
Best-First Surface Realization

Stephan Busemann*
D F K I G m b H

Stuh l sa tzenhausweg 3
D-66123 Saarbri icken

emaih busemann@dfki , u n i - s b , de

A b s t r a c t

Current work in surface realization concen-
trates on the use of general, abstract algo-
ri thms that interpret large, reversible gram-
mars. Only little attention has been paid
so far to the many small and simple appli-
cations that require coverage of a small sub-
language at different degrees of sophistica-
tion. The system TG/2 described in this pa-
per can be smoothly integrated with deep gen-
eration processes, it integrates canned text,
templates, and context-free rules into a sin-
gle formalism, it allows for both textual and
tabular output, and it can be parameterized
according to linguistic preferences. These fea-
tures are based on suitably restricted produc-
tion system techniques and on a generic back-
tracking regime.

1 M o t i v a t i o n

Current work in surface realization concen-
trates on the use of general, abstract algo-
rithms that interpret declaratively defined,
non-directional grammars. It is claimed that
this way, a g rammar can be reused for parsing

*This work has been s u p p o r t e d by a g ran t from
The Federal Min is t ry for Research and Technology
(FKZ I T W 9402). I am grateful to Michael Wein,
who i m p l e m e n t e d the in te rpre te r , and to J a n Alexan-
dersson for inf luent ial work on a previous version of
the system. Finally, I wish to t h a n k two a n o n y m o u s
reviewers for useful suggestions. All errors con ta ined
in th is paper are my own.

and generation, or a generator can interpret
different grammars (e.g. in machine transla-
tion). A prominent example for this type
of abstract algorithm is semantic-head-driven
generation [Shieber et al., 1990] that has been
used with HPSG, CUG, DCG and several oth-
er formalisms.

In practice, this type of surface realization
has several drawbacks. First, many existing
grammars have been developed with parsing
as the primary type of processing in mind.
Adapting their semantics layer to a genera-
tion algorithm, and thus achieving reversibil-
ity, can turn out to be a difficult enterprise
[Russell et al., 1990]. Second, many linguisti-
cally motivated grammars do not cover com-
mon means of information presentation, such
as filling in a table, bulletized lists, or semi-
frozen formulae used for greetings in letters.
Finally, the grammar-based logical form rep-
resentation hardly serves as a suitable inter-
face to deep generation processes. Grammar-
based semantics is, to a large extent, a com-
positional reflex of the syntactic structure and
hence corresponds too closely to the surface
form to be generated. As a consequence, on-
ly little at tention has been paid to interfacing
this type of realizers adequately to deep gen-
eration processes, e.g. by allowing the latter
to influence the order of results of the former.

The system TG/2, which is presented in
this contribution, overcomes many flaws of
grammar-based surface realization systems
that arise in concrete applications. In par-
ticular, TG/2

101

• can be smoothly integrated with 'deep'
generation processes,

• integrates canned text, templates, and
context-free rules into a single formalism,

• allows for both textual and tabular out-
put,

• efficiently reuses generated substrings for
additional solutions, and

• can be parameterized according to lin-
guistic properties (regarding style, gram-
mar, fine-grained rhetorics etc.).

TG/2 is based on restricted production sys-
tem techniques that preserve modularity of
processing and linguistic knowledge, hence
making the system transparent and reusable
for various applications. Production systems
have been used both for modeling human
thought (e.g. [Newell, 1973]) and for the con-
struction of knowledge-based expert systems
(e.g. [Shortliffe, 1976]). In spite of the modu-
larity gained by separating the rule basis from
the interpreter, production systems have dis-
appeared from the focus of current research
because of their limited transparency caused
by various types of side effects. In particu-
lar, side effects could modify the data base in
such a way that other rules become applicable
[Davis and King, 1977].

However, precondition-action pairs can be
used in a more restricted way, preserving
transparency by disallowing side effects that
affect the database. In TG/2 preconditions
are tests over the database contents (the gen-
erator's input structure), and actions typical-
ly lead to a new subset of rules the applicabil-
itv of which would be tested on some selected
portion of the database. By constraining the
effects of production rules in such a way, the
disadvantages of early production systems are
avoided. At the same time, considerable flex-
ibility is maintained with regard to linguistic
knowledge used. A production rule may

• involve a direct mapping to surface forms
(canned text),

• require to fill in some missing portion
from a surface text (template), or

• induce the application of other rules
(classical grammar rules)

Early template-based generation methods
have correctly been criticized for beeing too
inflexible to account adequately for the com-
municative and rhetorical demands of many
applications. On the other hand, templates
have been successfully used when these de-
mands could be hard-wired into the rules. In
TG/2 the rule writer can choose her degree
of abstraction according to the task at hand.
She can freely intermix all kinds of rules.

The rest of the paper is organized as fol-
lows. TG/2 assumes as its input a predicate-
argument structure, but does not require any
particular format. Rather, a separate transla-
tion step is included that translates the out-
put of feeding components into expressions
of the Generator Interface Language (GIL)
(Section 2). In Section 3 the formalism TGL
(Template Generation Language) for produc-
tion rules is introduced. The properties of
TGL allow for efficient generation of all pos-
sible solutions in any order. The TGL inter-
preter and its generic backtracking regime are
presented in Section 4. It is used to param-
eterize TG/2 by inducing an order in which
the solutions are generated (Section 5).

Figure 1 gives an overview of the system
and its components.

2 The Generat ion Interface
Language (GIL)

Although the level of logical form is consid-
ered a good candidate for an interface to sur-
face realization, practice shows that notation-
al idosyncrasies can pose severe translation
problems. TG/2 has an internal language,
GIL, that corresponds to an extended pred-
icate argument structure. GIL is the basis for
the precondition test predicates and the se-
lector functions of TGL. Any input to TG/2

102

Input structure
translation

G IL-Structure

f
G Substructure

stack i -
t ~ GIL

N E i = m m

T J
o m
R

TGL Production Rules
l~l EZ3 I---I r--11EE3 I'--I r~l

mm~mmummm
m m m m m

- - m m m m m m

TGL E

• test rules
• select a rule
• apply the rule

Output String

N
G
I
N
E

Figure 1: Overview of the system TG/2.

is first translated into GIL before being pro-
cessed. It is of considerable practical benefit
to keep the rule basis as independent as possi-
ble from external conditions (such as changes
to the output specification of the feeding sys-
tem).

GIL is designed to be a target language
suited for deep generation processes. Similar
aims have been pursued with the development
of the Sentence Plan Language (SPL) [Kasper
and V'hitney, 1989] that is used in a variety of
generation systems. Like SPL, GIL assumes
only little grammatical information. GIL can

represent DAG-like feature structures. Fig-
ure 2 contains a sample GIL expression. The
example shows the major language elements:

• The top level consists of a speech act
predicate and arguments for author, ad-
dressee and theme (the speechact prop-
er).

• Discourse objects can be assigned unique
constants (I.D) that denote SETs of dis-
course objects.

• SMOOD expresses sentence modalities in-

103

[(PRED request)
(HEARER [(ID refo365) (SET < nussbaum >)])
(SPEAKER [(ID refo752) (SET < digisec >)])
(THEME [(SMOOD [(TOPIC #i) (MODALITY unmarked) (TIME pres)])

(PRED meet)
(DREF [(ID refo610) (SET < meetl >)])
(ARGS < #1= [(ROLE agent)

(CARD single)
(CONTENT [(DREF [(ID refo621) (SET < zweig >)])

(QFORCE noquant)
(PRED humname)
(NAME [(TITLE \"Prof.\")

(SURNAME \"Zweig\")
(SORT female)])])],

[(ROLE patient)
(CARD single)
(CONTENT [(DREF [(ID refo365) (SET < nussbaum >)])

(QFORCE iota)
(PRED object)])] >)

(TIME-ADJ [(ROLE on) (CONTENT [(WEEKDAY 5)])])])]

Figure 2: A sample GIL input structure (Prof. Zweig will Sic am Freitag treffen [Prof. Zweig
wants to meet you on Friday]. < and > are list delimiters; # denotes coreferences.

cluding sentence type, time, a specifica-
tion of which constituents to topicalize in
a German declarative sentence, etc.

• The predicate argument structure is re-
flected by corresponding features: ARGS
contains a list of arguments.

• Different sorts of free temporal and local
adjuncts can be specified by correspond-
ing features. In Figure 2, a temporal ad-
junct is represented under TIME-ADJ.

• Arguments and, in part, adjuncts are
specified for their role, for cardinal-
ity, for quantificational force (under
C0NTENT.QFORCE), and further details
such as name strings and natural gender.

• Temporal adjuncts relate to some context
(e.g. tomorrow) or are indexical (e.g. on
Wednesday, February 7, 1996). All com-
mon combinations in German are cov-
ered.

3 The Template Generation
Language (TGL)

TGL defines a general format for expressing
production rules as precondition-action pairs
(cf. Figure 3). A TGL rule is applicable if its
preconditions are met. A TGL rule is suc-
cessfully applied, if the action part has been
executed without failure. Failure to apply a
TGL rule signals that the rule does not cover
the portion of the input s tructure submit ted
to it.

Figure 4 shows a sample TGL rule. It cor-
responds to an infinitival VP covering a direct
object, an optional temporal adjunct, an op-
tional expression for a durat ion (such as for
an hour), an optional local adjunct (such as
at the D F K I building) , and the infinite verb
form. Given the input GIL structure of Fig-
ure 2, the VP Sic am Freitag treffen [to meet
you on Friday] could be genorated from this
rule. Among the optional constituents, only
the temporal adjunct would find appropriate

104

<rule>

<tgl-rule>

<category>

<template>

::= (DEFPRODUCTION <string> <tgl-rule>)

::= (:PRECOND (:CAT <category>
:TEST (<lisp-code>+))

:ACTIONS (:TEMPLATE <template>+
{:SIDE-EFFECTS <lisp-code>}
{:CONSTRAINT <feature-equat ion>+}))

::= TXT I S l VP I NP J PP] PPdur] INF J ADJ] ...

::= (:RULE <category> <lisp-code>)]
(:0PTRULE <category> <lisp-code>) I
(:FUN <lisp-code>) I
<string>

Figure 3: An excerpt of TGL Syntax.

material in the GIL input structure (under
THEME. TIME-ADJ).

Every TGL rule has a unique name, denot-
ed by the initial string. This name is used for
expressing preferences on alternative rules (cf.
Section 5).

C a t e g o r y i The categories can be defined as
in a context-free grammar. Correspond-
ingly, categories are used for rule selec-
tion (see below). They ensure that a
set of TGL rules possesses a context-free
backbone.

Test : The Lisp code under : TEST is a boolean
predicate (usually about properties of the
portion of input structure under investi-
gation or about the state of some mem-
ory). In the sample rule, an argument is
required that fills the patient role.

T e m p l a t e : Actions under :TEMPLATE 1 in-
clude the selection of other rules (: RULE,
: 0PTRULE), executing a function (:FUN),
or returning an ASCII string as a (par-
tial) result.

When selecting other rules by virtue of
a category, a Lisp function is called that

1The notion of template is preserved for histori-
cal reasons: the predecessor system TG/1 was strictly
template-based,

identifies the relevant portion of the in-
put structure for which a candidate rule
must pass its associated tests. In Fig-
ure 4, the first action selects all rules with
category NP; the relevant substructure is
the argument filling the patient role (cf.
the second element of the ARGS list in Fig-
ure 2). If there is no such substructures
an error is signalled 2 unless an 0PTRULE
slot (for "optional rule") was executed.
In this case, processing continues with-
out results from that slot.

Functions must return an ASCII string.
They are mostly used for word inflection;
otherwise, for German every inflection-
al variant would have to be encoded as a
rule. T G / 2 uses the morphological inflec-
tion component MORPHIX [Finkler and
Neumann, 1988].

S ide effects : The Lisp code under
: SIDE-EFFECTS is a function whose value
is ignored. It accounts for non-local de-
pendencies between substructures, such
as updates of a discourse memory. Note
that these effects can be traced and un-
done in the case of backtracking.

2In the case at hand, the grammar writer preferred
to ensure availability of the substructure by virtue of
the test predicate.

105

(defproduction "VPinf with temp/loc adjuncts"
(:PRECOND (:CAT VP

:TEST ((role-filler-p 'patient)))
:ACTIONS (:TEMPLATE (:RULE NP (role-filler 'patient))

(:0PTRULE PP (temp-adjunct))
(:0PTRULE PPdur (temp-duration))
(:0PTRULE PP (lot-adjunct))
(:RULE INF (theme))

:CONSTRAINTS (CASE (NP) :VAL 'akk))))

Figure 4: A sample production rule for a VP with an infinitive verb form placed at the end.

Constra ints : Agreement relations are en-
coded into the rules by virtue of a PATR
style [Shieber et al., 1983] feature per-
colation mechanism. The rules can be
annotated by equations that either as-
sert equality of a feature's value at two
or more constituents or introduce a fea-
ture value at a constituent. Attempt-
ing to overwrite a feature specification
yields an error. In Figure 4, the right-
hand side constituent NP is assigned ac-
cusative case. Any of these effects are
subject to backtracking.

Using TGL, small task- and domain-specific
grammars can be writ ten quickly. For in-
stance, in the domain of appointment schedul-
ing the system COSMA [Busemann et al.,
1994] has to accept, reject, modify, or re-
fine suggested meeting dates via email. The
sublanguage encoded in TGL only needs a
few speech acts, about twenty sentential tem-
plates, and a complete account of German
date expressions. Moreover, formal as well
as informal opening and closing phrases for
emails are covered.

Larger grammars may become difficult to
maintain unless special care is taken by the
grammar writer to preserve a global struc-
ture of rules, both by defining suitable cat-
egories and by documenting the rules. TGL
rules are presently writ ten using a text editor.
A specialized TGL grammar editor could im-
prove the development and the organization of

grammars considerably. Syntactic correctness
is checked at compile-time by an LR-Parser
generated by Zebu [Laubsch, 1992] on the ba-
sis of a BNF syntax for TGL.

4 An interpreter with
generic backtracking

TG/2 has a simple interpretation proce-
dure that corresponds to the classical three-
step evaluation cycle in production systems
(matching, conflict resolution, firing) [Davis
and King, 1977]. The algorithm receives a
GIL structure as its input and uses a distin-
guished category, TXT, to start from.

1. M a t c h i n g : Select all rules carrying the
current category. Execute the tests for
each of these rules on the input structure
and add those passing their test to the
conflict set.

2. Conf l i c t r e s o l u t i o n : Select an element
from the conflict set.

3. F i r ing : Execute its side effect code (if
any). Evaluate its constraints (if any).
For each action part, read the catego-
ry, determine the substructure of the in-
put by evaluating the associated func-
tion, and goto 1.

The processing strategy is top-down and
depth-first. The set of actions is fired from

106

B1

/32

B2~ [

pre context ego post context
st ~\ -- {s2i[1 _< i _< Isll} s3.v2.ss
.51.v1.83 ~? = {s4jll _< j _< IB21} ss
st.Vl.sa's5j = {s6kll _< k < IB2,1}

where 84j -~- 85j'V21 "87j

87j "88

Figure 5: Table of Backtrack Points: B2 is encountered outside of the ego of Bt. B2~ is
encountered inside the ego of B2.

left to right. Failure of executing some action
causes the rule to be backtracked.

The interpreter yields all solutions the
grammar can generate. It a t tempts to gener-
ate and output a first solution, producing pos-
sible alternatives only on external demand.
Any alternative is based on backtracking at
least one rule. Backtrack points correspond
to conflict sets containing more than one ele-
ment.

Backtracking may turn out to be inefficient
if it involves recomputat ion of previously gen-
erated substrings. In T G / 2 this effort is re-
duced considerably because it is only neces-
sary to recompute the part licensed by the
newly selected rule. What has been generat-
ed before or after it remains constant (modulo
some word forms that need to agree with new
material) and can thus be reused for subse-
quent solutions. This is possible due to the
design properties of TGL: rules cannot irre-
vocably influence other parts of the solution.
In particular, the context-free backbone im-
plicit in any solution and the restrictions to
side effects mentioned above keep the struc-
tural effects of TGL rules local.

In the sequel, technical aspects of the back-
tracking regime are discussed. Let us as-
sume that the interpreter compute a back-
track point. Let us call the sequence of strings
generated by previous actions its pre-context,
the set of string sequences generated from the
elements of the conflict set its ego, and the se-
quence of strings generated from subsequent
actions its post-context. For every ego, the

pre- or the post context may be empty.
Each time a backtrack point is encountered

during processing, an entry into a global table
is made by specifying its pre-context (which is
already known due to the left-to-right process-
ing), a variable for the ego (which will collect
the sequences of strings generated by the el-
ements of the conflict set), and a variable for
the post-context (which is unknown so far). a
Figure 5 shows the state of a sample table
comprising three backtrack points after all so-
lutions have been computed. The ego vari-
able is shown using indices running over the
elements of the respective conflict sets. The
operator '.' denotes concatenation of strings
with strings or sets of strings, delivering all
possible combinations.

After the first solution has been found (i.e.
Sl"S21 '83"851 "861"871 "S8), every ego set contains
one element. The post contexts for all back-
track points can be entered into the table.

The next solution is generated by selecting
anyone of the backtrack points and adding a
new element to the ego set. At the same time.
all other entries of the table are updated, and
the set of additional solutions can be read off
straightforwardly from the entry of the back-
track point just processed. Assume, for in-
stance, that B21 generates a second solution.
thus causing V2~ to have two elements. We
then get Sl'S21"83"851"862"871"88. Now assume
that Bi also generates a second solution. This

3In fact, it is preterminal rather than terminal ele-
ments that are stored in the table in order to account
for modified constraints. This can be neglected in the
present discussion, but will be taken up again below.

107

directly yields two more solutions since the
post context of B1 includes, via 84j, the two
elements of V21.

This way only the alternative elements of a
conflict set have to be expanded from scratch.
All other material can be reused. This is
highly efficient for backtrack points introduc-
ing "cheap" alternatives (e.g. different word-
ings). Since the ego must be recomputed from
scratch, much less is gained with backtrack
points occurring at a higher level (e.g. active
vs. passive sentence). In order to avoid hav-
ing to recompute successfully generated par-
tial results within the ego, such results are
stored during processing together with the
part of the input s tructure and the current
category. They can be reused when passing
an applicability test that requires the stored
category and input s tructure to be identical
to the current ones.

The backtracking approach described is
based on the assumption that any constraints
introduced for some ego can be undone and
recomputed on the basis of rules generating
an alternative ego. Clearly, features instanti-
ated for some ego may have effects onto the
pre- or post-context. If an agreement feature
receives a different value during backtracking
and it relates to material outside the ego, in-
flectional processes for that material must be
computed again. These cases can be detected
by maintaining a trace of all constraint ac-
tions. The recomputat ion is rendered possi-
ble by adding, in addition to storing terminal
strings in the table, the underlying calls to the
inflection component as well.

5 P a r a m e t e r i z a t i o n

Parameterization of T G / 2 is based on spec-
ifying the way how the generic backtracking
regime should operate. It can be influenced
with regard to

• the element in the conflict set to be pro-
cessed next, and

• the backtrack point to be processed next.

Both possibilities taken together allow a sys-
tem that feeds T G / 2 to specify linguistic cri-
teria of preferred solutions to be generated
first.

The criteria are defined in terms of rule
names, and a criterion is fulfilled if some cor-
responding rule is successfully applied. We
call such a rule c-rule. T G / 2 implements
a simple strategy that processes those back-
track points first that have conflict sets con-
taining c-rules, and preferrably choses a c-rule
from a conflict set. When applied incremen-
tally, this procedure yields all solutions fulfill-
ing (some of) the criteria first.

It would be desirable to see the solution ful-
filling most criteria first. However, incremen-
tal application enforces decisions to be taken
locally for each conflict set. Any c-rule chosen
may be the last one in a derivation, whereas
chosing a non-c-rule may open up further op-
portunities of chosing c-rules. These limits
are due to a lack of look-ahead information:
it is not known in general which decisions will
have to be taken until all solutions have been
generated. 4 Clearly, sacrificing incrementali-
ty is not what should be desired although it
may be acceptable for some applications. The
drawbacks include a loss of efficiency and run-
time. This leaves us with two possible direc-
tions that can lead to improved results.

A n a l y z i n g d e p e n d e n c i e s of criteria:
The solution fulfilling most criteria is gener-
ated first if sets of mutually independent cri-
teria are applied: fulfilling one criterion must
not exclude the applicability of another one.
unless two criteria correspond to rules of the
same conflict set. In this case, they must allow
for the the application of the same subset of
criteria. If these conditions are met, chosing a
c-rule from every conflict set, if possible, will
lead to a globally best solution first. There is,
however, the practical problem that the con-
ditions on the criteria can only be fulfilled by

4Note that this conclusion does not depend on the
processing strategy chosen.

108

analyzing, and possibly modifying, the TGL
grammar used. This contradicts the idea of
having the user specify her preferences inde-
pendent of T G / 2 properties.

Learning dependencies of criteria:
Missing look-ahead information could be ac-
quired automatically by exploiting the deriva-
tional history of previously generated texts.
For every applied rule, the set of c-rules ap-
plied later in the current subtree of a deriva-
tion is stored. From this information, we can
derive off-line for any set of criteria which c-
rules have applied in the corpus and how of-
ten each c-rule has applied within a deriva-
tion. Computing such information from the
context-free backbone of TGL grammars in-
stead would be less effective since it neglects
the drastic filtering effects of preconditions.
However. checking the grammar this way in-
dicates which c-rules will not appear in some
subtree.

During processing, T G / 2 can then judge
the global impact of chosing the locally best
c-rule and decide to fulfill or violate a cri-
terion. The success of this method depends
on how well the derivation under construction
fits with the sample data. The more examples
the system observes, the more reliable will be
its decisions.

The latter approach is in fact independent
on how the criteria influence each other. In
addition, it can be extended to cope with
weighted criteria. A weight is specified by the
user (e.g. a feeding system) and expresses the
relative importance of the criterion being ful-
filled in a solution. TG/2 would give prefer-
ence to derivations leading to the maximum
global weight. The global weight of a solution
is the sum of the c-rule weights, each divided
by the number of times the c-rule occurs.

However, different GIL structures may, for
a TGL rule, lead to different sets of follow-up
c-rules. This causes the decision to be non-
deterministic unless the reasons for the dif-
ference are learned and applied to the case
at hand. We must leave it to future research
to identify a rd apply suitable learning algo-

rithms to solving this problem.
Criteria have been implemented for choos-

ing a language, for chosing between active and
passive sentences, for preferring paratactical
over hypotactical style, and for choice of for-
mal vs. informal wordings. Additional uses
could include some rhetorical structuring (e.g.
order of nucleus and satellites in RST-based
analyses [Mann and Thompson. 1988]).

The approach presented offers a technical
framework that allows a deep generation pro-
cess to abstract away from many idiosyn-
crasies of linguistic knowledge by virtue of
meaningful weighting functions. Ideally, these
functions must implement a theory of how
mutual dependencies of criteria should be
dealt with. For instance, lexical choice and
constituent order constraints may suggest the
use of passive voice (cf. e.g. [Danlos, 1987]). It
is a yet open question whether such a theory
can be encoded by weights. However, for some
sets of preferences, this approach has proven
to be sufficient and very useful.

6 C o n c l u s i o n

In this contribution, we have introduced
TG/2, a production-rule based surface gen-
erator that can be parameterized to generate
the best solutions first. The rules are encoded
in TGL, a language that allows the definition
of canned text items, templates, and context-
free rules within the same formalism. TGL
rules can, and should, be writ ten with gen-
eration in mind, i.e. the goal of reversibility
of grammars pursued with many constraint-
based approaches has been sacrificed. This is
justified because of the limited usefulness of
large reversible grammars for generation.

TGL is particularly well suited for the de-
scription of limited sublanguages specific to
the domains and the tasks at hand. Par-
tial reuse of such descriptions depends on
whether the g rammar writer keeps general.
reusable definitions independent from the spe-
cific, non-reusable parts of the grammar. For

109

instance, time and date descriptions encod-
ed for the COSMA domain can be reused in
other TG/2 applications. On the other hand,
TGL sublanguage grammars can be devel-
oped using existing resources. For instance,
suitable fragments of context-free grammars
translated into TGL could be augmented by
the domain and task specific properties need-
ed. Practical experience must show whether
this approach saves effort.

The system is fully implemented in Allegro
Common Lisp and runs on different platforms
(SUN workstations, PC, Macintosh). Com-
puting the first solution of average-length sen-
tences (10-20 words) takes between one and
three seconds on a SUN SS 20. TG/2 is being
used in the domain of appointment scheduling
within DFKI's COSMA system. In the near
future, the system will be used within an NL-
based information kiosk, where information
about environmental data must be provided
in both German and French language, includ-
ing tabular presentations if measurements of
several substances are involved.

R e f e r e n c e s

[Busemann et al., 1994] S. Busemann, S. Oe-
pen, E. Hinkelman, G. Neumann, and
H. Uszkoreit. COSMA-multi-participant
NL interaction for appointment scheduling.
Research Report RR-94-34, DFKI, Saar-
brficken, 1994.

[Danlos, 1987] L. Danlos. The Linguistic Ba-
sis of Text Generation. Cambridge Univer-
sity Press, Cambridge, 1987.

[Davis and King, 1977] R. Davis and J. King.
An overview of production systems. In
E. W. Elcock and D. Michie. editors, Ma-
chine Intelligence 8, pages 300-332. Ellis
Horwood, Chichester, 1977.

[Finkler and Neumann, 1988] W. Finkler and
G. Neumann. Morphix: A fast realizatiop
of a classification-based approach to mor-
phology. In H. Trost, editor, Proc. der

4. dJsterreichischen Artificial-Intelligence
Tagung, pages 11-19, Berlin, August 1988.
Springer.

[Kasper and Whitney, 1989] R. Kasper and
R. Whitney. SPL: A sentence plan language
for text generation. Technical report, USC-
ISI. Marina del Rey, 1989.

[Laubsch, 1992] J. Laubsch. Zebu: A Tool
for Specifying Reversible LALR(1) Parsers.
Technical Report HPL-92-147. Hewlett-
Packard Labs, Palo Alto, CA, July 1992.

[Mann and Thompson, 1988] W. C. Mann
and S. A. Thompson. Rhetorical structure
theory: Toward a functional theory of text
organization. Text, 8(3):243-281. 1988.

[Newell, 1973] A. Newell. Production sys-
tems: Models of control structures. In
W. G. Chase, editor, Visual Informa-
tion Processing, pages 463-526. Academic
Press, New York, 1973.

[Russell et al., 1990] G. Russell. S. Warwick,
and J. Carroll. Asymmetry in parsing
and generating with unification grammars:
Case studies from ELU. In Proc. 28th A CL,
pages 205-211., Pittsburgh, 1990.

[Shieber et al., 1983] S. Shieber, H. Uszko-
reit, F. Pereira, J. Robinson, and M. Tyson.
The formalism and implementation of
PATR-II. In B. J. Grosz and M. E. Stick-
el, editors, Research on Interactive Acqui-
sition and Use of Knowledge, pages 39-79.
AI Center, SRI International, Menlo Park.
CA, 1983.

[Shieber et al., 1990] S. Shieber, G. van
Noord, R. C. Moore, and F. Pereira. A
semantic-head-driven generation algorithm
for unification-based formalisms. Compu-
tational Linguistics, 16(1):30-42, 1990.

[Shortliffe, 1976] E. H. Shortliffe. Computer-
based Medical Consultations: MYCIN. El-
sevier, New York, 1976.

110

