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A b s t r a c t  

This paper investigates model merging, a tech- 
nique for deriving Markov models from text or 
speech corpora. Models are derived by starting 
with a large and specific model and by successi- 
vely combining states to build smaller and more 
general models. We present methods to reduce 
the time complexity of the algorithm and report 
on experiments on deriving language models for 
a speech recognition task. The experiments show 
the advantage of model merging over the standard 
bigram approach. The merged model assigns a 
lower perplexity to the test set and uses consi- 
derably fewer states. 

I n t r o d u c t i o n  

Hidden Markov Models are commonly used for 
statistical language models, e.g. in part-of-speech 
tagging and speech recognition (Rabiner, 1989). 
The models need a large set of parameters which 
are induced from a (text-) corpus. The parameters 
should be optimal in the sense that the resulting 
models assign high probabilities to seen training 
data as well as new data that  arises in an applica- 
tion. 

There are several methods to estimate model 
parameters. The first one is to use each word 
(type) as a state and estimate the transition pro- 
babilities between two or three words by using the 
relative frequencies of a corpus. This method is 
commonly used in speech recognition and known 
as word-bigram or word-trigram model. The re- 
lative frequencies have to be smoothed to handle 
the sparse data problem and to avoid zero proba- 
bilities. 

The second method is a variation of the 
first method. Words are automatically grouped, 
e.g. by similarity of distribution in the corpus 
(Pereira et al., 1993). The relative frequencies of 
pairs or triples of groups (categories, clusters) are 
used as model parameters, each group is represen- 
ted by a state in the model. The second method 

has the advantage of drastically reducing the num- 
ber of model parameters and thereby reducing the 
sparse data problem; there is more data  per group 
than per word, thus estimates are more precise. 

The third method uses manually defined ca- 
tegories. They are linguistically motivated and 
usually called parts-of-speech. An important  dif- 
ference to the second method with automatically 
derived categories is that  with the manual defini- 
tion a word can belong to more than one category. 
A corpus is (manually) tagged with the catego- 
ries and transition probabilities between two or 
three categories are estimated from their relative 
frequencies. This method is commonly used for 
part-of-speech tagging (Church, 1988). 

The fourth method is a variation of the third 
method and is also used for part-of-speech tagging. 
This method does not need a pre-annotated corpus 
for parameter estimation. Instead it uses a lexicon 
stating the possible parts-of-speech for each word, 
a raw text corpus, and an initial bias for the tran- 
sition and output  probabilities. The parameters 
are estimated by using the Baum-Welch algorithm 
(Baum et al., 1970). The accuracy of the derived 
model depends heavily on the initial bias, but  with 
a good choice results are comparable to those of 
method three (Cutting et al., 1992). 

This paper investigates a fifth method for esti- 
mating natural language models, combining the 
advantages of the methods mentioned above. It 
is suitable for both speech recognition and part- 
of-speech tagging, has the advantage of automati-  
cally deriving word categories from a corpus and 
is capable of recognizing the fact that  a word be- 
longs to more than one category. Unlike other 
techniques it not only induces transition and out- 
put probabilities, but also the model topology, i.e., 
the number of states, and for each state the out- 
puts that have a non-zero probability. The me- 
thod is called model merging and was introduced 
by (Omohundro, 1992). 

The rest of the paper is structured as follows. 
We first give a short introduction to Markov mo- 
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dels and present the model merging technique. 
Then, techniques for reducing the time comple- 
xity are presented and we report two experiments 
using these techniques. 

M a r k o v  M o d e l s  

A discrete output,  first order Markov Model con- 
sists of 

• a finite set of states QU{qs, qe}, q~, qe ~ Q, with 
q~ the start  state, and q~ the end state; 

• a finite output  alphabet  ~; 

• a (IQ] + 1) × (IQ] + 1) matrix,  specifying the 
probabilities of state transitions p(q'iq) between 
states q and q~ (there are no transitions into q~, 
and no transitions originating in qe); for each 
state q E Q U {qs}, the sum of the outgoing 
transition probabilities is 1, ~ p(q']q) = 

qlEQU{qe} 
1; 

• a ]Q] × [~l matr ix,  specifying the output proba- 
bilities p(a]q) of state q emitt ing output  o'; for 
each state q E Q, the sum of the output  proba- 
bilities is 1, ~ p(cr]q) = 1. 

aE~ 

A Markov model starts running in the start  
state q~, makes a transition at each time step, and 
stops when reaching the end state qe. The transi- 
tion from one state to another is done according 
to the probabilities specified with the transitions. 
Each t ime a state is entered (except the start  and 
end state) one of the outputs is chosen (again ac- 
cording to their probabilities) and emitted. 

A s s i g n i n g  P r o b a b i l i t i e s  t o  D a t a  

For the rest of the paper, we are interested in the 
probabilities which are assigned to sequences of 
outputs by the Markov models. These can be cal- 
culated in the following way. 

Given a model M,  a sequence of outputs o = 
o1 . . .  o'k and a sequence of states Q = ql.  • • qk (of 
same length), the probabili ty that  the model run- 
ning through the sequence of states and emitting 
the given outputs is 

(/I PM(Q, o') = PM(qilqi-1)PM(o'ilqi PM(qelqi) 
\i=1 

(with q0 = qs). A sequence of outputs can be emit- 
ted by more than one sequence of states, thus we 
have to sum over all sequences of states with the 
given length to get the probability that  a model 
emits a given sequence of outputs: 

PM(O') = ~ PM(Q, o'). 
Q 

The probabilities are calculated very efficiently 
with the Viterbi algorithm (Viterbi, 1967). Its 
t ime complexity is linear to the sequence length 
despite the exponential growth of the search space. 

P e r p l e x i t y  

Markov models assign rapidly decreasing probabi- 
lities to output  sequences of increasing length. To 
compensate for different lengths and to make their 
probabilities comparable, one uses the perplexity 
PP of an output  sequence instead of its probabi- 
lity. The perplexity is defined as 

1 
PPM(O')- ~v/fi ~ 

The probability is normalized by taking the k th 
root (k is the length of the sequence). Similarly, 
the log perplexity LP is defined: 

- log PM (o') 
LPM((r) = log PPM(a) -- k 

Here, the log probabili ty is normalized by dividing 
by the length of the sequence. 

PP and LP are defined such that  higher per- 
plexities (log perplexities, resp.) correspond to 
lower probabilities, and vice versa. These mea- 
sures are used to determine the quality of Markov 
models. The lower the perplexity (and log perple- 
xity) of a test sequence, the higher its probability, 
and thus the better it is predicted by the model. 

M o d e l  M e r g i n g  

Model merging is a technique for inducing mo- 
del parameters  for Markov models from a text 
corpus. It  was introduced in (Omohundro,  1992) 
and (Stolcke and Omohundro, 1994) to induce 
models for regular languages from a few samp- 
les, and adapted to natural  language models in 
(Brants, 1995). Unlike other techniques it not 
only induces transition and output  probabilities 
from the corpus, but also the model topology, i.e., 
the number of states and for each state the outputs  
that  have non-zero probability. In n-gram approa- 
ches the topology is fixed. E.g., in a pos-n-gram 
model, the states are mostly syntactically moti- 
vated, each state represents a syntactic category 
and only words belonging to the same category 
have a non-zero output  probabili ty in a particu- 
lar state. However the n-gram-models  make the 
implicit assumption that  all words belonging to 
the same category have a similar distribution in a 
corpus. This is not true in most  of the cases. 

By estimating the topology, model merging 
groups words into categories, since all words that  
can be emitted by the same state form a category. 
The advantage of model merging in this respect 
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Figure  1: Model  merg ing  for a corpus S = {ab, ac, abac}, s t a r t i ng  wi th  the  t r iv ia l  m o d e l  in a) and  ending  
with the generalization (a(blc)) + in e). Several steps of merging between model b) and c) are not shown. 
Unmarked transitions and outputs have probability 1. 
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is that  it can recognize that  a word (the type) 
belongs to more than one category, while each oc- 
currence (the token) is assigned a unique category. 
This naturally reflects manual  syntactic categori- 
zations, where a word can belong to several syn- 
tactic classes but each occurrence of a word is un- 
ambiguous. 

The Algorithm 

Model merging induces Markov models in the fol- 
lowing way. Merging starts with an initial, very 
general model. For this purpose, the max imum 
likelihood Markov model is chosen, i.e., a model 
that  exactly matches the corpus. There is one 
path  for each utterance in the corpus and each 
path  is used by one utterance only. Each path  
gets the same probabili ty l / u ,  with u the number 
of utterances in the corpus. This model is also 
referred to as the trivial model. Figure 1.a shows 
the trivial model for a corpus with words a, b, c and 
utterances ab, ac, abac. It  has one path  for each of 
the three utterances ab, ac, and abac, and each 
path  gets the same probabili ty 1/3. The trivial 
model assigns a probabili ty of p(SIM~ ) = 1/27 
to the corpus. Since the model makes an im- 
plicit independence assumption between the ut- 
terances, the corpus probabili ty is calculated by 
multiplying the utterance's  probabilities, yielding 
1 / 3 . 1 / 3 . 1 / 3  = 1/27. 

Now states are merged successively, except for 
the start  and end state. Two states are selected 
and removed and a new merged state is added. 
The transitions from and to the old states are redi- 
rected to the new state, the transition probabilities 
are adjusted to maximize the likelihood of the cor- 
pus; the outputs  are joined and their probabilities 
are also adjusted to maximize the likelihood. One 
step of merging can be seen in figure 1.b. States 1 
and 3 are removed, a combined state 1,3 is added, 
and the probabilities are adjusted. 

The criterion for selecting states to merge is 
the probabili ty of the Markov model generating 
the corpus. We want this probability to stay as 
high as possible. Of all possible merges (gene- 
rally, there are k(k - 1)/2 possible merges, with k 
the number of states exclusive start  and end state 
which are not allowed to merge) we take the merge 
that  results in the minimal change of the probabi- 
lity. For the trivial model and u pairwise different 
utterances the probabili ty is p(SIMtri~) = 1/u ~. 
The probabili ty either stays constant, as in Figure 
1.b and c, or decreases, as in 1.d and e. The proba- 
bility never increases because the trivial model is 
the max imum likelihood model, i.e., it maximizes 
the probabili ty of the corpus given the model. 

Model merging stops when a predefined 
threshold for the corpus probabili ty is reached. 

Some statistically motivated criteria for ter- 
mination using model priors are discussed in 
(Stotcke and Omohundro, 1994). 

Using Model Merging 
The model merging algorithm needs several op- 
timizations to be applicable to large natural  lan- 
guage corpora, otherwise the amount  of t ime nee- 
ded for deriving the models is too large. Gene- 
rally, there are O(l 2) hypothetical merges to be 
tested for each merging step (l is the length of the 
training corpus). The probabili ty of the training 
corpus has to be calculated for each hypothetical 
merge, which is O(l) with dynamic programming.  
Thus, each step of merging is O(13). If we want 
to reduce the model from size l 4- 2 (the trivial 
modeli which consists of one state for each token 
plus initial and final states) to some fixed size, we 
need O(l) steps of merging. Therefore, deriving a 
Markov model by model merging is O(l 4) in time. 

(Stolcke and Omohundro,  1994) discuss se- 
veral computat ional  shortcuts and approximati-  
ons: 

1. Immediate  merging of identical initial and final 
states of different utterances. These merges do 
not change the corpus probabili ty and thus are 
the first merges anyway. 

2. Usage of the Viterbi path  (best path) only in- 
stead of summing up all paths to determine the 
corpus probability. 

3. The assumption that  all input samples retain 
their Viterbi path after merging. Making this 
approximation, it is no longer necessary to re- 
parse the whole corpus for each hypothetical 
merge. 

We use two additional strategies to reduce the 
t ime complexity of the algorithm: a series of cas- 
caded constraints on the merges and the variation 
of the starting point. 

Constraints 
When applying model merging one can observe 
that  first mainly states with the same output  are 
merged. After several steps of merging, it is no 
longer the same output  but still mainly states that  
output  words of the same syntactic category are 
merged. This behavior can be exploited by intro- 
ducing constraints on the merging process. The 
constraints allow only some of the otherwise pos- 
sible merges. Only the allowed merges are tested 
for each step of merging. 

We consider constraints that  divide the states 
of the current model into equivalence classes. Only 
states belonging to the same class are allowed to 
merge. E.g., we can divide the states into classes 
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generating the same outputs. If the current model 
has N states and we divide them into k > 1 non- 
empty equivalence classes C1 . . .  C~, then, instead 
of N ( N  - 1)/2, we have to test 

k .[C'l(IC{l- ]) < N(N - 1) 
2 2 

i = 1  

merges only. 

The best case for a model of size N is the 
division into N/2 classes of size 2. Then, only N/2 
merges must be tested to find the best merge. 

The best division into k > 1 classes for some 
model of size N is the creation of classes that all 
have the same size N/k  (or an approximation if 
N/k  ~ IN). Then, 

N N N(~- - 1) v ( v - 1 )  . k -  
2 2 

must be tested for each step of merging. 

Thus, the introduction of these constraints 
does not reduce the order of the time complexity, 
but it can reduce the constant factor significantly 
(see section about experiments). 

The following equivalence classes can be used 
for constraints when using untagged corpora: 

1. States that generate the same outputs (unigram 
constraint) 

2. unigram constraint, and additionally all prede- 
cessor states must generate the same outputs 
(bigram constraint) 

3. trigrams or higher, if the corpora are large 
enough 

4. a variation of one: states that output words be- 
longing to one ambiguity class, i.e. can be of a 
certain number of syntactic classes. 

Merging starts with one of the constraints. Af- 
ter a number of merges have been performed, the 
constraint is discarded and a weaker one is used 
instead. 

The standard n-gram approaches are special 
cases of using model merging and constraints. 
E.g., if we use the unigram constraint, and merge 
states until no further merge is possible under this 
constraint, the resulting model is a standard bi- 
gram model, regardless of the order in which the 
merges were performed. 

In practice, a constraint will be discarded be- 
fore no further merge is possible (otherwise the 
model could have been derived directly, e.g., by 
the standard n-gram technique). Yet, the que- 
stion when to discard a constraint to achieve best 
results is unsolved. 

The Starting Point  

The initial model of the original model merging 
procedure is the maximum likelihood or trivial 
model. This model has the advantage of directly 
representing the corpus. But its disadvantage is 
its huge number of states. A lot of computation 
time can be saved by choosing an initial model 
with fewer states. 

The initial model must have two properties: 

1. it must be larger than the intended model, and 

2. it must be easy to construct. 

The trivial model has both properties. A class of 
models that can serve as the initial model as well 
are n-gram models. These models are smaller by 
one or more orders of magnitude than the trivial 
model and therefore could speed up the derivation 
of a model significantly. 

This choice of a starting point excludes a lot 
of solutions which are allowed when starting with 
the maximum likelihood model. Therefore, star- 
ting with an n-gram model yields a model that is 
at most equivalent to one that is generated when 
starting with the trivial model, and that can be 
much worse. But it should be still better than 
any n-gram model that is of lower of equal order 
than the initial model. 

E x p e r i m e n t s  

Model  Merging  vs. B igrams  

The first experiment compares model merging 
with a standard bigram model. Both are trai- 
ned on the same data. We use Ntra~n -- 14,421 
words of the Verbmobil corpus. The corpus 
consists of transliterated dialogues on business 
appointments 1. The models are tested on Ntest = 
2,436 words of the same corpus. Training and test 
parts are disjunct. 

The bigram model yields a Markov model wit h 
1,440 states. It assigns a log perplexity of 1.20 to 
the training part and 2.40 to the test part. 

Model merging starts with the maximum like- 
lihood model for the training part. It has 14,423 
states, which correspond to the 14,421 words (plus 
an initial and a final state). The initial log per- 
plexity of the training part is 0.12. This low value 
shows that the initial model is very specialized in 
the training part. 

1Many thanks to the Verbmobil project for pro- 
viding these data. We use dialogues that were 
recorded in 1993 and 94, and which are now 
available from the Bavarian Archive for Speech 
Signals BAS (http://www'ph°netik'uni-muenchen'de/ 
Bas/BasHomeeng.html). 
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We start merging with the same-output (uni- 
gram) constraint to reduce computation time. Af- 
ter 12,500 merges the constraint is discarded and 
from then on all remaining states are allowed to 
merge. The constraints and the point of changing 
the constraint are chosen for pragmatic reasons. 
We want the constraints to be as week as possi- 
ble to allow the maximal number of solutions but 
at the same time the number of merges must be 
manageable by the system used for computation 
(a SparcServerl000 with 250MB main memory). 
As the following experiment will show, the exact 
points of introducing/discarding constraints is not 
important  for the resulting model. 

There are Ntrain (Nt,ai,~- 1)/2 ~ 10 s hypothe- 
tical first merges in the unconstraint case. This 
number is reduced to --~ 7 .  105 when using the 
unigram constraint, thus by a factor of .v 150. 
By using the constraint we need about a week of 
computation time on a SparcServer 1000 for the 
whole merging process. Computation would not 
have been feasible without this reduction. 

Figure 2 shows the increase in perplexity du- 
ring merging. There is no change during the first 
1,454 merges. Here, only identical sequences of 
initial and final states are merged (compare figure 
1.a to c). These merges do not influence the pro- 
bability assigned to the training part and thus do 
not change the perplexity. 

Then, perplexity slowly increases. It can never 
decrease: the maximum likelihood model assigns 
the highest probability to the training part and 
thus the lowest perplexity. 

Figure 2 also shows the perplexity's slope. It 
is low until about 12,000 merges, then drastically 
increases. At about this point, after 12,500 mer- 
ges, we discard the constraint. For this reason, the 
curve is discontinuous at 12,500 merges. The effect 
of further retaining the constraint is shown by the 
thin lines. These stop after t2,983 merges, when 
all states with the same outputs are merged (i.e., 
when a bigram model is reached). Merging with- 
out a constraint continues until only three states 
remain: the initial and the final state plus one 
proper state. 

Note that  the perplexity changes very slowly 
for the largest part, and then changes drastically 
during the last merges. There is a constant phase 
between 0 and 1,454 merges. Between 1,454 and 
~11,000 merges the log perplexity roughly linearly 
increases with the number of merges, and it explo- 
des afterwards. 

What  happens to the test part? Model mer- 
ging starts with a very special model which then is 
generalized. Therefore, the perplexity of some ran- 
dom sample of dialogue data (what the test part is 
supposed to be) should decrease during merging. 

Table 1: Number of states and Log Perplexity for 
the derived models and an additional, previously 
test part, consisting of 9,784 words. (a) stan- 
dard bigram model, (b) constrained model mer- 
ging (first experiment), (c) model merging starting 
with a bigram model(second experiment) 

(a) (b) (c) 
model MM start  

type bigrams merging with bigrams 
states 1,440 113 113 

Log PP 2.78 2.41 2.39 

This is exactly what we find in the experiment. 

Figure 3 shows the log perplexity of the test 
part during merging. Again, we find the disconti- 
nuity at the point where the constraint is changed. 
And again, we find very little change in perple- 
xity during about 12,000 initial merges, and large 
changes during the last merges. 

Model merging finds a model with 113 states, 
which assigns a log perplexity of 2.26 to the test 
part. Thus, in addition to finding a model with 
lower log perplexity than the bigram model (2.26 
vs. 2.40), we find a model that  at the same time 
has less than 1/10 of the states (113 vs. 1,440). 

To test if we found a model that  predicts new 
data better than the bigram model and to be sure 
that  we did not find a model that  is simply very 
specialized to the test part, we use a new, previ- 
ously unseen part of the Verbmobil corpus. This 
part  consists of 9,784 words. The bigram model 
assigns a log perplexity of 2.78, the merged model 
with 113 states assigns a log perplexity of 2.41 (see 
table 1). Thus, the model found by model merging 
can be regarded generally better than the bigram 
model. 

Im p r o v e m e n t s  

The derivation of the optimal model took about 
a week although the size of the training part  was 
relatively small. Standard speech applications do 
not use 14,000 words for training as we do in this 
experiment, but 100,000, 200,000 or more. It is 
not possible to start with a model of 100,000 states 
and to successively merge them, at least it is not 
possible on today's machines. Each step would 
require the test of ,~ 10 9 merges. 

In the previous experiment, we abandoned 
the same-output constraint after 12,500 merges to 
keep the influence on the final result as small as 
possible. It can not be skipped from the begin- 
ning because somehow the time complexity has to 
be reduced. But it can be further retained, until 
no further merge under this constraint is possible. 
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Figure 4: Log Perplexity of training and test parts when starting with a bigram model. The start ing point 
is indicated with o, the curves of the previous experiment are shown in thin lines. 

This yields a bigram model. The second experi- 
ment uses the bigram model with 1,440 states as 
its start ing point and imposes no constraints on 
the merges. The results are shown in figure 4. 

We see that  the perplexity curves approach 
very fast their counterparts from the previous ex- 
periment. The states differ from those of the pre- 
viously found model, but there is no difference in 
the number of states and corpus perplexity in the 
optimal  point. So, one could in fact, at least in the 
shown case, start  with the bigram model without 
loosing anything. Finally, we calculate the perple- 
xity for the additional test part.  It is 2.39, thus 
again lower than the perplexity of the bigram mo- 
del (see table 1). It is even slightly lower than in 
the previous experiment, but most probably due 
to random variation. 

The derived models are not in any case equiva- 
lent (with respect to perplexity), regardless whe- 
ther we start  with the trivial model or the bigram 
model. We ascribe the equivalence in the experi- 
ment to the particular size of the training corpus. 
For a larger training corpus, the optimal model 
should be closer in size to the bigram model, or 
even larger than a bigram model. In such a case 
starting with bigrams does not lead to an optimal 
model, and a t r igram model must be used. 

C o n c l u s i o n  

We investigated model merging, a technique to in- 
duce Markov models from corpora.. The original 
procedure is improved by introducing constraints 
and a different initial model. The procedures are 
shown to be applicable to a transliterated speech 

corpus. The derived models assign lower perplexi- 
ties to test data  than the standard bigram model 
derived from the same training corpus. Additio- 
nally, the merged model was much smaller than 
the bigram model. 

The experiments revealed a feature of model 
merging that  allows for improvement  of the me- 
thod's  t ime complexity. There is a large initial 
part  of merges that  do not change the model 's  
perplexity w.r.t, the test part,  and that  do not in- 
fluence the final optimal  model. The t ime needed 
to derive a model is drastically reduced by abbre- 
viating these initial merges. Instead of starting 
with the trivial model, one can start  with a smal- 
ler, easy-to-produce model, but one has to ensure 
that  its size is still larger than the opt imal  model. 
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