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Abstract 

We present a variation on classic beam 
thresholding techniques that  is up to an or- 
der of magnitude faster than the traditional 
method,  at the same performance level. We 
also present a new thresholding technique, 
global thresholding, which, combined with 
the new beam thresholding, gives an ad- 
ditional factor of two improvement,  and a 
novel technique, multiple pass parsing, tha t  
can be combined with the others to yield 
yet another 50% improvement.  We use a 
new search algorithm to simultaneously op- 
timize the thresholding parameters  of the 
various algorithms. 

1 Introduction 
In this paper,  we examine thresholding techniques 
for statistical parsers. While there exist theoretically 
efficient (O (n 3)) algorithms for parsing Probabilistic 
Context-Free Grammars  (PCFGs) and related for- 
malisms, practical parsing algorithms usually make 
use of pruning techniques, such as beam threshold- 
ing, for increased speed. 

We introduce two novel thresholding techniques, 
global thresholding and multiple-pass parsing, and 
one significant variation on  traditional beam thresh- 
olding. We examine the value of these techniques 
when used separately, and when combined. In or- 
der to examine the combined techniques, we also 
introduce an algorithm for optimizing the settings 
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comments on earlier drafts, and the anonymous review- 
ers for their extensive comments. 
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of multiple thresholds. When all three thresholding 
methods are used together, they yield very signif- 
icant speedups over traditional beam thresholding, 
while achieving the same level of performance. 

We apply our techniques to CKY chart parsing, 
one of the most commonly used parsing methods in 
natural  language processing. In a CKY chart parser, 
a two-dimensional matr ix  of cells, the chart,  is filled 
in. Each cell in the chart corresponds-to a span of 
the sentence, and each cell of the chart  contains the 
nonterminals that  could generate that  span. Cells 
covering shorter spans are filled in first, so we also 
refer to this kind of parser as a bo t tom-up  chart 
parser. 

The parser fills in a cell in the chart  by examining 
the nonterminals in lower, shorter cells, and combin- 
ing these nonterminals according to the rules of the 
grammar.  The more nonterminals there are in the 
shorter cells, the more combinations of nonterminals 
the parser must consider. 

In some grammars ,  such as PCFGs,  probabilities 
are associated with the g rammar  rules. This in- 
troduces problems, since in many  PCFGs,  almost 
any combination of nonterminals is possible, per- 
haps with some low probability. The large number of 
possibilities can greatly slow parsing. On the other 
hand, the probabilities also introduce new opportu-  
nities. For instance, if in a particular cell in the 
chart there is some nonterminal tha t  generates the 
span with high probability, and another tha t  gen- 
erates that  span with low probability, then we can 
remove the less likely nonterminal from the cell. The 
less likely nonterminal will probably not be par t  of 
either the correct parse or the tree returned by the 
parser, so removing it will do little harm. This tech- 
nique is called beam thresholding. 

If we use a loose beam threshold, removing only 
those nonterminals that  are much less probable than 
the best nonterminal in a cell, our parser will run 
only slightly faster than with no thresholding, while 
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Figure 1: Precision and Recall versus Time in Beam 
Thresholding 

performance measures such as precision and recall 
will remain virtually unchanged. On the other hand, 
if we use a tight threshold, removing nonterminals 
tha t  are almost as probable as the best nonterminal 
in a cell, then we can get a considerable speedup, but 
at  a considerable cost. Figure 1 shows the tradeoff 
between accuracy and time. 

In this paper,  we will consider three different kinds 
of thresholding. The first of these is a variation on 
tradit ional beam search. In tradit ional beam search, 
only the probabili ty of a nonterminal generating the 
terminals of the cell's span is used. We have found 
tha t  a minor variation, introduced in Section 2, in 
which we also consider the prior probabili ty tha t  
each nonterminal is par t  of the correct parse, can 
lead to nearly an order of magnitude improvement.  

The problem with beam search is tha t  it only 
compares nonterminals to other nonterminals in the 
same cell. Consider the case in which a particular 
cell contains only bad nonterminals, all of roughly 
equal probability. We can ' t  threshold out these 
nodes, because even though they are all bad, none 
is much worse than  the best. Thus, what we want 
is a thresholding technique tha t  uses some global 
information for thresholding, ra ther  than just  us- 
ing information in a single cell. The second kind of 
thresholding we consider is a novel technique, global 
thresholding, described in Section 3. Global thresh- 
olding makes use of the observation tha t  for a non- 
terminal to be par t  of the correct parse, it must be 
par t  of a sequence of reasonably probable nontermi- 
nals covering the whole sentence. 

The last technique we consider, multiple-pass 
parsing, is introduced in Section 4. The basic idea is 
tha t  we can use information from parsing with one 

grammar  to speed parsing with a~other. We run two 
passes, the first of which is fast and simple, elimi- 
nating from consideration many  unlikely potential  
constituents. The second pass is more complicated 
and slower, but  also more accurate. Because we have 
already eliminated many  nodes in our first pass, the 
second pass can run much faster, and, despite the 
fact that  we have to run two passes, the added sav- 
ings in the second pass can easily outweigh the cost 
of the first one. 

Experimental  comparisons of these techniques 
show tha t  they lead to considerable speedups over 
traditional thresholding, when used separately. We 
also wished to combine the thresholding techniques; 
this is relatively difficult, since searching for the opti- 
mal thresholding parameters  in a multi-dimensionai 
space is potentially very t ime consuming. We .de- 
signed a variant on a gradient descent search algo- 
r i thm to find the optimal  parameters .  Using all three 
thresholding methods together,  and the paramete r  
search algorithm, we achieved our best  results, run- 
ning an estimated 30 times faster than  tradit ional  
beam search, at the same performance level. 

2 B e a m  T h r e s h o l d i n g  

The first, and simplest, technique we will examine is 
beam thresholding. While this technique is used as 
par t  of many  search algorithms, beam thresholding 
with PCFGs  is most  similar to beam thresholding 
as used in speech recognition. Beam thresholding 
is often used in statistical parsers, such as tha t  of 
Collins (1996). 

Consider a nonterminal X in a cell covering the 
span of terminals tj...tk. We will refer to this as node 
NjXk, since it corresponds to a potential  node in the 
final parse tree. Recall tha t  in beam thresholding, 
we compare nodes N~, k and N~, k covering the same 
span. If one node is much more likely than  the other, 
then it is unlikely tha t  the less probable  node will 
be par t  of the correct parse, and we can remove it 
from the chart, saving t ime later. 

There is a subtlety about  what  it means for a node 
N~, k to be more likely than  some other node. Ac- 
cording to folk wisdom, the best way to measure the 
likelihood of a node N~, k is to use the probabil i ty 
that  the nonterminal X generates the span tj...tk, 
called the inside probability. Formally, we write this 
a s  P ( X  =~ tj...tk) , and denote it by x ~(Nj,k). How- 
ever, this does not give information about  the proba- 
bility of the node in the context of the full parse tree. 
For instance, two nodes, one an NP and the other a 
FRA G (fragment), may have equal inside probabili- 
ties, but since there are far more NPs than  there are 
FRAG clauses, the NP node is more likely overall. 
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Therefore, we must consider more information than 
just the inside probability. 

The outside probability of a node N~k is the prob- 
ability of that  node given the surrounding terminals 
of the sentence, i.e. P(S =~ tl...tj-xXtk+l...tn), 
which we denote by a(N~k ). Ideally, we would mul- 
tiply the inside probability by the outside probabil- 
ity, and normalize. This product would give us the 
overall probability that  the node is part  of the cor- 
rect parse. Unfortunately, there is no good way to 
quickly compute the outside probability of a node 
during bottom-up chart parsing (although it can be 
efficiently computed afterwards). Thus, we instead 
multiply the inside probability simply by the prior 
probability of the nonterminal type, P(X), which 
is an approximation to the outside probability. Our 
final thresholding measure is P(X) xfl(Nj,Xk). In Sec- 
tion 7.4, we will show experiments comparing inside- 
probability beam thresholding to beam thresholding 
using the inside probability times the prior. Using 
the prior can lead to a speedup of up to a factor of 
10, at the same performance level. 

To the best of our knowledge, using the prior 
probability in beam thresholding is new, al- 
though not particularly insightful on our part. 
Collins (personal communication) independently ob- 
served the usefulness of this modification, and 
Caraballo and Charniak (1996) used a related tech- 
nique in a best-first parser. We think that  the 
main reason this technique was not used sooner is 
that  beam thresholding for PCFGs is derived from 
beam thresholding in speech recognition using Hid- 
den Markov Models (HMMs). In an HMM, the 
forward probability of a given state corresponds to 
the probability of reaching that  state from the start  
state. The probability of eventually reaching the 
final state from any state is always 1. Thus, the 
forward probability is all that  is needed. The same 
is true in some top down probabilistic parsing al- 
gorithms, such as stochastic versions of Earley's al- 
gorithm (Stolcke, 1993). However, in a bottom-up 
algorithm, we need the extra factor that  indicates 
the probability of getting from the start symbol to 
the nonterminal in question, which we approximate 
by the prior probability. As we noted, this can be 
very different for different nonterminals. 

3 Global Thresholding 

As mentioned earlier, the problem with beam thresh- 
olding is that  it can only threshold out the worst 
nodes of a cell. It cannot threshold out an entire 
cell, even if there are no good nodes in it. To rem- 
edy this problem, we introduce a novel thresholding 
technique, global thresholding. 

A B C 

Figure 2: Global Thresholding Motivation 

The key insight of global thresholding is due to 
Rayner and Carter (1996). Rayner et al. noticed 
that  a particular node cannot be part  of the cor- 
rect parse if there are no nodes in adjacent cells. In 
fact, it must be part  of a sequence of nodes stretch- 
ing from the start  of the string to the end. In a 
probabilistic framework where almost every node 
will have some (possibly very small) probability, we 
can rephrase this requirement as being that  the node 
must be part  of a reasonably probable sequence. 

Figure 2 shows an example of this insight. Nodes 
A, B, and C will not be thresholded ou t ,  because 
each is part  of a sequence from the beginning to the 
end of the chart. On the other hand, nodes X, Y, 
and Z will be thresholded out, because none is part  
of such a sequence. 

Rayner et al. used this insight for a hierarchical, 
non-recursive grammar, and only used their tech- 
nique to prune after the first level of the grammar. 
They computed a score for each sequence as the min- 
imum of the scores of each node in the sequence, and 
computed a score for each node in the sequence as 
the minimum of three scores: one based on statistics 
about nodes to the left, one based on nodes to the 
right, and one based on unigram statistics. 

We wanted to extend the work of Rayner et al. to 
general PCFGs, including those that  were recursive. 
Our approach therefore differs from theirs in many 
ways. Rayner et al. ignore the inside probabilities of 
nodes; while this may work after processing only the 
first level of a grammar, when the inside probabilities 
will be relatively homogeneous, it could cause prob- 
lems after other levels, when the inside probability 
of a node will give important  information about its 
usefulness. On the other hand, because long nodes 
will tend to have low inside probabilities, taking the 
minimum of all scores strongly favors sequences of 
short nodes. Furthermore, their algorithm requires 
time O(n a) to  run just once. This is acceptable if the 
algorithm is run only after the first level, but  run- 
ning it more often would lead to an overall run time 
of O(n4). Finally, we hoped to find an algorithm 
that  was somewhat less heuristic in nature. 
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f loat  f [1 . . n+ l ]  := {1,0,0, ...,0}; 
for  start := 1 to n 

for  each  node N beginning at start 
left :=  f [ s t a r t ] ;  
score := left × Ninside x Nprior; 
i f  score > f[start + Nlength] 

f[start + Ntength] := score; 

f loat  b[1..n+l] := {0, .. . ,0,0, 1}; 
for  start := n downto 1 

for  e a ch  node N beginning at start 
right := b[start + Ntength]; 
score := right × Ninside × Nprior; 
i f  score > b[start] 

b[start] := score; 

bestProb := f [n+  1]; 

for  each  node N 
left := f[N~t~rt]; 
right := b[N~t~,rt + Ntenath]; 
total := left × Ninsid~ X Np~or x right; 
i f  total > bestProb x TG 

Nacuve := T R U E ;  
else 

Nacuve := FALSE;  

Figure 3: Global Thresholding Algorithm 

Our global thresholding technique thresholds out 
node N if the ratio between the most probable se- 
quence of nodes including node N and the over- 
all most probable sequence of nodes is less than 
some threshold, To. Formally, denoting sequences 
of nodes by L, we threshold node N if 

TG relax P(L)  > max P(L)  
LINeL 

Now, the hard part  is determining P(L) ,  the prob- 
ability of a node sequence. Unfortunately, there is 
no way to do this efficiently as part  of the intermedi- 
ate computation of a bottom-up chart parser. 1 We 
will approximate P(L)  as follows: 

P(L)  = I I  P(LilL1.. .Li_i)  ~ H P(Li)  
i i 

1Some other parsing techniques, such as stochastic 
versions of Earley parsers (Stolcke, 1993), efficiently 
compute related probabilities, but we won't explore these 
parsers here. We confess that our real interest is in 
more complicated grammars, such as those that use head 
words. Grammars such as these can best be parsed bot- 
tom up. 

That  is, we assume independence between the el- 
ements of a sequence. The probability of node 
Li = N~k is just its prior probability times its inside 
probability, as before. 

The most important  difference between global 
thresholding and beam thresholding is that  global 
thresholding is global: any node in the chart can help 
prune out any other node. In stark contrast,  beam 
thresholding only compares nodes to other nodes 
covering the same span. Beam thresholding typi- 
cally allows tighter thresholds since there are fewer 
approximations, but does not benefit from global in- 
formation. 

3.1 G l o b a l  T h r e s h o l d i n g  A l g o r i t h m  

Global thresholding is performed in a bot tom-up 
chart parser immediately after each length is com- 
pleted. It thus runs n times during the course of 
parsing a sentence of length n. 

We use the simple dynamic programming algo- 
ri thm in Figure 3. There are O(n 2) nodes in the 
chart, and each node is examined exactly three 
times, so the run time of this algorithm is O(n2). 
The first section of the algorithm works forwards, 
computing, for each i, f[i], which contains the score 
of the best sequence covering terminals tl . . . ti-1. 
Thus f i n + l ]  contains the score of the best sequence 
covering the whole sentence, maxL P(L).  The algo- 
r i thm works analogously to the Viterbi algorithm for 
HMMs. The second section is analogous, but  works 
backwards, computing b[i], which contains the score 
of the best sequence covering terminals ti...tn. 

Once we have computed the preceding arrays, 
computing maXL]NE L P(L)  is straightforward. We 
simply want the score of the best sequence cover- 
ing the nodes to the left of N, f[Nstart], times the 
score of the node itself, times the score of the best 
sequence of nodes from Ns~art + Nt~ngth to the end, 
which is just b[N~u, rt + Nt~ngth]. Using this expres- 
sion, we can threshold each node quickly. 

Since this algorithm is run n times during the 
course of parsing, and requires time O(n 2) each time 
it runs, the algorithm requires time O(n 3) overall. 
Experiments will show that  the time it saves easily 
outweighs the time it uses. 

4 M u l t i p l e - P a s s  P a r s i n g  

In this section, we discuss a novel thresholding 
technique, multiple-pass parsing. We show that  
multiple-pass parsing techniques can yield large 
speedups. Multiple-pass parsing is a variation on a 
new technique in speech recognition, multiple-pass 
speech recognition (Zavaliagkos et al., 1994), which 
we introduce first. 
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4.1 Multiple-Pass Speech Recognition 

In an idealized multiple-pass speech recognizer, we 
first run a simple pass, computing the forward and 
backward probabilities. This first pass runs rela- 
tively quickly. We can use information from this 
simple, fast first pass to eliminate most states, and 
then run a more complicated, slower second pass 
tha t  does not examine states that  were deemed un- 
likely by the first pass. The extra  t ime of running 
two passes is more than  made up for by the t ime 
saved in the second pass. 

The mathemat ics  of multiple-pass recognition is 
fairly simple. In the first simple pass, we record the 
forward probabilities, c~(S~), and backward proba- 
bilities, fl(S~), of each state i at  each time t. NOW , 

~(s~)×~(s~) gives the overall probability of being in ~(s~,.,) 
state i at  t ime t given the acoustics. Our second pass 
will use an HMM whose states are analogous to the 
first pass HMM's  states. If  a first pass state at some 
t ime is unlikely, then the analogous second pass state 
is probably also unlikely, so we can threshold it out. 

There are a few complications to multiple-pass 
recognition. First, storing all the forward and back- 
ward probabilities can be expensive. Second, the 
second pass is more complicated than the first, typ- 
ically ineaning tha t  it has more states. So the map- 
ping between states in the first pass and states in the 
second pass may be non-trivial. To solve both these 
problems, only states at  word transitions are saved. 
Tha t  is, from pass to pass, only information about  
where words are likely to s tar t  and end is used for 
thresholding. 

4.2 M u l t i p l e - P a s s  P a r s i n g  

We can use an analogous algorithm for multiple-pass 
parsing. In particular,  we can use two grammars ,  
one fast and simple and the other slower, more com- 
plicated, and more accurate. Rather  than using the 
forward and backward probabilities of speech recog- 
nition, we use the analogous inside and outside prob- 
abilities, x fl(Nj,k) and a(Nfk  ) respectively. Remem- 

ber tha t  B(N~i. ) is the probability that  Nfk  is 

in the correct parse (given, as always, the model and 
the string). Thus, we run our first pass, computing 
this expression for each node. We can then eliminate 
from consideration in our later passes all nodes for 
which the probabili ty of being in the correct parse 
was too small in the first pass. 

Of course, for our second pass to be more accu- 
rate, it will probably be more complicated, typically 
containing an increased number of nonterminals and 
productions. Thus, we create a mapping function 

for length := 2 to  n 
for  start := 1 to  n - length + 1 

LeftPrev := PrevChart [length][start]; 
for  e a c h  LeftNodePrev E LeftPrev 

for  each  production instance Prod from 
LeftNodePrev of size length 

for  e a c h  descendant L of ProdLelt 
for  e a c h  descendant R of ProdRight 

for  each  descendant P of Prodpar~n~ 
such tha t  P ~ L R 

add P to Chart[length][start]; 

Figure 4: Second Pass Parsing Algorithm 

from each first pass nonterminal to a set of second 
pass nonterminals, and threshold out those second 
pass nonterminals tha t  map from low-scoring first 
pass nonterminals. We call this mapping  function 
the descendants function. 2 

There are many possible examples of first and sec- 
ond pass combinations. For instance, the first pass 
could use regular nonterminals, such as NP and VP 
and the second pass could use nonterminals aug- 
mented with head-word information. The descen- 
dants function then appends the possible head words 
to the first pass nonterminals to get the second pass 
ones. 

Even though the correspondence between for- 
ward/backward and inside/outside probabilities is 
very close, there are important  differences between 
speech-recognition HMMs and natural- language 
processing PCFGs.  In particular,  we have found 
that  it is more important  to threshold productions 
than nonterminals. Tha t  is, ra ther  than just notic- 
ing that  a particular nonterminal VP spanning the 
words "killed the rabbit" is ve ry  likely, we also note 
tha t  the production VP --~ V NP (and the relevant 
spans) is likely. 

Both the first and second pass parsing algorithms 
are simple variations on CKY parsing. In the first 
pass, we now keep track of each production instance 
associated with a node, i.e. N'x~,3 ~ NYi,k gZk+l,j, 
computing the inside and outside probabilities of 
each. The second pass requires more changes. Let 
us denote the descendants of nonterminal X by 
X1...Xx. In the second pass, for each production 

2In thin paper, we will assume that each second pass 
nonterminal can descend from at most one first pass non- 
terminal in each cell. Th~ grammars used here have this 
property. If this assumption is violated, multiple-pass 
parsing is still possible, but some of the algorithms need 
to be changed. 
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of the form N. X. N Y z ~,~ ~ i,k N~+Ij in the first pass that  
wasn' t  thresholded out by multi-pass thresholding, 
beam thresholding, etc., we consider every descen- 
dant production instance, tha t  is, all those of the 

Z .  form N~,~ p ~ Ni, ~ N~+, j ,  for appropriate  values of 
p, q, r. This algorithm is given in Figure 4, which 
uses a current pass matr ix  Chart to keep track of 
nonterminals in the current pass, and a previous pass 
matrix,  PrevChart to keep track of nonterminals in 
the previous pass. We use one additional optimiza- 
tion, keeping track of the descendants of each non- 
terminal in each cell in PrevChart which are in the 
corresponding cell of Chart. 

We tried multiple-pass thresholding in two differ- 
ent ways. In the first technique we tried, production- 
instance thresholding, we remove from consideration 
in the second pass the descendants of all production 
instances whose combined inside-outside probabil- 
ity falls below a threshold. In the second technique, 
node thresholding, we remove from consideration the 
descendants of all nodes whose inside-outside prob- 
ability falls below a threshold. In our pilot exper- 
iments, we found tha t  in some cases one technique 
works slightly better,  and in some cases the other 
does. We therefore ran our experiments using both 
thresholds together. 

One nice feature of multiple-pass parsing is that  
under special circumstances, it is an admissible 
search technique, meaning tha t  we are guaranteed 
to find the best solution with it. In particular, if 
we parse using no thresholding, and our grammars  
have the proper ty  tha t  for every non-zero probabil- 
ity parse in the second pass, there is an analogous 
non-zero probabil i ty parse in the first pass, then 
multiple-pass search is admissible. Under these cir- 
cumstances, no non-zero probabili ty parse will be 
thresholded out, but  many  zero probabili ty parses 
may be removed from consideration. While we will 
almost always wish to parse using thresholds, it is 
nice to know tha t  multiple-pass parsing can be seen 
as an approximation to an admissible technique, 
where the degree of approximation is controlled by 
the thresholding parameter .  

5 M u l t i p l e  P a r a m e t e r  O p t i m i z a t i o n  

The use of any one of these techniques does not 
exclude the use of the others. There is no rea- 
son tha t  we cannot use beam thresholding, global 
thresholding, and multiple-pass parsing all at  the 
same time. In general, it wouldn' t  make sense to use 
a technique such as multiple-pass parsing without 
other thresholding techniques; our first pass would 
be overwhelmingly slow without some sort of thresh- 

wh i l e  n o t  Thresholds E ThresholdsSet 
add Thresholds to ThresholdsSet; 
( BaseET , Base Time ) := ParseAll( Thresholds ); 
for  e a c h  Threshold E Thresholds 

if BaseET > TargetET 
tighten Threshold; 
( NewET , New Time ) :-- ParseAll(Thresholds); 
Ratio := (BaseTime - NewTime) / 

(BaseET - NewET); 
else  

loosen Threshold; 
( NewET , New Tim e) := ParseAll (Thresholds); 
Ratio := (BaseET - NewET) / 

(BaseTime - NewTime); 
change Threshold with best Ratio; 

Figure 5: Gradient  Descent Multiple Threshold 
Search 
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Optimizing for 
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. . . . . . . . . . . . . . . . . . . . . . . . .  Goal 

Throb 2 ~ e s h  1 

Time 

Optimizing for 
Faster S p e e d :  

Flatter is Bet ter  

Figure 6: Optimizing for Lower Entropy versus Op- 
timizing for Faster Speed 

olding. 
There are, however, some practical considerations. 

To optimize a single threshold, we could simply 
sweep our parameters  over a one dimensional range, 
and pick the best speed versus performance trade- 
off. In combining multiple techniques, we need to 
find optimal combinations of thresholding parame-  
ters. Rather  than having to examine 10 values in 
a single dimensional space, we might have to exam- 
ine 100 combinations in a two dimensional space. 
Later,  we show experiments with up to six thresh- 
olds. Since we don ' t  have t ime to parse with one 
million parameter  combinations, we need a bet ter  
search algorithm. 

Ideally, we would like to be able to pick a perfor- 
mance level (in terms of either entropy or precision 
and recall) and find the best set of thresholds for 
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achieving that  performance level as quickly as pos- 
sible. If this is our goal, then a normal gradient de- 
scent technique won't  work, since we can't  use such 
a technique to optimize one function of a set of vari- 
ables (time as a function of thresholds) while holding 
another one constant (performance). 3 

We wanted a metric of performance which would 
be sensitive to changes in threshold values. In par- 
ticular, our ideal metric would be strictly increasing 
as our thresholds loosened, so that every loosening 
of threshold values would produce a measurable in- 
crease in performance. The closer we get to this 
ideal, the fewer sentences we need to test during pa- 
rameter optimization. 

We tried an experiment in which we ran beam 
thresholding with a tight threshold, and then a loose 
threshold, on all sentences of section 0 of length 
< 40. For this experiment only, we discarded those 
sentences which could not be parsed with the spec- 
ified setting of the threshold, rather than retrying 
with looser thresholds. We then computed for each 
of six metrics how often the metric decreased, stayed 
the same, or increased for each sentence between the 
two runs. Ideally, as we loosened the "threshold, ev- 
ery sentence should improve on every metric, but in 
practice, ,that wasn't  the case. As can be seen, the 
inside score was by far the most nearly strictly in- 
creasing metric. Therefore, we should use the inside 
probability as our metric of performance; however 
inside probabilities can become very close to zero, so 
instead we measure entropy, the negative logarithm 
of the inside probability. 

Metric 
Inside 

Viterbi 
Cross Bracket 

Zero Cross Bracket 
Precision 

Recall 

decrease same increase 
7 64 1623 
6 1300 388 
134 1321 230 
18 1606 61 
134 1270 281 
128 1321 236 

We implemented a variation on a steepest descent 
search technique. We denote the entropy of the sen- 
tence after thresholding by ET. Our search engine 
is given a target performance level ET to search for, 

3We could use gradient descent to minimize a 
weighted sum of time and performance, but we wouldn't 
know at the beginning what performance we would have 
at the end. If our goal is to have the best performance we 
can while running in real time, or to achieve a minimum 
acceptable performance level with as little time as nec- 
essary, then a simple gradient descent function wouldn't 
work as well as our algorithm. 

Also, for this algorithm (although not for most experi- 
ments), our measurement of time was the total number of 
productions searched, rather than cpu time; we wanted 
the greater accuracy of measuring productions. 

and then tries to find the best combination of pa- 
rameters that works at approximately this level of 
performance. At each point, it finds the threshold 
to change that gives the most "bang for the buck." 
It then changes this parameter in the correct direc- 
tion to move towards ET (and possibly overshoot 
it). A simplified version of the algorithm is given in 
Figure 5. 

Figure 6 shows graphically how the algorithm 
works. There are two cases. In the first case, if 
we are currently above the goal entropy, then we 
loosen our thresholds, leading to slower speed and 
lower entropy. We then wish to get as much entropy 
reduction as possible per time increase; that  is, we 
want the steepest slope possible. On the other hand, 
if we are trying to increase our entropy, we want as 
much time decrease as possible per entropy increase; 
that  is, we want the flattest slope possible. Because 
of this difference, we need to compute different ratios 
depending on which side of the goal we axe on. 

There are several subtleties when thresholds are 
set very tightly. When we fail to parse a sentence 
because the thresholds are too tight, we retry the 
parse with lower thresholds. This can lead to condi- 
tions that are the opposite of what we expect; for in- 
stance, loosening thresholds may lead to faster pars- 
ing, because we don' t  need to parse the sentence, fail, 
and then retry with looser thresholds. The full al- 
gorithm contains additional checks that  our thresh- 
olding change had the effect we expected (either in- 
creased time for decreased entropy or vice versa). If 
we get either a change in the wrong direction, or a 
change that makes everything worse, then we retry 
with the inverse change, hoping that  that  will have 
the intended effect. If we get a change that  makes 
both time and entropy better, then we make that 
change regardless of the ratio. 

Also, we need to do checks that  the denominator 
when computing Ratio isn't too small. If it is very 
small, then our estimate may be unreliable, and we 
don' t  consider changing this parameter. Finally, the 
actual algorithm we used also contained a simple 
"annealing schedule", in which we slowly decreased 
the factor by which we changed thresholds. That  
is, we actually run the algorithm multiple times to 
termination, first changing thresholds by a factor of 
16. After a loop is reached at this factor, we lower 
the factor to 4, then 2, then 1.414, then 1.15. 

Note that this algorithm is fairly domain inde- 
• pendent. It can be used for almost any statistical 

parsing formalism that uses thresholds, or even for 
speech recognition. 
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6 Comparison to Previous  Work 

Beam thresholding is a common approach. While 
we don' t  know of other systems that  have used 
exactly our techniques, our techniques are cer- 
tainly similar to those of others. For instance, 
Collins (1996) uses a form of beam thresholding that  
differs from ours only in that  it doesn't use the 
prior probability of nonterminals as a factor, and 
Caraballo and Charniak (1996) use a version with 
the prior, but  with other factors as well. 

Much of the previous related work on threshold- 
ing is in the similar area of priority functions for 
agenda-based parsers. These parsers t ry  to do "best 
first" parsing, with some function akin to a thresh- 
olding function determining what is best. The best 
comparison of these functions is due to Caraballo 
and Charniak (1996; 1997), who tried various pri- 
oritization methods. Several of their techniques are 
similar to our beam thresholding technique, and one 
of their techniques, not yet published (Caraballo and 
Charniak, 1997), would probably work better. 

The only technique that  Caraballo and Charniak 
(1996) give that  took into account the scores of other 
nodes in the priority function, the "prefix model," 
required O(n 5) time to compute, compared to our 
O(n 3) system. On the other hand, all nodes in the 
agenda parser were compared to all other nodes, so 
in some sense all the priority functions were global. 

Note that  agenda-based PCFG parsers in gen- 
eral require more than O(n 3) run time, because, 
when bet ter  derivations are discovered, they may 
be forced to propagate improvements to productions 
that  they have previously considered. For instance, 
if an agenda-based system first computes the prob- 
ability for a production S ~ NP VP, and then 
later computes some better  probability for the NP, 
it must update the probability for the S as well. This 
could propagate through much of the chart. To rem- 
edy this, Caraballo et al. only propagated probabil- 
ities that  caused a large enough change (Caraballo 
and Charniak, 1997). Also, the question of when an 
agenda-based system should stop is a little discussed 
issue, and difficult since there is no obvious stopping 
criterion. Because of these issues, we chose not to 
implement an agenda-based system for comparison. 

As mentioned earlier, Rayner and Carter (1996) 
describe a system that  is the inspiration for global 
thresholding. Because of the limitation of their sys- 
tem to non-recursive grammars, and the other dif- 
ferences discussed in Section 3, global thresholding 
represents a significant improvement. 

Collins (1996) uses two thresholding techniques. 
The first of these is essentially beam thresholding 

for e a c h  rule P ~ L R 
i f  nonterminal L in left cell 

i f  nonterminal R in right cell 
add P to parent cell; 

Algorithm One 

for e a c h  nonterminal L in left cell 
for  each 'nonterminal  R in right cell 

for  e a c h  rule P ~ L R 
add P to parent  cell; 

Algorithm Two 

Figure 7: Two Possible CKY inner loops 

without a prior. In the second technique, there is 
a constant probability threshold. Any nodes with 
a probability below this threshold are pruned. If 
the parse fails, parsing is restarted with the con- 
stant lowered. We at tempted to duplicate this tech- 
nique, but achieved only negligible performance im- 
provements. Collins (personal communication) re- 
ports a 38% speedup when this technique is com- 
bined with loose beam thresholding, compared to 
loose beam thresholding alone. Perhaps our lack of 
success is due to differences between our grammars, 
which are fairly different formalisms. When Collins 
began using a formalism somewhat closer to ours, 
he needed to change his beam thresholding to take 
into account the prior, so this is not unlikely. Hwa 
(personal communication) using a model similar to 
PCFGs, Stochastic Lexicalized Tree Insertion Gram- 
mars, also was not able to obtain a speedup using 
this technique. 

There is previous work in the speech recognition 
community on automatically optimizing some pa- 
rameters (Schwartz et al., 1992). However, this pre- 
vious work differed significantly from ours both in 
the techniques used, and in the parameters opti- 
mized. In particular, previous work focused on opti- 
mizing weights for various components, such as the 
language model component. In contrast,  we opti- 
mize thresholding parameters. Previous techniques 
could not be used or easily adapted to thresholding 
parameters. 

7 Exper iments  

7.1 T h e  P a r s e r  a n d  D a t a  

The inner loop of the CKY algorithm, which deter- 
mines for every pair of cells what nodes must be 
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Original 
S 

X Y 

A B ... G H Z 

A B 

Binary Branching 
S 

X y 

A X~,C,D,E,F Z 

A B B XC,D,E,F, G 

I 
C XD,E,F,G,  H 

D X ~ E,F,G,H 

E X~,a, H 

F X~, H 

G H 

Figure 8: Converting to Binary Branching 

added to the parent, can be written in several dif- 
ferent ways. Which way this is done interacts with 
thresholding techniques. There are two possibilities, 
as shown in Figure 7. We used the second technique, 
since the first technique gets no speedup from most 
thresholding systems. 

All experiments were trained on sections 2-18 of 
the Penn Treebank, version II. A few were tested, 
where noted, on the first 200 sentences of section 00 
of length at most 40 words. In one experiment, we 
used the first 15 ()f length at most 40, and in the re- 
mainder of our experiments, we used those sentences 
in the first 1001 of length at most 40. Our param- 
eter optimization algorithm always used the first 31 
sentences of length at most 40 words from section 
19. We ran some experiments on more sentences, 
but there were three sentences in this larger test set 
that  could not be parsed with beam thresholding, 
even with loose settings of the threshold; we there- 
fore chose to report the smaller test set, since it is 
difficult to compare techniques which did not parse 

exactly the same sentences. 

7.2 T h e  G r a m m a r  

We needed several grammars for our experiments 
so that we could test the multiple-pass parsing al- 
gorithm. The grammar rules, and their associated 
probabilities, were determined by reading them off 
of the training section of the treebank, in a man- 
ner very similar to that used by Charniak (1996). 
The main grammar we chose was essentially of the 
following form: 

! 
X =v A XB,C,D,E, F 

! 
X~,B,C,D~ ~ A XB,c,D,E,F 

A 
X ~ A B  

That  is, our grammar was binary branching ex- 
cept that  we also allowed unary branching produc- 
tions. There were never more than five subscripted 
symbols for any nonterminal, although there could 
be fewer than five if there were fewer than five sym- 
bols remaining on the right hand sine. Thus, our 
grammar was a kind of 6-gram model on symbols 
in the g r a m m a r :  Figure 8 shows an example of 
how we converted trees to binary branching with our 
grammar. We refer to this grammar as the 6-gram 
grammar. The terminals of the grammar were the 
part-of-speech symbols in the treebank. Any exper- 
iments that don' t  mention which grammar we used 
were run with the 6-gram grammar. 

For a simple grammar, we wanted something that  
would be very fast. The fastest grammar we can 
think of we call the terminal grammar, because it has 
one nonterminal for each terminal symbol in the al- 
phabet. The nonterminal symbol indicates the first 
terminal in its span. The parses are binary branch- 
ing in the same way that  the 6-gram grammar parses 
are. Figure 9 shows how to convert a parse tree to 
the terminal grammar. Since there is only one non- 
terminal possible for each Cell of the chart, parsing 
is quick for this grammar. For technical and prac- 
tical reasons, we actually wanted a marginally more 
complicated grammar, which included the "prime" 
symbol of the 6-gram grammar, indicating that a 
cell is part of the same constituent as its parent. 
Therefore, we doubled the size of the grammar so 
that there would be both primed and non-primed 

aWe have skipped over details regarding our handling 
of unary branching nodes. Unary branching nodes are 
in general difficult to deal with (Stolcke, 1993). The ac- 
tual gatammars we used contained additional symbols in 
such a way that there could not be more than one unary 
branch in a row. This greatly simplified computations, 
especially of the inside and outside probabilities. We also 
doubled the number of cells in our parser, having both 
unary and binary cells for each length/start pair. 
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Original 
S 

NP VP 

verb 
det adj noun 

Terminal 
D E T  

D E T  VERB 

det A D J  verb 

adj noun 

Terminal-Prime 
D E T  

D E T  VERB 

det A D J  ~ verb 

adj noun 

Figure 9: Converting to Terminal and Terminal- 
Pr ime Grammars  

versions of each terminal; we call this the terminal- 
prime grammar ,  and also show how to convert to it 
in Figure 9. This is the g rammar  we actually used 
as the first pass in our multiple-pass parsing exper- 
iments. 

7.3 W h a t  we  m e a s u r e d  

The goal of a good thresholding algorithm is to trade 
off correctness for increased speed. We must thus 
measure both  correctness and speed, and there are 
some subtleties to measuring each. 

First, the tradit ional  way of measuring correctness 
is with metrics such as precision and recall. Unfortu- 
nately, there are two problems with these measures. 
First, they are two numbers,  neither useful with- 
out the other. Second, they are subject to consid- 
erable noise. In pilot experiments, we found that  as 
we changed our thresholding values monotonically, 
precision and recall changed non-monotonically (see 
Figure 11). We at t r ibute  this to the fact tha t  we 
must  choose a single parse from our parse forest, 
and, as we tighten a thresholding parameter ,  we may 

threshold out either good or bad parses. Further- 
more, rather  than just  changing precision or recall 
by a small amount,  a single thresholded i tem may 
completely change the shape of the resulting tree. 
Thus, precision and recall are only smooth with very 
large sets of test  data.  However, because of the large 
number of experiments we wished to run, using a 
large set of test  da ta  was not feasible. Thus, we 
looked for a surrogate measure,  and decided to use 
the total  inside probabili ty of all parses, which, with 
no thresholding, is just  the probabil i ty of the sen- 
tence given the model. If we denote the total  inside 
probabili ty with no thresholding by I and the to- 
tal inside probabili ty with thresholding by IT, then 
/~= is the probabili ty tha t  we did not threshold out 
the correct parse, given the model. Thus, maximiz- 
ing IT should maximize correctness. Since proba- 
bilities can become very small, we instead minimize 
entropies, the negative logari thm of the probabili- 
ties. Figure 11 shows tha t  with a large da ta  set, en- 
tropy correlates well with precision and recall, and 
tha t  with smaller sets, it is much smoother.  Entropy 
is smoother because it is a function of many  more 
variables: in one experiment,  there were about  16000 
constituents which contributed to precision and re- 
call measurements,  versus 151 million productions 
potentially contributing to entropy. Thus, we choose 
entropy as our measure of correctness for most  ex- 
periments. When we did measure precision and re- 
call, we used the metric as defined by Collins (1996). 

Note that  the fact that  entropy changes smoothly 
and monotonically is critical for the performance of 
the multiple parameter  optimization algorithm. Fur- 
thermore,  we may have to run quite a few iterations 
of tha t  algorithm to get convergence, so the fact tha t  
entropy is smooth for relatively small numbers of 
sentences is a large help. Thus, the discovery tha t  
entropy is a good surrogate for precision and recall is 
non-trivial. The same kinds of observations could be 
extended to speech recognition to optimize multiple 
thresholds there (the typical modern speech system 
has quite a few thresholds), a topic for future re- 
search. 

Note tha t  for some sentences, with too tight 
thresholding, the parser will fail to find any parse 
at  all. We dealt with these cases by restart ing the 
parser with all thresholds lowered by a factor of 5, 
i terating this loosening until a parse could be found. 
This is why for some tight thresholds, the parser may 
be slower than with looser thresholds: the sentence 
has to be parsed twice, once with tight thresholds, 
and once with loose ones. 

Next, we needed to choose a measure of time. 
There are two obvious measures: amount  of work 
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done by the parser, and elapsed time. If we mea- 
sure amount  of work done by the parser in terms 
of the number of productions with non-zero prob- 
ability examined by the parser, we 'have  a fairly 
implementation-independent,  machine-independent 
measure of speed. On the other hand, because we 
used many different thresholding algorithms, some 
with a fair amount  of overhead, this measure seems 
inappropriate.  Multiple-pass parsing requires use 
of the outside algorithm; global thresholding uses 
its own dynamic programming algorithm; and even 
beam thresholding has some per-node overhead. 
Thus, we will give most measurements in terms of 
elapsed time, not including loading the g rammar  and 
other O(1) overhead. We did want to verify that  
elapsed t ime was a reasonable measure, so we did 
a beam thresholding experiment to make sure that  
elapsed time and number  of productions examined 
were well correlated, using 200 sentences and an ex- 
ponential sweep of the thresholding parameter.  The 
results, shown in Figure 10, clearly indicate that  
t ime is a good proxy for productions examined. 

7.4 Experiments in Beam Thresholding 

Our first goal was to show that  entropy is a good 
surrogate for precision and recall. We thus tried two 
experiments: one with a relatively large test set of 
200 sentences, and one with a relatively small test set 
of 15 sentences. Presumably, the 200 sentence test 
set should be much less noisy, and fairly indicative of 
performance. We graphed both precision and recall, 
and entropy, versus time, as we swept the threshold- 
ing parameter  over a sequence of values. The results 
are in Figure 11. As can be seen, entropy is signif- 
icantly smoother  than precision and recall for both 
size test  corpora. 

Our second goal was to check thai  the prior prob- 
ability is indeed helpful. We ran two experiments, 

one with the prior and one without. Since the exper- 
iments without the prior were much worse than those 
with it, all other beam thresholding experiments in- 
cluded the prior. The results, shown in Figure 12, 
indicate that  the prior is a critical component.  This 
experiment was run on 200 sentences of test  data. 

Notice that  as the t ime increases, the da ta  tends 
to approach an asymptote,  as shown in the left hand 
graph of Figure 12. In order to make these small 
asymptot ic  changes more clear,-we wished to ex- 
pand the scale towards the asymptote .  The right 
hand graph was plotted with this expanded scale, 
based on log(entropy - a sympto te ) ,  a slight varia- 
tion on a normal log scale. We use this scale in all 
the remaining entropy graphs. A normal logarith- 
mic scale is used for the t ime axis. The fact tha t  
the time axis is logarithmic is especially useful for 
determining how much more efficient one algorithm 
is than another at a given performance level. If  one 
picks a performance level on the vertical axis, then 
the distance between the two curves at tha t  level 
represents the ratio between their speeds. There is 
roughly a factor of 8 to 10 difference between using 
the prior and not using it at  all graphed performance 
levels, with a slow trend towards smaller differences 
as the thresholds are loosened. 

7.5 Experiments in Global Thresholding 

We tried experiments comparing global thresholding 
to beam thresholding. Figure 13 shows the results of 
this experiment, and later experiments. In the best 
case, global thresholding works twice as well as beam 
thresholding, in the sense that  to achieve the same 
level of performance requires only half as much time, 
although smaller improvements were more typical. 

We have found that,  in general, global threshold- 
ing works bet ter  on simpler grammars .  In some 
complicated grammars  we explored in other work, 
there were systematic, strong correlations between 
nodes, which violated the independence approxima- 
tion used in global thresholding. This prevented us 
from using global thresholding with these grammars .  
In the future, we may modify global thresholding to 
model some of these correlations. 

7.6 Experiments combining Global 
Thresholding and Beam Thresholding 

V(hile global thresholding works bet ter  than beam 
thresholding in general, each has its own strengths. 
Global thresholding can threshold across cells, but  
because of the approximations used, the thresholds 
must generally be looser. Beam thresholding can 
only threshold within a cell, but can do so fairly 
tightly. Combining the two offers the potential  to 
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get the advantages of both. We ran a series of experi- 
ments using the thresholding optimization algorithm 
of Section 5. Figure 13 gives the results. The com- 
bination of beam and global thresholding together is 
clearly bet ter  than either alone, in some cases run- 
ning 40% faster than  global thresholding alone, while 
achieving the same performance level. The combi- 
nation generally runs twice as fast as beam thresh- 
olding alone, although up to a factor of three. 

7.7 Experiments in Multiple-Pass Parsing 

Multiple-pass parsing improves even further on our 
experiments combining beam and global threshold- 
ing. Note tha t  we used both beam and global thresh- 
olding for both  the first and second pass in these ex- 
periments. The first pass g rammar  was the very sim- 
ple terminal-prime grammar ,  and the second pass 
g rammar  was the usual 6-gram grammar.  

We evaluated multiple-pass parsing slightly dif- 
ferently from the other thresholding techniques. In 
the experiments conducted here, our first and sec- 
ond pass grammars  were very different from each 
other. For a given parse to be returned, it must 
be in the intersection of both grammars,  and rea- 
sonably likely according to both. Since the first and 

second pass grammars  capture different information, 
parses which are likely according to both  are espe- 
cially good. The entropy of a sentence measures 
its likelihood according to the second pass, but ig- 
nores the fact tha t  the returned parse must  also be 
likely according to the first pass. Thus, entropy, our 
measure in the previous experiments, which mea- 
sures only likelihood according to the final pass, is 
not necessarily the right measure to use. We there- 
fore give precision and recall results in this section. 
We still optimized our thresholding parameters  us- 
ing the same 31 sentence held out corpus, and min- 
imizing entropy versus number of productions, as 
before. 

We should note that  when we used a first pass 
g rammar  that  captured a strict subset of the infor- 
mation in the second pass grammar ,  we have found 
that  entropy is a very good measure of performance. 
As in our earlier experiments, it tends to be well cor- 
related with precision and recall but  less subject to 
noise. I t  is only because of the g rammar  mismatch 
that  we have changed the evaluation. 

Figure 14 shows precision and recall curves for sin- 
gle pass versus multiple pass experiments. As in the 
entropy curves, we can determine the performance 
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ratio by looking across horizontally. For instance, 
the multi-pass recognizer achieves a 74% recall level 
using 2500 seconds, while the best single pass al- 
gorithm requires about 4500 seconds to reach that 
level. Due to the noise resulting from precision and 
recall measurements, it is hard to exactly quantify 
the advantage from multiple pass parsing, but it is 
generally about 50%. 

8 Appl icat ions  and Conclusions 

8.1 Appl icat ion to Other Formalisms 

In this paper, we only considered applying multiple- 
pass and global thresholding techniques to pars- 
ing probabilistic context-free grammars. However, 
just about any probabilistic grammar formalism 
for which inside and outside probabilities can be 
computed can benefit from these techniques. For 
instance, Probabilistic Link Grammars (Lafferty, 
Sleator, and Temperley, 1992) could benefit from 
our algorithms. We have however had trouble us- 
ing global thresholding with grammars that strongly 
violated the independence assumptions of global 
thresholding. 

One especially interesting possibility is to apply 
multiple-pass techniques to formalisms that require 

>> O(n 3) parsing time, such as Stochastic Brack- 
eting Transduction Grammar (SBTG) (Wu, 1996) 
and Stochastic Tree Adjoining Grammars (STAG) 
(Resnik, 1992; Schabes, 1992). SBTG is a context- 
free-like formalism designed for translation from one 
language to another; it uses a four dimensional chart 
to index spans in both the source and target lan- 
guage simultaneously. It would be interesting to try 
speeding up an SBTG parser by running an O(n 3) 
first pass on the source language alone, and using 
this to prune parsing of the full SBTG. 

The STAG formalism is a mildly context-sensitive 
formalism, requiring O(n 6) time to parse. Most 
STAG productions in practical grammars are actu- 
ally context-free. The traditional way to speed up 
STAG parsing is to use the context-free subset of an 
STAG to form a Stochastic Tree Insertion Grammar 
(STIG) (Schabes and Waters, 1994), an O(n 3) for- 
malism, but this method has problems, because the 
STIG undergenerates since it is missing some ele- 
mentary trees. A different approach would be to use 
multiple-pass parsing. We could first find a context- 
free covering grammar for the STAG, and use this 
as a first pass, and then use the full STAG for the 
second pass. 
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8 .2  C o n c l u s i o n s  

The grammars described here are fairly simple, pre- 
sented for purposes of explication. In other work 
in preparation, in which we have used a signifi- 
cantly more complicated grammar, which we call the 
Probabilistic Feature Grammar (PFG), the improve- 
ments from multiple-pass parsing are even more dra- 
matic: single pass experiments are simply too slow 
to run at all. 

We have also found the automatic thresholding 
parameter optimization algorithm to be very use- 
ful. Before writing the parameter optimization al- 
gorithm, we developed the PFG grammar and the 
multiple-pass parsing technique and ran a series of 
experiments using hand optimized parameters. We 
recently ran the optimization algorithm and reran 
the experiments, achieving a factor of two speedup 
with no performance loss. While we had not spent 
a great deal of time hand optimizing these param- 
eters, we are very encouraged by the optimization 
algorithm's practical utility. 

This paper introduces four new techniques: 
beam thresholding with priors, global threshold- 
ing, multiple-pass parsing, and automatic search for 
thresholding parameters. Beam thresholding with 

• priors can lead to almost an order of magnitude im- 
provement over beam thresholding without priors. 
Global thresholding can be up to three times as ef- 
ficient as the new beam thresholding technique, al- 
though the typical improvement is closer to 50%. 
When global thresholding and beam thresholding 
are combined, they are usually two to three times 
as fast as beam thresholding alone. Multiple-pass 
parsing can lead to up to an additional 50% improve- 
ment with the grammars in this paper. We expect 
the parameter optimization algorithm to be broadly 
useful. 
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