions is that  a change in 
subject is accompanied by a change in vo- 
cabulary. Using this assumption, but by 
introducing a new measure of word signif- 
icance, we have been able to build a ro- 
bust and reliable algorithm which exhibits 
improved accuracy without sacrificing lan- 
guage independency. 

1 I n t r o d u c t i o n  

Automatic detection of subject divisions within a 
text is considered to be a very difficult task even for 
humans, let alone machines. But such subject di- 
visions are used in more complex tasks in text pro- 
cessing such as text summarisation. An automatic 
method for marking subject boundaries is highly de- 
sirable. Hearst (Hearst, 1994) addresses this prob- 
lem by applying a statistical method for detecting 
subjects within text. 

Hearst describes an algorithm for what she calls 
Text Tiling, which is a method for detecting subject 
boundaries within a text. The underlying assump- 
tion of this algorithm is that  there is a high proba- 

bility that  words which are related to a certain sub- 
ject will be repeated whenever that  subject is men- 
tioned. Another basic assumption is that  when a 
new subject emerges the choice of vocabulary will 
change, and will stay consistent within the subject 
boundaries until the next change in subject. These 
basic notions of vocabulary consistency within sub- 
ject boundaries lead to a method for dividing text 
based on calculating vocabulary similarity between 
two adjacent windows of text. 

Each potential subject boundary is identified and 
assigned a correspondence value based on the lexical 
similarity between two windows of text, one on ei- 
ther side of the subject boundary. The values for all 
potential boundaries are plotted on a graph, creating 
peaks and troughs. The troughs represent changes 
in vocabulary use and therefore, according to the 
underlying assumption, a change in subject. A divi- 
sion mark is inserted where a significant local min- 
imum is detected on the graph. Hearst measured 
approximately 80% success in detection of subject 
boundaries on some texts. 

We decided to adopt Hearst's underlying assump- 
tion that a change in subject will entail a change in 
vocabulary. Our aim was to make the algorithm as 
language independent and computationally expedi- 
ent as possible , while also improving accuracy and 
reliability. 
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Figure 1: Algorithm Structure. 

2 D e s i g n  

The algorithm is divided into five distinct stages. 
Figure 1 shows the sequential, modular structure of 
the algorithm. Each stage of the algorithm is de- 
scribed in more detail below. 

2.1 P r e p r o c e s s i n g  ( s t age  1) 

In her implementation of the TextTiling algorithm 
Hearst ignores preprocessing, claiming it does not af- 
fect the results (Hearst, 1994). By preprocessing we 
mean lemmatizing, stemming, converting upper to 
lower case etc. Testing this assumption on her algo- 
r i thm indeed seems not to change the results. How- 
ever, using preprocessing in conjunction with stage 
2 of our algorithm, does improve results. It is impor- 
tant  for our algorithm that  morphological differences 
between semantically related words are resolved, so 
that  words like "bankrupt" and "bankruptcy",  for 
example, are identified as the same word. 

2.2 C a l c u l a t i n g  a s ign i f icance  va lue  fo r  
each w o r d  ( s t age  2) 

Hearst treats a text more or less as a bag of words 
in its statistical analysis. But natural language 
is no doubt more structured than this. Different 
words have differing semantic functions and rela- 
tionships with respect to the topic of discourse. We 
can broadly distinguish two extreme categories of 
words; content words versus function words. Con- 
tent words introduce concepts, and are the means 
for the expression of ideas and facts, for example 
nouns, proper nouns, adjectives and so on. Function 

words (for example determiners, auxiliary verbs etc.) 
support and coordinate the combination of content 
words into meaningful sentences. Obviously, both 
are needed to form meaningful sentences, but, intu- 
itively, it is the content words that  carry most weight 
in defining the actual topic of discourse. Based on 
this intuition, we believe it would be advantageous 
to identify these content words in a text. It would 
then be possible to bias the calculation of lexical 
correspondences (stage 3) taking into account the 
higher significance of these words relative to func- 
tion words. 

We would ideally like firstly to reduce the effect 
of noisy non-content words on the algorithm's per- 
formance, and secondly to pay more attention to 
words with a high semantic content. In her imple- 
mentation, Hearst at tempts to do this by having a 
finite list of problematic words that  are filtered out 
from the text before the statistical analysis takes 
place (Hearst, 1994). These problematic words are 
primarily function words and low semantic content 
words, such as determiners, conjunctions, preposi- 
tions and very common nouns. 

Church and Gale (Church and Gale, 1995) men- 
tion the correlation between a word's semantic 
content and various measures of its distribution 
throughout corpora. They show that: "Word rates 
vary from genre to genre, topic to topic, author 
to author, document to document, section to sec: 
tion, paragraph to paragraph. These factors tend 
to decrease the entropy and increase the other test 
variables". One of these other test variables men- 
tioned by Church and Gale is burstiness. They at- 
tribute the innovation of the notion of burstiness 
to Slava Katz, who, pertaining to this topic, writes 
(Katz, 1996): "The notion of burstiness.., will be 
used for the characterisation of two closely related 
but distinct phenomena: (a) document-level bursti- 
ness, i.e. multiple occurrence of a content word or 
phrase in a single text document, which is contrasted 
with the fact that most other documents contain no 
other instances of this word or phrase at all; and (b) 
within-document burstiness (or burstiness proper), 
i.e. close proximity of all or some individual in- 
stances of a content word or phrase within a doc- 
ument exhibiting multiple occurrence." Katz has 
highlighted many interesting features of the distri- 
bution of content words, which do not conform to 
the predictions of statistical models such as the Pois- 
son. Katz (Katz, 1996) states that,  when a concept 
named by a content word is topical for the document, 
then that  content word tends to be characterised 
by multiple and bursty occurrence. He claims that,  
while a single occurrence of a topically used content 
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word or phrase is possible, it is more likely that  a 
newly introduced topical entity, will be repeated, "if 
not for breaking the monotonous effect of pronoun 
use, then for emphasis or clarity". He also claims 

o 

that,  unlike function words, the number of instances 
E 

of a specific content word is not directly associated 
with the document length, but is rather a function ~ 
of how much the document is about the concept ex- i 

~5 pressed by that  word. 

z 

Therefore, the characteristic distribution pattern 
of topical content words, which contrasts markedly 
with that  of non-topical and non-content words, 
could provide a useful aid in identifying the seman- 
tically relevant words within a text. Brief mention 
should be made of the work done by Justeson and 
Katz (Justeson and Katz, 1995), which, to a certain 
degree, relates to the requirements of our task. In 
their paper, Justeson and Katz describe some lin- 
guistic properties of technical terminology, and use 
them to formulate an algorithm to identify the tech- 
nical terms in a given document. However, their al- 
gorithm deals with complex noun phrases only, and, 
although the technical terms identified by their al- 
gorithm are generally highly topical, the algorithm 
does not provide the context sensitive information 
of how topical each incidence of a given meaning- 
ful phrase is, relative to its direct environment. It 
is precisely this information that is needed to judge 
the content of a particular segment of text. 

Although Katz (Katz, 1996) acknowledges what 
he calls two distinct, but closely related, forms 
of burstiness, he concentrates on modelling the 
inter-document distributions of content words and 
phrases. He then uses the inter-document distri- 
butions to make inferences about probabilities of 
the repeat occurrences of content words and phrases 
within a single document. Another divergence be- 
tween what Katz has done so far and what the task 
of subject boundary insertion requires, is that he 
decides to ignore the issues of coincidental repeti- 
tions of non-topically used content words and sim- 
ply equates "single occurrence with non-topical oc- 
currence, and multiple occurrence with topical occur- 
rence." 
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Figure 2: Calculation of number of nearest neigh- 
bours. 

n 

significance(x) = -1 × Z arctan ( Dx,i 
n i = l  tWicd ]  (1) 

where x is an individual word in the document and 
Dx,i is the distance between word x and its ith near- 
est neighbour. The 1st nearest neighbour of word x 
is the nearest occurrence of the same word. The 2nd 
nearest neighbour of x is the nearest occurrence of 
the same word ignoring the 1st nearest neighbour. In 
general, the ith nearest neighbour of x is the near- 
est occurrence of the same word ignoring the 1st, 
2nd, 3 rd , . . . , ( i -  1)th nearest neighbours. W is the 
total number of words in the text. w is the number 
of occurrences of the word like x. n is the number 
of nearest neighbours to include in the calculation 
and depends on the overall frequency of the word in 
the text. This formula will yield a significance score 
that lies within the range 0 to ~ (high significance 
to low significance). This number is then normalised 
to between 0 and 1, with 0 indicating a very low sig- 
nificance, and 1 indicating a very high significance. 
The exact value of n is calculated separately for each 
distinct word, using the following formula: 

( 8 ) 
n- - - -  1 + e-2°~-(~ -°°2)  + 2 (2) 

We have implemented a method which assigns an 
estimated significance score based on a measure of 
two context dependent properties; local burstiness 
and global frequency. The heart of our solution 
to the problem of assigning context-based values of 
topical significance to all words in a text, can be 
summed up in the following formula: 

This is essentially a sigmoid function with the 
range varying between two and ten, as shown in Fig- 
ure 2. The constants scale and translate the function 
to yield the desired behaviour, which was derived 
empirically. The number of nearest neighbours to 
consider in equation 1 increases with the word's fre- 
quency. For example, when calculating the signif- 
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Figure 3: Significance Values. 

icance of the least frequent words, only two near- 
est neighbours are considered. But for the most 
frequently occurring words, the number of nearest 
neighbours is ten. Figure 3 shows the main features 
of the performance of this significance assignment al- 
gorithm when tested on a sample text. The results 
for three very different words are shown. 

Two general trends are the most important  fea- 
tures of this graph. Firstly, elevated significance 
scores are associated with local clusters of a word. 
For example the cluster of three occurrences of "soft- 
ware" (a content word) at the end of the document 
have high significance scores. This contrasts with 
the relatively isolated occurrences of the word "soft- 
ware" in the middle of the document, which are 
deemed to be little more significant than several oc- 
currences of the word "the" (a function word). Sec- 
ondly, frequent words tend to receive lower signifi- 
cance scores. For example, even local clusters of the 
word "the" only receive relatively low significance 
scores, simply because the word has a high frequency 
throughout the document. Conversely, "McNealy" 
(a high semantic content word), which only occurs in 
a cluster of three, receives a high significance value. 
The important  result shown by the graph is that  
content words (real names such as "McNealy") re- 
ceive higher significance values than function words 
("the").  

We found that  an optimal solution to the problem 
of balancing local density against global frequency 
was rather elusive. For example, the words at the 
centre of a cluster automatically receive a higher 
score, whereas it may be more desirable to have all 
the members of a cluster assigned a score lying in a 
narrower range. There are many other contentious 
issues which need to be investigated, such as the use 

of the ratio of all the occurrences of a word in a given 
text to the total length of that  text in order to calcu- 
late the relative significance measure. Based on in- 
tuition, partly derived from Katz's  discussion (Katz, 
1996) of the relationship between document length 
and word frequency, the exact nature of this rela- 
tionship across various document lengths may not 
be reliable enough. It may be more consistent to 
consider this ratio within a constant window size, 
e.g. 1000 words. 

The advantage of this simple statistical method 
of distinguishing significant content words from non- 
content words is that  no words need to be removed 
before allowing the algorithm to proceed. The out- 
put of this stage is a normalised significance score 
(0-1) for each word in the text. This significance 
score can then be taken into account when analysing 
the text for subject boundaries. 

2.3 C a l c u l a t e  B i a s e d  Lex ica l  
C o r r e s p o n d e n c e s  ( s t ag e  3) 

Let us consider two sets of words, set A and set 
B. The main aim of this stage of the processing is 
concerned with calculating a correspondence mea- 
sure between two such sets depending on how similar 
they are, where similarity is defined as a measure off 
lexical correspondence. If many words are shared by 
both set A and B, then the lexical correspondence 
between the two sets is high. If the two sets do not 
share many words, then the correspondence is low. 
Now let A t be the subset of A that  contains only 
those words that  occur somewhere in B. And let B'  
be the subset of B that  contains only those words 
that  occur somewhere in A. The lexical correspon- 
dence between sets A and B can then be calculated 
using the simple formula: 

Correspondence- I~ + ~L 
2 

This yields a value within the range 0 to 1. IAI can 
be re-written as 1+1+1+1+1  .... by adding a 1 for 
every word in A. Each word has already been given 
a significance value as described in stage 2 of the 
algorithm and this information is taken into account 
by re-defining IAI as s l+s2+s3+. . ,  where sl is the 
significance value assigned to the first word in A, s2 
the second and so on. The same can be done for A ', 
B and B ~. The formula now takes the average of 
the biased ratios. All this means is that  instead of 
each word counting for '1' in a set, it counts for its 
significance value (a value between 0 (insignificant) 
and 1 (highly significant)). The result is that  each 
word affects the correspondence measure according 
to its significance in the text. 
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Figure 4: Word Sets. 

So far, a word that  occurs only in A and not in B, 
contributes zero to JAn[. This means that a highly 
significant word occurring only in A has exactly the 
same effect as an insignificant word occurring only 
in A. In other words the significance biasing is only 
taking place for words that  appear in both A and B. 
Therefore, the formula actually used is: 

Correspondence= L~I ~ -~  "k I-~P-~I 
2 

where A" is the subset of A which contains only 
those words that  occur in A and not in B. Sim- 
ilarly, B ~ is the subset of B which contains only 
those words that  occur in B and not in A. This is 
shown in Figure 4. 

Recall that  [A[, [m'[, [A"[, [B], [B'] and IS"[ are 
not calculated by adding one for each word in each 
set, but by summing the significance values of the 
words in each set. 

This stage of the processing looks at the output 
from the significance calculation stage and considers 
every sentence break in turn - starting at the top 
of the document and working down. The algorithm 
assigns a correspondence measure to each sentence 
break as follows: Firstly, set A is generated by tak- 
ing all the words in the previous fifteen sentences. 
Next, set B is generated by taking all the words 
in the following fifteen sentences. 1 Now sets A p, 
A ~, B ~ and B ~ are generated as described and then 
the formula above is applied which assigns a cor- 
respondence value to the sentence break currently 
under consideration. The algorithm then moves to 
the next sentence break and repeats the process. 

The output  from this stage of the algorithm is a 
list of sentence break numbers (1..n, with n = num- 
ber of sentences in the document) and a lexical cor- 
respondence measure. These numbers provide the 
input for stage four - smoothing. 

1Fi f teen  s e n t e n c e s  t u r n s  ou t  to  be  t h e  o p t i m u m  win-  
dow size for  t h e  vas t  m a j o r i t y  of  t ex t s .  T h i s  is b e c a u s e  
i t  is a b o u t  t h e  s a m e  as  t h e  ave rage  s e g m e n t  size. 

2.4 S m o o t h i n g  ( s t age  4) 

A graph can be plotted with lexical correspondence 
along the y-axis and sentence number along the x- 
axis. In order to distinguish the significant peaks 
and troughs from the many minor fluctuations, a 
simple smoothing algorithm is used. Taking three 
neighbouring points on the graph, P1, P2, P3: 

P3 

o A. 
..~......~:~ 

..................................................................... .......................... i iUi:::  

~ X 

Figure 5: Smoothing. 

The line P1P3 is bisected and this point is labelled 
A. P2 is perturbed by a constant amount  (not dee- 
pendent on the distance between A and P2) towards 
A. This new point is labelled B and becomes the 
new P2. This is performed simultaneously on ev- 
ery point on the graph. The process is k then iterated 
a fixed number of times. The result is that  noise 
is flattened out while the larger peaks and troughs 
remain (although slightly smaller). 

The output from this stage is simply the sentence 
break numbers and their new, smoothed correspon- 
dence values. 

2.5 I n s e r t i n g  s u b j e c t  b o u n d a r i e s  ( s t age  5) 

Considering the graph described in the previous sec- 
tion, generating subject boundaries is simply a mat- 
ter of identifying local minima on the graph. The 
confidence of a boundary is calculated from the 
'depth'  of the local minimum. This depth is calcu- 
lated simply by taking the average of the heights of 
the 'peak' (relative to the height of the minimum) on 
either side of the minimum. This now yields a list 
of candidate subject boundaries and an associated 
confidence measure for each one. Breaks are then in- 
serted into the original text at the places correspond- 
ing to the local minima if their confidence value sat- 
isfies a 'minimum confidence' criterion. This cut-off 
criterion is arbitrary, and in our implementation can 
be specified at run time. 

3 R e s u l t s  

Figure 6 shows the result of processing the first 
800 sentences from an edition of The Times newspa- 
per. The sentence number (x-axis) is plotted against 
the correspondence (y-axis) between the two win- 
dows of text on either side of that  sentence. 
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Actua l  sub jec t  
boundar ies  

36 
61 
779 
109 

146 
165 
175 
203 

244 
278 
304 
333 
356 
376 

Boundar ies  found Er ro r  
by a lgor i thm 

36 0 
60 1 
79 0 
109 0 
134 + 
145 1 
165 0 
174 1 
203 0 
214 + 
244 0 
278 0 
304 0 
332 1 
355 1 
375 1 

Table 1: The Times 

A large negative value indicates a low degree of 
correspondence and a small negative value or a pos- 
itive value indicates a high degree of correspondence. 
The vertical lines mark  actual article boundaries. 

The advantage of using a text such as this is that  
there can be no doubt from any human judge as to 
where the boundaries occur, i.e. between articles. 
The local min ima on the graph signify the bound- 
aries as determined by the algorithm. The vertical 
bars signify the actual article boundaries. The re- 
sults of the first 400 sentences are summarised in 
table 1. 

The algorithm located 53% of the article bound- 
aries precisely and 95% of the boundaries to within 
an accuracy of a single sentence. Every article 
boundary was identified to within an accuracy of 
two sentences. The algorithm made no use of end- 
of-paragraph markers. It  also found some additional 
subject boundaries in the middle of articles. These 
are denoted by a ' + '  in the error column. Many ex- 
t ra  subject boundaries were found in the long article 
(starting at sentence 430). It  is worth noting that  
the min ima  occurring within this article are not as 
pronounced as the actual article boundaries them- 
selves. This section of the graph reflects a long arti- 
cle which contains a number of different subtopics. 

A newspaper is an easy test for such an algorithm 
though. Figure 7 shows a graph for an expository 
text - a 200 sentence psychology paper written by 
a fellow student. Again the local min ima indicate 
where the algorithm considers a subject boundary 
to occur and the vertical lines are the obvious breaks 
in the text (mainly before new headings) as judged 
by the author. The results are summarised in table 
2. 

This t ime the algorithm precisely located 50% of 
the boundaries. It  found 63% of the boundaries to 
within an accuracy of a single sentence and 88% to 

Actua l  subjec t  
boundar ies  

7 
22 

59 
72 

96 
121 

162 

184 

Boundar ies  found E r ro r  
by a lgor i thm 

77 0 
22 0 
42 + 
58 1 
772 0 
77 + 
92 4 

118 3 
137 + 
156 + 
161 1 
177 + 
184 0 
191 + 

Table 2: Expository Text 

within an accuracy of two sentences. This level of 
accuracy was obtained consistently for a variety of 
different texts. Again, it should be mentioned that  
the algorithm found more breaks than were immedi- 
ately obvious to a human judge. However, it should 
be noted that  these extra breaks were usually de- 
noted by smaller minima, and on inspection the vast 
majori ty  of them were in sensible places. 

The algorithm has a certain resolving power. As 
the subject mat ter  becomes more and more homoge- 
neous, the number of subject breaks the algorithm 
finds decreases. For some texts, this results in very 
few divisions being made. By taking a smaller win- 
dow size (the number of sentences to look at either 
side of each possible sentence break), the resolving 
power 'of the algorithm can be increased making it 
more sensitive to changes in the vocabulary. How- 
ever, the reliability of the algorithm decreases with 
the increased resolving power. The default window 
size is fifteen sentences and this works well for all 
but the most homogeneous of texts. In this case a 
window size of around six is more effective. A lower 
window size increases the resolving power, but de- 
creases the accuracy of the algorithm. The window 
size was a parameter  of our implementat ion.  

o 

- 1 o  

- 3 o  

- 70  
~ o  1 ¢ o  1 s o  

Figure 7: Expository Text. 
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4 S u m m a r y  

Based on our investigation, we believe that Hearst's 
original intuition that lexical correspondences can be 
exploited to identify subject boundaries is a sound 
one. The addition of the significance measure repre- 
sents an improvement on Hearst's algorithm imple- 
mented by the Berkeley Digital Library Project. 

Furthermore, this algorithm is language indepen- 
dent except for the preprocessing stage (which can 
be omitted with only a modest degradation in per- 
formance). In order to improve accuracy, language 
dependent methods could be considered. Such meth- 
ods might include the insertion of conventional dis- 
course markers in order to detect preferred breaking 
points (e.g. repetition of the same syntactic struc- 
ture, and conventional paragraph openings such as: 
"On the other hand...", "The above...", etc.). An- 
other method would be to make use of a thesaurus, 
since we have found that human judgement is often 
based on synonymous information such as real syn- 
onyms or anaphora. The above issues are discussed 
in various articles (Morris and Hirst, 1991); (Mor- 
ris, 1988) and (Givon, 1983) which study discourse 
markers and synonymous information. 

Another interesting line of research would be to 
use the information from stage two of the algorithm 
to discover the significant words of a section, and 
thereby attach a label to it. This would be particu- 
larly useful for information retrieval applications. 
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