
A Self-Organlzing Japanese Word Segmenter using
He-ristic Word Identification and Re-estimation

Masaaki NAGATA
NTT Information and Communication Systems Laboratories

1-I Hilca.rinooka Yokosl~Jc~-Shi Kanagawa, 239 Japan
nagat a@nttnly, isl. ntt. co. jp

Abstract

We present a self-organized method to build a stochastic Japanese word segmenter from a
small number of basic words and a large amount of unsegmented training text. It consists of
a word-based statistical language model, an initial estimation procedure, and a re-estimation
procedure. Initial word frequencies are estimated by counting all possible longest match strings
between the training text and the word list. The initial word list is au~nented by identifying
words in the training text using a heuristic rule based on character type. The word-based
language model is then re-estimated to filter out inappropriate word hypotheses generated by
the initial word identification. When the word segmeuter is trained on 3.9M character texts and
1719 initial words, its word segmentation accuracy is 86.3% recall and 82.5% precision. We find
that the combination of heuristic word identi~cation and re-estimation is so effective that the
initial word list need not be large.

1 I n t r o d u c t i o n

Word segmentation is an important problem for Japanese because word boundaries are not marked
in its writing system. Other Asian languages such as Chinese and Thai have the same problem.
Any Japanese NLP application requ/res word segmentation as the first stage because there are
phonological and semantic units whose pronunciation and meaning is not trivially derivable from
that of the individual characters. Once word segmentation is done, all established techniques can
be exploited to build practically important applications such as spelling correction [Nagata, 1996]
and text retrieval [Nie and Brisebois, 1996]

In a sense, Japanese word segmentation is a solved problem if (and only if) we have plenty
of segmented training text. Around 95% word segmentation accuracy is reported by using a
word-based language model and the Viterbi-like dynamic programi-g procedure [Nagata, 1994,
Takeuchi and Matsumoto, 1995, Yamamoto, 1996]. However, manually segmented corpora are not
always available in a particular target domain and manual segmentation is very expensive.

The goal of our research is unsupervised learning of Japanese word segmentation. That is, to
build a Japanese word segmenter from a list of initial words and unsegmented training text. Today,
it is easy to obtain a 10K-100K word list from either commercial or public domain on-line Japanese
dictionaries. Gigabytes of Japanese text are readily available from newspapers, patents, HTML
documents, etc..

Few works have examined unsupervised word segmentation in Japanese. Both [Yamamoto, 1996]
and [Takeuchi and Matsumoto, 1995] built a word-based language model from unsegmented text

203

using a re-estimation procedure whose initial segmentation was obtained by a rule-based word seg-
reenter. The utility of this approach is limited because it presupposes the existence of a rule-based
word segmenter like JUMAN [Matsumoto et al., 1994]. It is impossible to build a word segmenter
for a new domain without human intervention.

For Chinese word segmentation, more self-organized approaches have been tried. [Sproat et al., 1996]
built a word unigram model using the Viterbi re-estimation whose initial estimates were derived
from the frequencies in the corpus of the strings of each word in the lexicon. [Chang et al., 1995]
combined a small seed segmented corpus and a large unsegmented corpus to build a word unigram
model using the Viterbi re-estimation. [Luo and Roukos, 1996] proposed a re-estimation procedure
which alternates word segmentation and word frequency re-estimation on each half of the training
text divided into halves.

One of the major problems in unsupervised word segmentation is the treatment of unseen words.
[Sproat et al., 1996] wrote lexical rules for each productive morphological process, such as plural
noun formation, Chinese personal names, and transliterations of foreign words. [Chang et al., 1995]
used a statistical method called "Two-Class Classifier", which decided whether the string is actually
a word based on the features derived from character N-gram.

In this paper, we present a self-organized method to build a Japanese word segmenter from
a small number of basic words and a large amount of unsegmented training text using a novel
re-estimation procedure. The major contribution of this paper is its treatment of unseen words.
We devised a statistical word formation model for unseen words which can be re-estimated. We
show that it is very effective to combine a heuristic initial word identification method with a re-
estimation procedure to filter out inappropriate word hypotheses. We also devised a new method
to estimate initial word frequencies.

Figure 1 shows the configuration of our Japanese word segmenter. In the following sections, we
ffirst describe the statistical language model and the word segmentation algorithm. We then describe
the initial word frequency estimation method and the initial word identification method. Finally,
we describe the experiment results of unsupervised word segmentation under various conditions.

m
2 Language Model -rid Word Segmentation Algorithm

2.1 W o r d S e g m e n t a t i o n M o d e l
k

Let the input Japanese character sequence be C = ClC2 . . . cm. Our goal is to segment it into I
word sequence W = wlw2. . , w, . The word segmentation task can be defined as finding a word
segmentation l~ r that maximizes the joint probability of word sequence given character sequence I l l
P(W[C). Since the maximization is carried out with fixed character sequence C, the word segmenter •
only has to maximize the probability of the word sequence P(W).

= arg P (w I c) = arg P (W) (1)

We approximate the joint probability P(W) by the word unigram model, which is the product of
word unigram probabilities P(wl). i

PCW) = I I (2)
i = l

We used the word unlgram model because of its computational efficiency, l

204 !

i

Inital Word [
Identification

U~nse~ent e~d =1 Initial Word I

Frequency I "[W~:edstimat io n

Figure I: Block Diagram for the Self-Organizing Japanese Word Segmenter

2.2 U n k n o w n W o r d M o d e l

We defined a statistical word model to assign a reasonable word probability to an arbitrary substring
in the input sentence. It is formally defined as the joint probability of the character sequence c , . . . ck
if wi is an lmkaown word. We decompose it into the product of word length probability and word
spelling probability,

P(wil<ImX>) = P(cl . . . ckl<UNX>) = P (k) P (c l . . . cklk) (3)

where k is the length of the character sequence and <OlqK> represents unknown word.
We assume that word length probability P(lc) obeys a Poisson distribution whose parameter

is the average word length A in the training corpus. This means that we regard word length as
the interval between hidden word boundary markers, which axe randomly placed with an average
interval equal to the average word length.

P(k) = - i)a-1 (k - 1)l 'e-('x-1) (4)

We approx4mate the spelling probability given word length P (c l . . . ca[k) by the product of
character unigram probabilities regardless of word length.

a

P(c ... ca) = [I (s)
i=1

Character unigram probabilities can be estimated from unsegmented texts. The average word
length A can be computed, once the word frequencies in the texts are obtained.

,X = E Iw~lC(w~)
EC(w~) (6)

205

'i

where Iw l and C(w) are the length and the frequency of word ~i, respectively. Therefore, the
only parameters we have to (re)estimate in the language model are the word frequencies.

o

0.7

0.6

0.5

0.4

0.3

0.2

0.1

J

Word Length Distribution
! I I

Raw Counts (all won:Is) o
Estimates by Poisson (all words) - + - .

Raw Counts (infrequent words) -B--
Estimates by Poisson (infrequent words) -x--

,,,, '~.
V %°'%B.

0 - - - "

O 2 4 6 8 10
Word Character Length

Figure 2: Word Length Distribution of the ED~ corpus

Figure 2 shows the actual and estimated word length distzibutious in the corpus we used in
the experiment. It shows two pairs of distributions: word length of all words (~ = 1.6) and that
of words appearing only once (~ -- 4.8). The latter is expected to be close to the distribution of
unknown words. Although the estimates by Poisson distribution are not so accurate, they enables
us to make a robust and computationaUy efficient word model.

2 .3 V i t e r b i R e - e s t l m a t i o n

We used the Viterbi-like dyn~m~c programing procedure described in [Nagata, 1994] to get the
most likely word segmentation. The generalized Viterbi algorithm starts from the beginning of the
input sentence, and proceeds character by character. At each point in the sentence, R looks up
the combination of the best partial word segmentation hypothesis ending at the point and all word
hypotheses starting at the point.

We used the Viterbi reoestimation procedure to refine the word unigram model because of
its computational efficiency. It involves applying the above segmentation algorithm to a training
corpus, using a set of initial estimates of the word frequencies. The best analysis of the corpus is
taken to be the true analysis, the frequencies are re-estimated, and the algorithm is repeated until
it converges.

206

3 Initial Word Frequency Estimntion

3.1 L o n g e s t M a t c h

We can get a set of initial estimates of the word frequencies by segmenting the training corpus using
a heuristic (non-stochastic) dictionary-based word segmenter. In both Japanese and Chinese, one
of the most popular non-stochastic dictionary-based approaches is the longest match method 1

There are many variations of the longest match method, possibly augmented with further
heuristics. We used a simple greedy algorithm described in [Sproat et al., 1996]. It starts at the
beg6nning of the sentence, finds the longest word starting at that point, and then repeats the
process starting at the next character until the end of the sentence is reached. We chose the greedy
algorithm because it is easy to implement and guaranteed to produce only one segmentation.

3.2 S t r i n g F r e q u e n c y

[Sproat et al., 1996] also proposed another method to estimate a set of initial word frequencies
without segmenting the corpus. It derives the initial estimates from the frequencies in the corpus of
the strings of character making up each word in the dictionary whether or not each string is actually
an instance of the word in question. The total number of words in the corpus is derived simply by
summing the string frequency of each word in the dictionary. Finding (and counting) all instances
of a string W in a large text T can be efficiently accomplished by making a data structure known
as a sUtrLX array, which is basically a sorted list of all the su~ixes of T [Manber and Myers, 1993].

3.3 L o n g e s t M a t c h S t r i n g F r e q u e n c y

The estimates of word frequencies by the above string frequency method tend to inflate a lot
especially in short words, because of double counts. We devised a slightly improved version which
we term the "longest match string frequency" method. It counts the instances of string W1 in text
T, unless the instance is also a substring of another string W~ in dictionary D.

This method can be implemented by making two suffix arrays, Srr and SD for text T and
dictionary D. By using ST, we first make list Lw of all occurrences of string W in the text. By
using SD, we then look up all strings IY¢ in the dictionary that include W as a substring, and make
list ~ of all their occurrences in the text by using ST. The longest match string frequency of
word W in text T with respect to dictionary D is obtained by counting the number of elements in
the set difference .LW --/'W-

For example, if the input sentence is ~ ~ ~ g ~ - - - ~ | r . ~ - ~ o " (talk about the Asso-
ciation of English and the Association of Linguistics) and the dictionary has -r~_~ (linguistics), ~"

(language), ~ (language study), ~ (association), and ~ (talk). Figure 3 shows the difference
of the three methods.

The longest match string frequency (lsf) method considers all possible longest matches in the
text, while the greedy longest match (lm) algorithm considers only one possibility. It is obvious
that the longest match string frequency method remedies the problem that the string frequency
(sf) method consistently and inappropriately favors short words.

The problem of the longest match string frequency method is that if a word W1 is a substring
of other word W2 and if W1 always appears as a substring of W2 in the training text, just like " ~

Although [Sproat et al., 1996] calls it '~maximum matching", we call this method "longest match" according to a
review on Chinese word segmentation [Wu and Tseng, 1993] and the literal translation of the Japanese name of the
method t ' ~ - - ~ .

207

longest match (lm)

c, --o
string frequency (sf)

longest match string frequency (isf)

longest match
= ' ~ 1
• ~ ~ o
YS~ 1
~ o

1
total

string frequency
1
1
2
2
3
.~-

lm string freq.
1
0
1
2
1

3 5

Figure 3: Comparison of the initial word frequency estimation methods

and ~ - - ~ - in the above example, the frequency estimate of W1 becomes 0. Although this rarely
happens for a large training text, we have to smooth the word frequencies.

4 I n i t i a l W o r d I d e n t i f i c a t i o n M e t h o d

To a first approximation, a point in the text where character type changes is likely to be a word
boundary. This is a popular heuristics in Japanese word segmentation. To help readers understand
the heuristics, we have to give a brief introduction to the Japanese writing system.

In contemporary Japanese, there are at least five different types of characters other than punc-
tuation maxks: kanji, hiragana, katakana, Roman alphabet, and Arabic numeral. Kanfi which
means 'Chinese character' is used for both Chinese origin words and Japanese words semantically
equivalent to Chinese characters. There are two syllabaries hiragana and katakana. The former
is used primarily for grammatical function words, such as particles and inflectional endings, while
the latter is used primarily to transliterate Western origin words. Roman alphabet is also used for
Western origin words and acronyms. Arabic numeral is used for numbers.

By using just this character type heuristics, a non-stochastic and non-dictionary word segmenter
can be made. Ia fact, using the estimated word frequencies obtaiued by the heuristics results in
poor segmentation accuracy 2. We found, however, that it is very effective to use the character
type based word segmenter as a lexical acquisition tool to augment the initial word list.

The initial word identification procedwe is as follows. First, we segment the training corpus
by the character type based word segmenter, and make a list of words with frequencies. We then
filter out hiragana strings because they are likely to be function words. We add the extracted word

~The word segmentation accuracy of the character type based method was less th~- 60%, while other estimation
methods achieves around 70-80% as we show ia the next section.

208

I
1
!

I
!

i
!
!

I
I
I

I
I
I
i
I
i
l
!

list to the original dictionary witli associated frequencies, whether or not each string is actually a
word. Although there are a lot of erroneous words in the augmented word list, most of them are
filtered out by the re-estimation. This method works suzprisingly well, as shown in the experiment.

5 Experiment

5.1 Language Data

We used the EDR Japanese Corpus Version 1.0 [EDR, 1995] to train and test the word segmenter.
It is a corpus of 5.1 million words (208 thousand sentences). It contains a variety of Japanese
sentences taken from newspapers, magazines, dictionaries, encyclopedias, textbooks, etc. It has a
variety of annotations including word segmentation, pronunciation, and part of speech tag.

In this experiment, we randomly selected two sets of training sentences, each consisting of
100 thousand sentences. The fixst tralniug set (training-0) is used to make initial word lists of
various sizes. The second training set (training-I) is used to train various word segmenters. From
the remaining of 8 thousand sentences, we randomly selected 100 test sentences to evaluate the
accuracy of the word segmenters. Table 1 shows the number of sentences, words, and characters in
the training and test sets 3

Table 1: The amount of tr~n~ng and test data

training-0 trsJning-1
Sentences 100000 100000
Word Tokens 2460188 2465441
Word Types 85966 85967
Characters 3897718 3906260

test
100

2538
919

3984

Based on the frequency in the manually segmented corpus training-0, we made 7 different initial
word lists (D1-D200) whose frequency threshold were !, 2, 5, 10, 50, 100, 200, respectively. The
size of the resulting word lists and their out-of-vocabulary rate (OOV rate) in the test sentences are
shown in the second and third colnmn~ of Table 2. For example, D200 consists of words appearing
more than 200 times in training-0. Although D200 consists of only 826 words, it covers 76.6%
(OOV rate 23.4%) of the test sentences. This is an example of the Zipf law.

5.2 E v a l u a t i o n Measures

Word Segmentation accuracy is expressed in terms of recall and precision as is done for bracketing
of partial parses [Nagata, 1994, Sproat et al., 1996]. Let the number of words in the manually
segmented corpus be Std, the number of words in the output of the word segmenter be Sys, and
the number of matched words be M. Recall is defined as M/Std, and precision is defined as M/Sys.

Since it is inconvenient to use both recall and precision all the we also use the F-measure
to indicate the overall performance. The F-measure was originally developed by the information

STraining-I was used as plain texts that are taken from the same information sou.rce as training-O. Its word
segmentation information was never used to ensure that tr~;=ing was unsupervised.

209

retrieval community. It is calculated by

F = f12 x P + R (7)

where P is precision, R is recall, and fl is the relative importance given to recall over precision. We
set fl = 1.0 throughout this experiment. That is, we put equal importance on recall and precision.

5.3 C o m p a r i s o n o f Va r ious W o r d F r e q u e n c y E s t i m a t i o n M e t h o d s

We first compared the three frequency estimation methods described in the previous section: greedy
longest match method (lm), string frequency method (sf), and longest match string frequency
method (lsf). The sixth, seventh, and eighth columns of Table 2 show the word segmentation
accuracy (F-measure) of each estimation method using different sets of initial words (D1-D200).
For comparison, the word segmentation accuracy using real word frequency (wf), computed from
the manual segmentation of training-1 (not training-0!), is shown in the fifth column of Table 2.
The results are also diagramed in Figure 4.

Table 2: Word Segmentation Accuracies

freq : vocab
D1 >1 85966
D2 >2 39994
D5 >5 18689

D10 >10 10941
DG0 >50 3159

D100 >100 1719
D200 >200 826

oov wf

0.010 0.893
0.017 0.891

0.037 0.877

0.060 0.859
0.134 0.785
0.181 0.758
0.234 0.729

hn
0.810
0.817
0.812
0.797
0.734
0.699
0.644

sf lsfi Im+ct sf+ct lsf+ct
0.801 0.807 0.796 0.789 0.794
0.815 0.822 0.808 0.802 0.811
0.814 0.819 0.818 0.811 0.816
0.813 ~0.815 0.828 0.825 0.828
0.774 0.776 0.837 0.837 0.841
0.749 0.761 0.839 0.840 0.843
0.643 0.731 0.828 0.830 0.832

First of all, word segmentation accuracy using real word frequencies (wf) significantly (5-10%)
outperformed that of any frequency estimation methods. Among word frequency estimates, the
longest match string frequency method (lsf) consistently outperformed the string frequency method
(sf). The (longest match) string frequency method (sf and lsf) outperformed the greedy longest
match method (lm) by about 2-5% when the initial word list size was under 20K (from D5 to
D200). In all estimation methods, word segmentation accuracies of D1 are worse than D2, while
D1 is slightly better than D2 in using real word frequencies.

5.4 Effect of Augment ing Initial Dict ionary

We then compared the three frequency estimation methods (Ira, sf, and lsf) with the initial dic-
tionary augmented by the character type based word identification method (ct) described in the
previous section. The word identification method collected a list of 108975 word hypotheses from
trainingol. The ninth, tenth, and eleventh columns of Table 2 show the word segmentation accuo
facies.

Augmenting the dictionary yields a significant improvement in word segmentation accuracy.
Although the difference between the underlying word frequency estimation methods is small, the
longest match string frequency method generally performs best. Surprisingly, the best word segmen-
tation accuracy is achieved when the very small initial word list of 1719 words (D100) is augmented

I
I
I
I
i
I
I
I
I
I
I
I
I
I

I
I
I

210 !

I
I
I
I
I
I

E

g

¢ 0
12

0.9

0.85

0.8

0.75

0.7

O,6S

Word Segmentation Accuracy

/ . f ~ , ~ ; ~ .
./ / / - Longest match SMng Frequency -x--

/ I " - - Longest Match + Character Type
/ . . f " String Frequency + Character.Type -~,---

.." / Longest match ~'ing Prequency + Character i ype -<--
/ //"

S/

O . S i I , ¢ , m , , , , I ,

1000 10000 I(XXX)O
Vocaburaty ,Size

Figure 4: Initial word list size and word segmentation accuracies

by the heuristic word identification method, where the recall and precision are 86.3% aud 82.5%
(F-measure 0.843).

5.5 Ef fec t o f R e - e s t i m a t i o n

To investigate the effect of re-estimation, we tested the combination of three initial word lists: D1,
D2, D100, and two initial word frequency estimation methods: string frequency method (sf) and
longest match string frequency method au~nented with the word identification method (lsf+ct).

We applied the Viterbi re-estimation procedure three times. It seems further re-estimation
brings no signi~cant change. At each stage of re-estimation, we measured the word segmentation
accuracy on the test sentences (not the training texts!). Figure 5 shows the word segmentation
accuracy, the number of word tol~ens in the training texts, and the number of word types in the
dictionary at each stage of re-estimation.

In general, re-estimation has little impact on word segmentation accuracy. It gradually improves
the accuracy when the initial word list is relatively large (D1 and D2), while it worsen the accuracy
a little when the initial word list is relatively small (D100). This might correspond with the results
on unsupervised learning performed by an English part of speech tagger. Although [Kupiec, 1992]
presented a very sophisticated method of unsupervised learning, [Elworthy, 1994] reported that
re-estimation is not always helpful. We think, however, our results are because we used a word
un i~am model; it is too early to conclude that re-estimation is useless for word segmentation, as
discussed in the next section.

It seems the virtue of re-estimation lies in its ability to adjust word frequencies and removing
unreliable word hypotheses that are added by heuristic word identification. The abrupt drop in the
number of word tokens at the ffirst re-estimation step indicates that the inflated inRial estimates of

211

Word Segmentation Accura
0.85 = ,

0.84:

0.83

~ 0.82

~ 0.81

= 0.8

c
o 0.79

E 0.78

~ 0.77

0.76

0.75

0.74

sf-1 -e.---
sf-2 -~---

sf-100 -e - :
Isf-l+Ct -,~--
Isf-2+Ct -~---

Isf-100+Ct -x---"

. . . . ~ E~

I I

0 1 2 3
Number of Reestimation

I

Number of Word Tokens Number of Word Types 1
5.5e+06 ~ 180000 - , ,

I I I

160000 ~ ' B
5e+06 - \

140ooo - \ |
4.5e+06 sf-1 ~. ,

sF2 - + - - . ~-~ "\

I 120000 - ",., ~ - - - - - - x ~ sf-100 -e--. ~ . _...~
isf-l+ct -x - - ~ ~ ~ -x-

. ^^ Isf-2+ct ~ I,....
r- 4e+uo -X-': 100000 sf-1 o 3f-lOO,+ct "~ | ,~ "~ ~ Isf-l+ct -x- -

3.5e+06 ~ 80000 !'~ Isf-2+ct -,6-.~
0+ct -x---

E

z z 60000

3e+06

\L__
2.5e+06 [- ~ ~

I ~.- _~,~-=~
2e+06

0 1 2 3
Number of Reestimation

40000

20000
.o

oo

0 i t

0 1 2 3
Number of Reestimation

Figure 5: Word segmentation accuracy, the number of word tokens and word types at each re-
estimation stage

word frequencies are adjusted to more reasonable values. The drop in the number of word types
indicates the removal of infrequent words and unzeliable word hypotheses from the dictionary.

6 Discussion

6.1 T h e N a t u r e o f t h e W o r d U n i g r a m M o d e l

Fizst, we will clarify the nature of the word unigram model. ROughly speaking, word unigram based
word segmenters maximize the product of the word frequencies under the fewest word principle
which subsumes the longest match pzinciple.

If two word segmentation hypotheses divers in the number of words, the one with fewer words
is almost always selected. For example, the input string is clc2 and the dictionary includes three
words c1~, Cl, c2. To prefer segmentation hypothesis c11c2 over czc2, the following relation must

hold. C(cic2) C(cz) C(c2)
< N N (s)

where C(-) represents the word frequency and N is the number of word tokens in the training text.

I
!

I

I
I
I
I
I
I
I

212 I

Suppose N is one million. Even if C(elc2) = 1~ clc2 is preferred unless cl and c2 are highly frequent,
say C(e~) ~ C(c2) > 1000. It is obvious that the segmentation with fewer words are preferred.

If two word segmentation hypotheses have the same number of words, the one with larger
product of word frequencies is selected. For example, the input string is c~c2cs and the dictionary
includes four words e~c~, cs, e~, e2c3. To prefer segmentation hypothesis e~c21cs over c~[c2cs, the
following relation must hold.

V(ClC2) C(C~) V(Cl) V(C2C3)
- - <: (9)

N N N N
Since the denominator N is cancelled, it is obvious that the segmentation with larger product of
frequencies is preferzed.

6.2 C la s s i f i c a t i on o f S e g m e n t a t i o n E r r o r s

There are three major types of segmentation errors. The first type is not an error but the ambiguity
resulting from inconsistent manual segmentation, or the intrinsic indeterminacy of Japanese word
segmentation. For example, in the manually segmented corpus, we found the string ~ - [] . & ~
(foreign laborer) is identified as one word in some places while in others it is divided into two words
~l-m)~ (foreigner) and ~ (laborer). However, the word unigram based segmenter consistently
identifies it as a single word. We assume 3-5 % of the segmentation "errors" belong to this type.

The second type is breakdown of unknown words. For example, the word ~#~ (funny) is
segmented into two word hypotheses ~ (rare) and ~ (strange). This is because ~'~ is included in
the dictionary. When a substring of an unknown word coincides with other word in the dictionary,
it is very likely to be broken down into the dictionary word and the remaining substring. This is a
major flaw of our word model using character unigram. It assigns too little probability to longer
word hypotheses, especially more than t h e e characters.

The third type is erroneous longest match. This happens frequently at the sequence of gram-
matical function words vrritten in hiragana. For e~ample, the phrase ~$1~ (gather) I ¢ (INFL) [
(and)] ~ (come) I ~= (past-AUXV), which means ~came and gathered", is segmented into ~ I
-~'C (TOPIC) [-~1c (north), because the number of words is fewer. The larger the initial word list
is, the more often a hiragana word happens to coincide with a sequence of other hiragana words,
because the number of character types in hiragana is small (< 100). This is the major reason why
word segmentation accuracy levels off or decreases at a certain point, as the size of the initial word
list increases.

6.3 C la s s i f i c a t i on o f t h e Ef fec t s o f B e - e s t i m a t i o n

There are two types of major changes in segmentation with re-estimation: word boundary adjust-
ment and subdivision. The former moves a word boundary keeping the number of words unchanged.
The latter break down a word into two or more words.

Re-estimation usually improves a sequence of grammatical function words written in hiragana
at the sentence final predicate phrase if the initial segmentation and the correct segmentation have
the same number of words. For example, the incorrect initial segmentation ~ (take away) I

(INFL + passive-AUXV) I ~=~ (ball) I ~ t~ (not yet) is correctly adjusted to ~i~'l,~ (take away)
I ~,h, (INFL + passive-AUXV) I ft. (past-AUXV) I ~ (still) I fr~ (COPULA), which means ``still
be taken away".

Re-estimation subdivides an erroneous longest match if the frequencies of the shorter words
are significantly large. For example, the incorrect initial segmentation ~ (restrain) I fr.~ (sea

213

bream) is correctly subdivided into ~ (restrain) [tr. (want-AUXV) [b~ (INFL), which means
"want to restrain".

One of the most frequent undesirable effects of re-estimation is subdividing an infrequent word
into highly frequent words, or a frequent word and an unknown word. For example, the correct
infrequent word ~ (ambassador) is subdivided into two frequent words, ~ (use-ROOT) and
(node).

As we said before, one of the major virtues of re-estimation is its ability to remove inappropriate
word hypotheses generated by the initial word identification procedure. For example, from the
phrase Y ~ (Soviet Union) I ~ (made-SUFFIX) I l ~ (tank), which means "Soviet Union-made
tank", the initial word identifier extracts two word hypotheses Y and ~ K , where the former
is written in katakana and the latter is written in kanfi. If ~ and ~ is in the dictionary, the two
erroneous word hypotheses >' and ~ I ~ i K are removed and the correct word t ~ is added to the
dictionary after re-estimation.

7 C o n c l u s i o n a n d F u t u r e W o r k

We have presented a self-organized method that builds a stochastic Japanese word segmenter from
a small word list and a large unsegmented text. We found that it is very effective to augment the
initial word list with automatically extracted words using character type heuristics. Re-estimation
helps in adjusting word frequencies and removing inappropriate word hypotheses, although it has
little impact on word segmentation accuracy if the word unigram model is used.

The major drawbacks of the current word segmenter is its breakdown of unknown words whose
substrings coincide with other words in the dictionary, and the erroneous longest match at the
sequence of functional words written in hiragana. The first drawback results from the character
unigram based word model that prefers short words, while the second drawback results from the
nature of the word tmigram model which prefers fewest words segmentation.

One may argue that we could use the word bigzam model. However, we don't know how we
can estimate the initial word bigram frequencies from scratch. One may also argue that we could
use the character bigram in the word model. However, the character bigram for the word model
must be computed from segmented texts. Both of these suggest that we need a word segmenter
to build a more sophisticated word segmenter. Therefore, as a next step of our research, we are
thinking of using the proposed unigram based word segmenter to obtain the initial estimates of the
word bigrams and the word-based character bigr~m~ which will then be refined by a re.estimation
procedure.

R e f e r e n c e s

[Chang et al., 1995] Jing-Shin Chang, Yi-Chung Lin, and Keh-Yih Su. 1995. Automatic Construc-
tion of a Chinese Electronic Dictionary, In Proceedings of WVLC-95, pages 107-120.

~DR, 1995] Japan Electronic Dictionary Resee~rch Institute. 1995. ED.R Electronic Dictionary Ver-
sion I Technical Guide, EDR TR2-003. Also available as The Structure of the EDR Electronic
Dic~onary, h t t p : / / / ~ . 11 jne t . or . jp/edx/.

[Elworthy, 1994] David Elworthy. 1994. Does Baum-Welch Re-estimation Help Taggers? In Pro-
ceedings of ANLP-94, pages 53-58.

214

[Kupiec, 1992] Julian Kupiec. 1992. Robust Part-of-Speech Tagging using a Hidden Maxkov Model.
Computer Speech and Language, 6, pages 225-242.

[Luo and Roukos, 1996] Xiaoqiang Luo and SAllm Roukos. 1996. An Iterative Algorithm to Build
Chinese Language Models, In Procecdings of ACL-96, pages 139-143.

[Matsumoto et al., 1994] Yuji Matsumoto, S. Kurohashi, T. Utsuro, and Makoto Nagao. 1994.
Japanese morphological analysis system JUMAN manual (in Japanese).

[Manber and Myers, 1993] Udi Manber and Gene Myers. 1993. Suffix Arrays: A New Method for
On-Line String Searches, SIAM J. Comput., Vol.22, No.5, pp.935-948.

[Nagata, 1994] Masaaki Nagata. 1994. A Stochastic Japanese Morphological Analyzer Using a
Forward-DP Backward-A* N-Best Search Algorithm. In Proceedings o] COLING-9~, pages 201-
207.

[Nagata, 1996] Masaaki Nagata. 1996. Context-Based Spelling Correction for Japanese OCR. In
Proceedings of COLING-96, pages 806-811.

[Nie and Brisebois, 1996] Jian-¥un Nie and Martin Brisebois. 1996. On Chinese Text Retrieval. In
Proceedings of SIGIR-96, pages 225-233.

[Sproat et al., 1996] Richard Sproat, Chilin Shih, William Gale, and Nancy Chang. 1996. A
Stochastic Finite-State Word-Segmentation Algorithm for Chinese. Computational Linguistics,
Vol.22, No.3, pages 377-404.

[Takeuchi and Matsumoto, 1995] Kouichi Takeuchi and Yuji Matsumoto. 1995. Learning parame-
ters of Japanese morphological analyzer based-on hidden Markov model. IPSJ Technical Report
SIG-NL, 108-3, pages 13-19 (in Japanese).

[Wu and Tseng, 1993] Zimln Wu and Gwyneth Tseng. 1993. Chinese Text Segmentation for Text
Retrieval: Achievements and Problems, Journal of A$IS, Vol.44, No.9, pages 532-544.

[Y~mamoto, 1996] Mi~o Yamamoto. 1996. A Re-estimation Method for Stochastic Language Mod-
eling from Ambiguous Observations, in Proceedings of WVLU-96, pages 155-167.

215

