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Abstract 

This paper presents a technique for sentence genera- 

tion. We argue that the input to generators should 

have a non-hierarchical nature. This allows us to in- 

vestigate a more general version of the sentence gen- 

eration problem where one is not pre-committed to a 

choice of the syntactically prominent elements in the 

initial semantics. We also consider that a generator 

can happen to convey more (or less) information than 

is originally specified in its semantic input. In order 

to constrain this approximate matching of the input 

we impose additional restrictions on the semantics of 

the generated sentence. Our technique provides flex- 

ibility to address cases where the entire input cannot 

be precisely expressed in a single sentence. Thus the 

generator does not rely on the strategic component 

having linguistic knowledge. We show clearly how 

the semantic structure is declaratively related to lin- 

guistically motivated syntactic representation. 

1 I n t r o d u c t i o n  

Natural language generation is the process of 
realising communicative intentions as text (or 
speech). The generation task is standardly 
broken down into the following processes: con- 
tent determination (what is the meaning to 
be conveyed), sentence planning 1 (chunking 
the meaning into sentence sized units, choos- 
ing words), surface realisation (determining the 
syntactic structure), morphology (inflection of 
words), synthesising speech or formatting the 
text output. 

In this paper we address aspects of sentence 
planning (how content words are chosen but not 
how the sem.untics is chunked in units realisable 

"Supported by Faculty of Science and Engineering 
Scholarship 343 EE06006 at the University of Edinburgh. 

1Note that this does not involve planning mechanisms! 

as sentences) and surface realisation (how syn- 
tactic structures are computed). We thus dis- 
cuss what in the literature is sometimes referred 
to as tactical generation, that is "how to say 
i t"--as opposed to strategic generation--"what 
to say". We look at ways of realising a non- 
hierarchical semantic representation as a sen- 
tence, and explore the interactions between syn- 
tax and semantics. 

Before giving a more detailed description 
of our proposals first we motivate the non- 
hierarchical nature of the input for sentence 
generators and review some approaches to gen- 
eration from non-hierarchical representations-- 
semantic networks (Section 2). We proceed 
with some background about the grammatical 
framework we will employ--D-Tree Grammars 
(Section 3) and after describing the knowledge 
sources available to the generator (Section 4) 
we present the generation algorithm (Section 5). 
This is followed by a step by step illustration 
of the generation of one sentence (Section 6). 
We then discuss further semantic aspects of the 
generation (Section 7) and the implementation 
(Section 8). We conclude with a discussion of 
some issues related to the proposed technique 
(Section 9). 

2 G e n e r a t i o n  f rom Non-  
Hie ra rch ica l  R e p r e s e n t a t i o n s  

The input for generation systems varies radic- 
ally from system to system. Many generators 
expect their input to be cast in a tree-like nota- 
tion which enables the actual systems to assume 
that nodes higher in the semantic structure are 
more prominent than lower nodes. The semantic 
representations used are variations of a predic- 
ate with its arguments. The predicate is real- 
ised as the main verb of the sentence and the 
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arguments are realised as complements of the 
main verb--thus the control information is to 
a large extent encoded in the tree-like semantic 
structure. Unfortunately, such dominance rela- 
tionships between nodes in the semantics often 
stem from language considerations and are not 
always preserved across languages. Moreover, 
if the semantic input comes from other applic- 
ations, it is hard for these applications to de- 
termine the most prominent concepts because 
linguistic knowledge is crucial for this task. The 
tree-like semantics assumption leads to simplific- 
ations which reduce the paraphrasing power of 
the generator (especially in the context of mul- 
tilingual generation). 2 In contrast, the use of a 
non-hierarchical representation for the underly- 
ing semantics allows the input to contain as few 
language commitments as possible and makes it 
possible to address the generation strategy from 
an unbiased position. We have chosen a partic- 
ular type of a non-hierarchical knowledge rep- 
resentation formalism, conceptual graphs [24], 
to represent the input to our generator. This 
has the added advantage that the representa- 
tion has well defined deductive mechanisms. A 
graph is a set of concepts connected with rela- 
tions. The types of the concepts and the rela- 
tions form generalisation lattices which also help 
define a subsumption relation between graphs. 
Graphs can also be embedded within one an- 
other. The counterpart of the unification op- 
eration for conceptual graphs is maximal join 
(which is non-deterministic). Figure 1 shows a 
simple conceptual graph which does not have 
cycles. The arrows of the conceptual relations 
indicate the domain and range of the relation 
and do not impose a dominance relationship. 

Figure 1: A simple conceptual graph 

The use of semantic networks in generation 
is not new [21, 18]. Two main approaches have 
been employed for generation from semantic net- 
works: utterance path traversal and incremental 

2The tree-like semantics imposes some restrictions 
which the language may not support. 

consumption. An utterance path is the sequence 
of nodes and arcs that are traversed in the pro- 
cess of mapping a graph to a sentence. Gener- 
ation is performed by finding a cyclic path in 
the graph which visits each node at least once. 
If a node is visited more than once, grammar 
rules determine when and how much of its con- 
tent will be uttered [23]. Under the second ap- 
proach, that of incremental consumption, gen- 
eration is done by gradually relating (consum- 
ing) pieces of the input semantics to linguistic 
structure [3, 13]. Such covering of the semantic 
structure avoids some of the limitations of the 
utterance path approach and is also the general 
mechanism we have adopted (we do not rely on 
the directionality of the conceptual relations per 
se-- the primitive operation that we use when 
consuming pieces of the input semantics is max- 
imal join which is akin to pattern matching). 
The borderline between the two paradigms is 
not clear-cut. Some researchers [22] are look- 
ing at finding an appropriate sequence of ex- 
pansions of concepts and reductions of subparts 
of the semantic network until all concepts have 
realisations in the language. Others assume all 
concepts are expressible and try to substitute 
syntactic relations for conceptual relations [2]. 

Other work addressing surface realisation 
from semantic networks includes: generation us- 
ing Meaning-Text Theory [6], generation using 
the SNePS representation formalism [19], gener- 
ation from conceptual dependency graphs [26]. 
Among those that have looked at generation 
with conceptual graphs are: generation using 
Lexical Conceptual Grammar [15], and gener- 
ating from CGs using categorial grammar in the 
domain of technical documentation [25]. 

This work improves on existing generation ap- 
proaches in the following respects: (i) Unlike 
the majority of generators this one takes a non- 
hierarchical (logically well defined) semantic rep- 
resentation as its input. This allows us to look 
at a more general version of the realisation prob- 
lem which in turn has direct ramifications for 
the increased paraphrasing power and usability 
of the generator; (ii) Following Nogier & Zock 
[14], we take the view that lexical choice is es- 
sentially (pattern) matching, but unlike them we 
assume that the meaning representation may not 
be entirely consumed at the end of the gener- 
ation process. Our generator uses a notion of 
approximate matching and can happen to con- 
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vey more (or less) information than is origin- 
ally specified in its semantic input. We have a 
principled way to constrain this. We build the 
corresponding semantics of the generated sen- 
tence and aim for it to be  as close as possible 
to the input semantics. (i) and (ii) thus allow 
for the input to come from a module that need 
not have linguistic knowledge. (iii) We show 
how the semantics is systematically related to 
syntactic s tructures in a declarative framework. 
Alternative processing strategies using the same 
knowledge sources can therefore be envisaged. 

3 D-Tree  G r a m m a r s  

Our generator uses a particular syntactic 
theory- -D-Tree  Grammar  (DIG)  which we 
briefly introduce because the generation strategy 
is influenced by the linguistic structures and the 
operations on them. 

D-Tree Grammar  (DTG) [16] is a new gram- 
mar formalism which arises from work on Tree- 
Adjoining Grammars  (TAG) [7]. In the context 
of generation, TAGS have been used in a num- 
ber of systems MUMBLE [10], SPOKESMAN [11], 
Wm [27], the system reported in [9], the first 
version of PROTECTOR [12], and recently SPUD 

(by Stone & Doran). In the area of grammar 
development TAG has been the basis of one of 
the largest grammars developed for English [4]. 
Unlike TAGs, DTGs provide a uniform treatment 
of complementat ion and modification at the syn- 
tactic level. DTGs are seen as attractive for gen- 
eration because a close match between semantic 
and syntactic operations leads to simplifications 
in the overall generation architecture. DTGS try 
to overcome the problems associated with T A G S  

while remaining faithful to what  is seen as the 
key advantages of TAGs [7]: the extended domain 
of locality over which syntactic dependencies are 
s tated and function argument structure is cap- 
tured. 

DTG assumes the existence of elementary 
structures and uses two operations to form lar- 
ger s tructures from smaller ones. The element- 
ary structures are tree descriptions 3 which are 
trees in which nodes are linked with two types of 
links: dominat ion links (d-links) and immediate 
domination links (i-links) expressing (reflexive) 
dominat ion and immediate domination relations 

3called d-trees hence the name of the formalism. 

between nodes. Graphically we will use a dashed 
line to indicate a d-link (see Figure 2). D-trees 
allow us to view the operations for composing 
trees as monotonic. The two combination oper- 
ations that  DTG uses are subsertion and sister- 
adjunetion. 

substitution node 

Figure 2: Subsertion 

S u b s e r t i o n .  When a d-tree a is subserted 
into another d-tree fl, a component 4 of a is sub- 
s t i tuted at a frontier nonterminal node (a sub- 
st i tut ion node) of j3 and all components of a 
that  are above the subst i tu ted component  are 
inserted into d-links above the subst i tu ted node 
or placed above the root node of ft. It is pos- 
sible for components  above the subst i tu ted  node 
to drift arbitrarily far up the d-tree and distrib- 
ute themselves within domination links, or above 
the root, in any way that is compatible with the 
domination relationships present in the substi- 
tu ted d-tree. In order to constrain the way in 
which the non-subst i tuted components can be 
interspersed D T G  uses subsertion-insertion con- 
straints which explicitly specify what compon- 
ents from what trees can appear within a certain 
d-links. Subsertion as it is defined as a non- 
deterministic operation. Subsertion can model 
both  adjunction and subst i tut ion in T A G  . 

Figure 3: Sister-adjunction 

S i s t e r - a d j u n c t i o n .  When  a d-tree a is 
sister-adjoined at a node ~7 in a d-tree/3 the corn- 

4& subtree which contains only i-links. 
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posed d-tree 7 results from the addition to j3 of 
v~ as a new leftmost or rightmost sub-d-tree be- 
low 7/. Sister-adjunction involves the addition of 
exactly one new immediate domination link. In 
addition several sister-adjunctions can occur at 
the same node. Sister-adjoining constraints as- 
sociated with nodes in the d-trees specify which 
other d-trees can be sister-adjoined at this node 
and whether they will be right- or left-sister- 
adjoined. 

For more details on DTGS see [16]. 

4 Knowledge Sources 

The generator assumes it is given as input 
an input semantics (InputSem) and 'bound- 
ary'  constraints for the semantics of the gen- 
erated sentence (BuiltSem which in general 
is different from InputSemh). The bound- 
ary constraints are two graphs (UpperSem 
and LowerSem) which convey the notion of 
the least and the most that  should be ex- 
pressed. So we want BuiltSem to satisfy: 
LowerSern < BuiltSem <_ UpperSern. ¢ If 
the generator happens to introduce more se- 
mantic information by choosing a particular ex- 
pression, LowerSem is the place where such ad- 
ditions can be checked for consistency. Such 
constraints on BuiltSem are useful because in 
general InputSem and BuiltSem can happen 
to be incomparable (neither one subsumes the 
other). In a practical scenario LowerSem can be 
the knowledge base to which the generator has 
access minus any contentious bits. UpperSem 
can be the minimum information that necessar- 
ily has to be conveyed in order for the generator 
to achieve the initial communicative intentions. 

The goal of the generator is to produce a sen- 
tence whose corresponding semantics is as close 
as possible to the input semantics, i.e., the real- 
isation adds as little as possible extra material 
and misses as little as possible of the original in- 
put.  In generation similar constraints have been 
used in the generation of referring expressions 
where the expressions should not be too general 

5This can come about from a mismatch between the 
input and the semantic structures expressible by the 
generator. 

6The notat ion G1 <_ G2 means that  G1 is subsumed 
by G2. We consider UpperSem to be a generalisation of 
BuiltSem and LowerSem a specialisation of BuiltSem 
(in terms of the conceptual graphs that  represent them). 

so that  discriminatory power is not lost and not 
too specific so that  the referring expression is in 
a sense minimal. Our model is a generalisation 
of the paradigm presented in [17] where issues 
of mismatch in lexical choice are discussed. We 
return to how UpperSem and LowerSem are 
actually used in Section 7. 

4 .1  M a p p i n g  r u l e s  

Mapping rules s tate how the semantics is related 
to the syntactic representation. We do not im- 
pose any intrinsic directionality on the mapping 
rules and view them as declarative statements.  
In our generator a mapping rule is represented 
as a d-tree in which certain nodes are annot- 
ated with semantic information. Mapping rules 
are a mixed syntactic-semantic representation. 
The nodes in the syntactic s t ructure will be fea- 
ture structures and we use unification to com- 
bine two syntactic nodes. The semantic annota- 
tions of the syntactic nodes are either conceptual 
graphs or instructions indicating how to com- 
pute the semantics of the syntactic node from 
the semantics of the daughter syntactic nodes. 
Graphically we use dot ted lines to show the 
coreference between graphs (or concepts). Each 
graph appearing in the rule has a single node 
("the semantic head") which acts as a root (in- 
dicated by an arrow in Figure 4). This hierarch- 
ical s tructure is imposed by the rule, and is not 
part  of the semantic input. Every mapping rule 
has associated applicability semantics which is 
used to license its application. The applicabil- 
ity semantics can be viewed as an evaluation of 
the semantic instruction associated with the top 
syntactic node in the tree description. 

Figure 4 shows an example of a mapping rule. 
The applicability semantics of this mapping rule 
is: I AN'MATE ACT,ON 
If this s tructure matches part  of the input se- 
mantics (we explain more precisely what we 
mean by matching later on) then this rule can 
be triggered (if it is syntactically appropriate--- 
see Section 5). The internal generation goals 
(shaded areas) express the following: (1) gen- 
erate [ACTION[ as a verb and subsert  (substi- 
tute,at tach) the verb's syntactic s t ructure at the 
Vo node; (2) generate [ANIMATE] as a noun 
phrase and subsert  the newly built  s t ructure 
at NPO; and (3) generate I EI~ITITY[ aS another  
noun phrase and subsert  the newly built  struc- 
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Applicability semantics: 

Internal generation goals 

Figure 4: A mapping rule for transitive constructions 

ture at NP1. The newly built structures are also 
mixed syntactic-semantic representations (an- 
notated d-trees) and they are incorporated in 
the mixed structure corresponding to the cur- 
rent status of the generated sentence. 

5 S e n t e n c e  G e n e r a t i o n  

In this section we informally describe the gener- 
ation algorithm. In Figure 5 and later in Fig- 
ure 8, which illustrate some semantic aspects of 
the processing, we use a diagrammatic notation 
to describe semantic structures which are actu- 
ally encoded using conceptual graphs. 

The input to the generator is InputSem, 
LowerSem, UpperSem and a mixed structure, 
Partial, which contains a syntactic part (usually 
just one node but possibly something more com- 
plex) and a semantic part which takes the form 
of semantic annotations on the syntactic nodes 
in the syntactic part. Initially Partial rep- 
resents the syntactic-semantic correspondences 
which are imposed on the generator. 7 It has the 
format of a mixed structure like the represent- 
ation used to express mapping rules (Figure 4). 
Later during the generation Partial is enriched 
and at any stage of processing it represents the 
current syntactic-semantic correspondences. 

We have augmented the DTG formalism so 

7In dialogue and question answering, for example, 
the syntactic form of the generated sentence may be 
constrained. 

that the semantic structures associated with 
syntactic nodes will be updated appropriately 
during the subsertion and sister-adjunction op- 
erations. The stages of generation are: (1) build- 
ing an initial skeletal structure; (2) attempting 
to consume as much as possible of the semantics 
uncovered in the previous stage; and (3) convert- 
ing the partial syntactic structure into a com- 
plete syntactic tree. 

5.1 B u i l d i n g  a s k e l e t a l  s t r u c t u r e  

Generation starts by first trying to find a map- 
ping rule whose semantic structure matches s 
part of the initial graph and whose syntactic 
structure is compatible with the goal syntax (the 
syntactic part of Partial). If the initial goal 
has a more elaborate syntactic structure and re- 
quires parts of the semantics to be expressed as 
certain syntactic structures this has to be re- 
spected by the mapping rule. Such an initial 
mapping rule will have a syntactic structure that 
will provide the skeleton syntax for the sentence. 
If Lexicalised DTGiS used as the base syntactic 
formalism at this stage the mapping rule will 
introduce the head of the sentence structure 
the main verb. If the rule has internal gener- 
ation goals then these are explored recursively 
(possibly via an agenda--we will ignore here the 

Svia the maximal join operation. Also note that 
the arcs to/from the conceptual relations do not reflect 
any directionality of the processing--they can be 'tra- 
versed'/accessed from any of the nodes they connect. 
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Figure 5: Covering the remaining semantics with mapping rules 

issue of the order in which internal generation 
goals are executed). Because of the minimality 
of the mapping rule, the syntactic structure that 
is produced by this initial stage is very basic--for 
ex:mple only obligatory complements are con- 
sidered. Any mapping rule can introduce addi- 
tional semantics and such additions are checked 
against the lower semantic bound. When ap- 
plying a mapping rule the generator keeps track 
of how much of the initial semantic structure 
has been covered/consumed. Thus at the point 
when all internal generation goals of the first 
(skeletal) mapping rule have been exhausted the 
generator knows how much of the initial graph 
remains to be expressed. 

5.2 C o v e r i n g  t h e  r e m a i n i n g  s e m a n t i c s  

In the second stage the generator aims to find 
mapping rules in order to cover most of the re- 
maining semantics (see Figure 5) . The choice 
of mapping rules is influenced by the following 
criteria: 

C o n n e c t i v i t y :  The semantics of the mapping 
rule has to match (cover) part of the covered 
semantics and part of the remaining se- 
mantics. 

I n t e g r a t i o n :  It should be possible to incor- 
porate the semantics of the mapping rule 
into the semantics of the current structure 
being built by the generator. 

Rea l i sab i l i ty :  It should be possible to incor- 
porate the partial syntactic structure of 
the mapping rule into the current syntactic 
structure being built by the generator. 

Note that  the connectivity condition restricts 
the choice of mapping rules so that a rule that 
matches part of the remaining semantics and 

the extra semantics added by previous mapping 
rules cannot be chosen (e.g., the "bad mapping" 
in Figure 5). While in the stage of fleshing out 
the skeleton sentence structure (Section 5.1) the 
syntactic integration involves subsertion, in the 
stage of covering the remaining semantics it is 
sister-adjunction that  is used. When incorporat- 
ing semantic structures the semantic head has to 
be preserved--for example when sister-adjoining 
the d-tree for an adverbial construction the se- 
mantic head of the top syntactic node has to 
be the same as the semantic head of the node 
at which sister-adjunction is done. This explicit 
marking of the semantic head concepts differs 
from [20] where the semantic head is a PROLOG 
term with exactly the same structure as the in- 
put semantics. 

5.3 C o m p l e t i n g  a d e r i v a t i o n  

In the preceding stages of building the skeletal 
sentence structure and covering the remaining 
semantics, the generator is mainly concerned 
with consuming the initial semantic structure. 
In those processes, parts of the semantics are 
mapped onto partial syntactic structures which 
are integrated and the result is still a partial 
syntactic structure. That  is why a final step 
of "closing off" the derivation is needed. The 
generator tries to convert the partial syntactic 
structure into a complete syntactic tree. A mor- 
phological post-processor reads the leaves of the 
final syntactic tree and inflects the words. 

6 Example 

In this section we illustrate how the algorithm 
works by means of a simple example. Suppose 
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Figure 6: Mapping rules 

we start with an initial semantics as given in 
Figure 1. This semantics can be expressed in a 
number of ways: Fred limped quickly, Fred hur- 
ried with a limp, Fred's limping was quick, The 
quickness of Fred's limping . . . ,  etc. Here we 
show how the first paraphrase is generated. 

In the stage of building the skeletal structure 
the mapping rule (i) in Figure 6 is used. Its 
internal generation goals are to realise the in- 
stantiation of [ ACTION ] (which is [ MOVEMENT 
as a verb and similarly[ PERSON:FRED f as a noun 
phrase. The generation of the subject noun 
phrase is not discussed here. The main verb 
is generated using the terminal mapping rule 9 
(iii) in Figure 6. l° The skeletal structure thus 
generated is Fred limp(ed). (see (i) in Figure 7). 

An interesting point is that although the in- 
ternal generation goal for the verb referred only 
to the concept [MOVEMENT] in the initial se- 
mantics, all of the information suggested by the 
terminal mapping rule (iii) in Figure 6 is con- 
sumed. We will say more about how this is done 
in Section 7. 

At this stage the only concept that remains 
to be consumed is [ ~ K ~ .  This is done in the 
stage of covering the remaining semantics when 
the mapping rule (ii) is used. This rule has an 
internal generation goal to generate the instan- 
t i a t i o n  Of[MANNER] as an adverb, which yields 
quickly. The structure suggested by this rule 
has to be integrated in the skeletal structure. 

°Terminal mapping rules are mapping rules which 
have no internal generation goals and in which all ter- 
minal nodes of the syntactic structure are labelled with 
terminal symbols (lexemes). 

1°In Lexicalised DTGS the main verbs would be already 
present in the initial trees. 

On the syntactic side this is done using sister- 
adjunction. The final mixed syntactic-semantic 
structure is shown on the right in Figure 7. In 
the syntactic part of this structure we have no 
domination links. Also all of the input semantics 
has been consumed. The semantic annotations 
of the S and V P  nodes are instructions about 
how the graphs/concepts of their daughters are 
to be combined. If we evaluate in a bottom up 
fashion the semantics of the S node, we will 
get the same result as the input semantics in 
Figure 1. After morphological post-processing 
the result is Fred limped quickly. An alternative 
paraphrase like Fred hurried with a limp ll can 
be generated using a lexical mapping rule for 
the verb hurry which g r o u p s  IMOVEMENTI a n d  

[ ~  together and a another mapping rule ex- 
pressing [LIMPING] as a PP. To get both para- 
phrases would be hard for generators relying on 
hierarchical representations. 

7 Matching the applicability 
semantics of mapping rules 

Matching of the applicability semantics of map- 
ping rules against other semantic structures oc- 
curs in the following cases: when looking for 
a skeletal structure; when exploring an internal 
generation goal; and when looking for mapping 
rules in the phase of covering the remaining se- 
mantics. During the exploration of internal gen- 
eration goals the applicability semantics of a 
mapping rule is matched against the semantics 
of an internal generation goal. We assume that 

11 Our example is based on Iordanskaja e~ al.'s notion of 
maximal reductions of a semantic net (see [6, page 300]). 
It is also similar to the example in [14]. 
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Figure 7: Skeletal structure and final s tructure 
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Figure 8: Interactions involving the applicability semantics of a mapping rule 

the following conditions hold: 

1. The applicability semantics of the mapping rule 
can be maximally joined with the goal se- 
mantics. 

2. Any information introduced by the mapping 
rule that is more specialised than the goal se- 
mantics (additional concepts/relations, further 
type instantiation, etc.) must be within the 
lower semantic bound (LowerSem). If this 
additional information is within the input se- 
mantics, then information can propagate from 
the input semantics to the mapping rule (the 
shaded area 2 in Figure 8). If the mapping rule's 
semantic additions are merely in LowerSem, 
then information cannot flow from LowerSem 
to the mapping rule (area 1 in Figure 8). 

Similar conditions hold when in the phase of cov- 
ering the remaining ~emantics the applicability 
semantics of a mapping rule is matched against 
the initial semantics. This way of matching al- 
lows the generator to convey only the informa- 
tion in the original semantics and what the lan- 
guage forces one to convey even though more in- 
formation might be known about  the particular 

situation. 
In the same spirit after the generator has 

consumed/expressed a concept in the input se- 
mantics the system checks that  the lexical se- 
mantics of the generated word is more specific 
than the corresponding concept (if there is one) 
in the upper  semantic bound. 

8 Implementation 

We have developed a sentence generator 
called PROTECTOR (approximate PROduc t ion  of 
TExts  from Conceptual  graphs in a declaraT- 
ive framewORk).  PROTECTOR is implemented 
in LIFE [1]. The syntactic coverage of the gener- 
ator is influenced by the XTAG system (the first 
version of PROTECTOR in fact used TAGS). By 
using DTGs we can use most of the analysis of 
XTAG while the generation algorithm is simpler. 
W~ are in a position to express subpar ts  of the 
input semantics as different syntactic categories 
as appropriate for the current generation goxl 
(e.g., VPs  and nominalisations). The syntactic 
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coverage of PROTECTOR includes: intransitive, 
transitive, and ditransitive verbs, topicalisation, 
verb particles, passive, sentential complements, 
control constructions, relative clauses, nominal- 
isations and a variety of idioms. On backtrack- 
ing PROTECTOR returns all solutions. We are 
also looking at the advantages that  our approach 
offers for multilingual generation. 

9 D i s c u s s i o n  

During generation it is necessary to find appro- 
priate mapping rules. However, at each stage 
a number of rules might be applicable. Due to 
possible interactions between some rules the gen- 
erator may have to explore different choices be- 
fore actually being able to produce a sentence. 
Thus, generation is in essence a search problem. 
In order to guide the search a number of heurist- 
ics can be used. In [14] the number of matching 
nodes has been used to rate different matches, 
which is similar to finding maximal reductions in 
[6]. Alternatively a notion of semantic distance 
[5] might be employed. In PROTECTOR we will 
use a much more sophisticated notion of what 
it is for a conceptual graph to match bet ter  the 
initial semantics than another graph. This cap- 
tures the intuition that  the generator should try 
to express as much as possible from the input 
while adding as little as possible extra material. 

We use instructions showing how the se- 
mantics of a mother  syntactic node is computed 
because we want to be able to correctly up- 
date the semantics of nodes higher than the 
place where subst i tu t ion or adjunction has taken 
placc i.e., we want to be able to propagate 
the subst i tut ion or adjunction semantics up the 
mixed structure whose backbone is the syntactic 
tree. 

We also use a notion of headed conceptual 
graphs, i.e., graphs that  have a certain node 
chosen as the semantic head. The initial se- 
mantics need not be marked for its semantic 
head. This allows the generator to choose an 
appropriate  (for the natural  language) perspect- 
ive. The notion of semantic head and their con- 
nectivity is a way to introduce a hierarchical 
view on the :emantic s tructure which is depend- 
ent on the language. When matching two con- 
ceptual  graphs we require that  their heads be the 
same. This reduces the search space and speeds 

up the generation process. 

Our generator is not coherent or complete 
(i.e., it can produce sentences with more 
general/specific semanticJ than the input se- 
mantics). We try to generate sentences whose 
semantics is as close as possible to the input in 
the sense that  they introduce little extra mater- 
ial and leave uncovered a small part  of the input 
semantics. We keep track of more structures as 
the generation proceeds and are in a position 
to make finer distinctions than was done in pre- 
vious research. The generator never produces 
sentences with semantics which is more specific 
than the lower semantic bound which gives some 
degree of coherence. Our generation technique 
provides flexibility to address cases where the 
entire input cannot be expressed in a single sen- 
tence by first generating a "best match" sentence 
and allowing the remaining semantics to be gen- 
erated in a follow-up sentence. 

Our approach can be seen as a generalisa- 
tion of semantic head-driven generation [20]-- 
we deal with a non-hierarchical input and non- 
concatenative grammars. The use of Lexicalised 
DTG means that  the algorithm in effect looks 
first for a syntactic head. This aspect is similar 
to syntax-driven generation [8]. 

The algorithm has to be checked against more 
linguistic data  and we intend to do more work on 
additional control mechanisms and also using al- 
ternative generation strategies using knowledge 
sources free from control information. To this 
end we have explored aspects of a new semantic- 
indexed chart generation which also allows us to 
rate intermediate results using syntactic as well 
as semantic preferences. Syntactic/stylist ic pref- 
erences are helpful in cases where the semantics 
of two paraphrases are the same. One such in- 
stance of use of syntactic preferences is avoid- 
ing (giving lower rating to) heavy constituents 
in split verb particle constructions. Thus, the 
generator finds all possible solutions producing 
the "best" first. 

10 C o n c l u s i o n  

We have presented a technique for sentence 
generation from conceptual graphs. The use 
of a non-hierarchical representation for the se- 
mantics and approximate semantic matching in- 
creases the paraphrasing power of the generator 
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and enables the production of sentences with 
radically different syntactic structure due to al- 
ternative ways of grouping concepts into words. 
This is particularly useful for multilingual gen- 
eration and in practical generators which are fed 
input from non linguistic applications. The use 
of a syntactic theory (D-Tree Grammars) allows 
for the production of linguistically motivated 
syntactic structures which will pay off in terms 
of better coverage of the language and overall 
maintainability of the generator. The syntactic 
theory also affects the processing--we have aug- 
mented the syntactic operations to account for 
the integration of the semantics. The generation 
architecture makes explicit the decisions that 
have to be taken and allows for experiments with 
different generation strategies using the same de- 
clarative knowledge sources. 
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