
Better Language Models with Model Merging

T h o r s t e n B r a n t s

U n i v e r s i t g t des S a a r l a n d e s , C o m p u t a t i o n a l L i n g u i s t i c s

P . O . B o x 151150, D-66041 S a a r b r i i c k e n , G e r m a n y

thorst en@coli, uni- sb. de

A b s t r a c t

This paper investigates model merging, a tech-
nique for deriving Markov models from text or
speech corpora. Models are derived by starting
with a large and specific model and by successi-
vely combining states to build smaller and more
general models. We present methods to reduce
the time complexity of the algorithm and report
on experiments on deriving language models for
a speech recognition task. The experiments show
the advantage of model merging over the standard
bigram approach. The merged model assigns a
lower perplexity to the test set and uses consi-
derably fewer states.

I n t r o d u c t i o n

Hidden Markov Models are commonly used for
statistical language models, e.g. in part-of-speech
tagging and speech recognition (Rabiner, 1989).
The models need a large set of parameters which
are induced from a (text-) corpus. The parameters
should be optimal in the sense that the resulting
models assign high probabilities to seen training
data as well as new data that arises in an applica-
tion.

There are several methods to estimate model
parameters. The first one is to use each word
(type) as a state and estimate the transition pro-
babilities between two or three words by using the
relative frequencies of a corpus. This method is
commonly used in speech recognition and known
as word-bigram or word-trigram model. The re-
lative frequencies have to be smoothed to handle
the sparse data problem and to avoid zero proba-
bilities.

The second method is a variation of the
first method. Words are automatically grouped,
e.g. by similarity of distribution in the corpus
(Pereira et al., 1993). The relative frequencies of
pairs or triples of groups (categories, clusters) are
used as model parameters, each group is represen-
ted by a state in the model. The second method

has the advantage of drastically reducing the num-
ber of model parameters and thereby reducing the
sparse data problem; there is more data per group
than per word, thus estimates are more precise.

The third method uses manually defined ca-
tegories. They are linguistically motivated and
usually called parts-of-speech. An important dif-
ference to the second method with automatically
derived categories is that with the manual defini-
tion a word can belong to more than one category.
A corpus is (manually) tagged with the catego-
ries and transition probabilities between two or
three categories are estimated from their relative
frequencies. This method is commonly used for
part-of-speech tagging (Church, 1988).

The fourth method is a variation of the third
method and is also used for part-of-speech tagging.
This method does not need a pre-annotated corpus
for parameter estimation. Instead it uses a lexicon
stating the possible parts-of-speech for each word,
a raw text corpus, and an initial bias for the tran-
sition and output probabilities. The parameters
are estimated by using the Baum-Welch algorithm
(Baum et al., 1970). The accuracy of the derived
model depends heavily on the initial bias, but with
a good choice results are comparable to those of
method three (Cutting et al., 1992).

This paper investigates a fifth method for esti-
mating natural language models, combining the
advantages of the methods mentioned above. It
is suitable for both speech recognition and part-
of-speech tagging, has the advantage of automati-
cally deriving word categories from a corpus and
is capable of recognizing the fact that a word be-
longs to more than one category. Unlike other
techniques it not only induces transition and out-
put probabilities, but also the model topology, i.e.,
the number of states, and for each state the out-
puts that have a non-zero probability. The me-
thod is called model merging and was introduced
by (Omohundro, 1992).

The rest of the paper is structured as follows.
We first give a short introduction to Markov mo-

6 0

dels and present the model merging technique.
Then, techniques for reducing the time comple-
xity are presented and we report two experiments
using these techniques.

M a r k o v M o d e l s

A discrete output, first order Markov Model con-
sists of

• a finite set of states QU{qs, qe}, q~, qe ~ Q, with
q~ the start state, and q~ the end state;

• a finite output alphabet ~;

• a (IQ] + 1) × (IQ] + 1) matrix, specifying the
probabilities of state transitions p(q'iq) between
states q and q~ (there are no transitions into q~,
and no transitions originating in qe); for each
state q E Q U {qs}, the sum of the outgoing
transition probabilities is 1, ~ p(q']q) =

qlEQU{qe}
1;

• a]Q] × [~l matr ix, specifying the output proba-
bilities p(a]q) of state q emitt ing output o'; for
each state q E Q, the sum of the output proba-
bilities is 1, ~ p(cr]q) = 1.

aE~

A Markov model starts running in the start
state q~, makes a transition at each time step, and
stops when reaching the end state qe. The transi-
tion from one state to another is done according
to the probabilities specified with the transitions.
Each t ime a state is entered (except the start and
end state) one of the outputs is chosen (again ac-
cording to their probabilities) and emitted.

A s s i g n i n g P r o b a b i l i t i e s t o D a t a

For the rest of the paper, we are interested in the
probabilities which are assigned to sequences of
outputs by the Markov models. These can be cal-
culated in the following way.

Given a model M, a sequence of outputs o =
o1 . . . o'k and a sequence of states Q = ql. • • qk (of
same length), the probabili ty that the model run-
ning through the sequence of states and emitting
the given outputs is

(/I PM(Q, o') = PM(qilqi-1)PM(o'ilqi PM(qelqi)
\i=1

(with q0 = qs). A sequence of outputs can be emit-
ted by more than one sequence of states, thus we
have to sum over all sequences of states with the
given length to get the probability that a model
emits a given sequence of outputs:

PM(O') = ~ PM(Q, o').
Q

The probabilities are calculated very efficiently
with the Viterbi algorithm (Viterbi, 1967). Its
t ime complexity is linear to the sequence length
despite the exponential growth of the search space.

P e r p l e x i t y

Markov models assign rapidly decreasing probabi-
lities to output sequences of increasing length. To
compensate for different lengths and to make their
probabilities comparable, one uses the perplexity
PP of an output sequence instead of its probabi-
lity. The perplexity is defined as

1
PPM(O')- ~v/fi ~

The probability is normalized by taking the k th
root (k is the length of the sequence). Similarly,
the log perplexity LP is defined:

- log PM (o')
LPM((r) = log PPM(a) -- k

Here, the log probabili ty is normalized by dividing
by the length of the sequence.

PP and LP are defined such that higher per-
plexities (log perplexities, resp.) correspond to
lower probabilities, and vice versa. These mea-
sures are used to determine the quality of Markov
models. The lower the perplexity (and log perple-
xity) of a test sequence, the higher its probability,
and thus the better it is predicted by the model.

M o d e l M e r g i n g

Model merging is a technique for inducing mo-
del parameters for Markov models from a text
corpus. It was introduced in (Omohundro, 1992)
and (Stolcke and Omohundro, 1994) to induce
models for regular languages from a few samp-
les, and adapted to natural language models in
(Brants, 1995). Unlike other techniques it not
only induces transition and output probabilities
from the corpus, but also the model topology, i.e.,
the number of states and for each state the outputs
that have non-zero probability. In n-gram approa-
ches the topology is fixed. E.g., in a pos-n-gram
model, the states are mostly syntactically moti-
vated, each state represents a syntactic category
and only words belonging to the same category
have a non-zero output probabili ty in a particu-
lar state. However the n-gram-models make the
implicit assumption that all words belonging to
the same category have a similar distribution in a
corpus. This is not true in most of the cases.

By estimating the topology, model merging
groups words into categories, since all words that
can be emitted by the same state form a category.
The advantage of model merging in this respect

61

a) a b

o~ @ '@
c

@ .@

.@

p(SlM~) = ~ ~ 3.7.10 -2

D .@

b) b

5 .@

p(SIMb) = ~ --~ 3.7 .10 -2

¢)

@

p(SIM~) = ~ -~ 3.7.10 -2

C
, ~ 0.67 , ; @

0.5

d)

@ @ 05 . @ ~
D

0.5

p(SIMd) = ~ ~_ 1.6-10 -2 "'--@ .

e) p(SiM~) = 2~ ~ 6.6.10 -3
4 0 9 6 - -

b C

o ~ , 0 y

Figure 1: Model merg ing for a corpus S = {ab, ac, abac}, s t a r t i ng wi th the t r iv ia l m o d e l in a) and ending
with the generalization (a(blc)) + in e). Several steps of merging between model b) and c) are not shown.
Unmarked transitions and outputs have probability 1.

62

is that it can recognize that a word (the type)
belongs to more than one category, while each oc-
currence (the token) is assigned a unique category.
This naturally reflects manual syntactic categori-
zations, where a word can belong to several syn-
tactic classes but each occurrence of a word is un-
ambiguous.

The Algorithm

Model merging induces Markov models in the fol-
lowing way. Merging starts with an initial, very
general model. For this purpose, the max imum
likelihood Markov model is chosen, i.e., a model
that exactly matches the corpus. There is one
path for each utterance in the corpus and each
path is used by one utterance only. Each path
gets the same probabili ty l / u , with u the number
of utterances in the corpus. This model is also
referred to as the trivial model. Figure 1.a shows
the trivial model for a corpus with words a, b, c and
utterances ab, ac, abac. It has one path for each of
the three utterances ab, ac, and abac, and each
path gets the same probabili ty 1/3. The trivial
model assigns a probabili ty of p(SIM~) = 1/27
to the corpus. Since the model makes an im-
plicit independence assumption between the ut-
terances, the corpus probabili ty is calculated by
multiplying the utterance's probabilities, yielding
1 / 3 . 1 / 3 . 1 / 3 = 1/27.

Now states are merged successively, except for
the start and end state. Two states are selected
and removed and a new merged state is added.
The transitions from and to the old states are redi-
rected to the new state, the transition probabilities
are adjusted to maximize the likelihood of the cor-
pus; the outputs are joined and their probabilities
are also adjusted to maximize the likelihood. One
step of merging can be seen in figure 1.b. States 1
and 3 are removed, a combined state 1,3 is added,
and the probabilities are adjusted.

The criterion for selecting states to merge is
the probabili ty of the Markov model generating
the corpus. We want this probability to stay as
high as possible. Of all possible merges (gene-
rally, there are k(k - 1)/2 possible merges, with k
the number of states exclusive start and end state
which are not allowed to merge) we take the merge
that results in the minimal change of the probabi-
lity. For the trivial model and u pairwise different
utterances the probabili ty is p(SIMtri~) = 1/u ~.
The probabili ty either stays constant, as in Figure
1.b and c, or decreases, as in 1.d and e. The proba-
bility never increases because the trivial model is
the max imum likelihood model, i.e., it maximizes
the probabili ty of the corpus given the model.

Model merging stops when a predefined
threshold for the corpus probabili ty is reached.

Some statistically motivated criteria for ter-
mination using model priors are discussed in
(Stotcke and Omohundro, 1994).

Using Model Merging
The model merging algorithm needs several op-
timizations to be applicable to large natural lan-
guage corpora, otherwise the amount of t ime nee-
ded for deriving the models is too large. Gene-
rally, there are O(l 2) hypothetical merges to be
tested for each merging step (l is the length of the
training corpus). The probabili ty of the training
corpus has to be calculated for each hypothetical
merge, which is O(l) with dynamic programming.
Thus, each step of merging is O(13). If we want
to reduce the model from size l 4- 2 (the trivial
modeli which consists of one state for each token
plus initial and final states) to some fixed size, we
need O(l) steps of merging. Therefore, deriving a
Markov model by model merging is O(l 4) in time.

(Stolcke and Omohundro, 1994) discuss se-
veral computat ional shortcuts and approximati-
ons:

1. Immediate merging of identical initial and final
states of different utterances. These merges do
not change the corpus probabili ty and thus are
the first merges anyway.

2. Usage of the Viterbi path (best path) only in-
stead of summing up all paths to determine the
corpus probability.

3. The assumption that all input samples retain
their Viterbi path after merging. Making this
approximation, it is no longer necessary to re-
parse the whole corpus for each hypothetical
merge.

We use two additional strategies to reduce the
t ime complexity of the algorithm: a series of cas-
caded constraints on the merges and the variation
of the starting point.

Constraints
When applying model merging one can observe
that first mainly states with the same output are
merged. After several steps of merging, it is no
longer the same output but still mainly states that
output words of the same syntactic category are
merged. This behavior can be exploited by intro-
ducing constraints on the merging process. The
constraints allow only some of the otherwise pos-
sible merges. Only the allowed merges are tested
for each step of merging.

We consider constraints that divide the states
of the current model into equivalence classes. Only
states belonging to the same class are allowed to
merge. E.g., we can divide the states into classes

63

generating the same outputs. If the current model
has N states and we divide them into k > 1 non-
empty equivalence classes C1 . . . C~, then, instead
of N (N - 1)/2, we have to test

k .[C'l(IC{l-]) < N(N - 1)
2 2

i = 1

merges only.

The best case for a model of size N is the
division into N/2 classes of size 2. Then, only N/2
merges must be tested to find the best merge.

The best division into k > 1 classes for some
model of size N is the creation of classes that all
have the same size N/k (or an approximation if
N/k ~ IN). Then,

N N N(~- - 1) v (v - 1) . k -
2 2

must be tested for each step of merging.

Thus, the introduction of these constraints
does not reduce the order of the time complexity,
but it can reduce the constant factor significantly
(see section about experiments).

The following equivalence classes can be used
for constraints when using untagged corpora:

1. States that generate the same outputs (unigram
constraint)

2. unigram constraint, and additionally all prede-
cessor states must generate the same outputs
(bigram constraint)

3. trigrams or higher, if the corpora are large
enough

4. a variation of one: states that output words be-
longing to one ambiguity class, i.e. can be of a
certain number of syntactic classes.

Merging starts with one of the constraints. Af-
ter a number of merges have been performed, the
constraint is discarded and a weaker one is used
instead.

The standard n-gram approaches are special
cases of using model merging and constraints.
E.g., if we use the unigram constraint, and merge
states until no further merge is possible under this
constraint, the resulting model is a standard bi-
gram model, regardless of the order in which the
merges were performed.

In practice, a constraint will be discarded be-
fore no further merge is possible (otherwise the
model could have been derived directly, e.g., by
the standard n-gram technique). Yet, the que-
stion when to discard a constraint to achieve best
results is unsolved.

The Starting Point

The initial model of the original model merging
procedure is the maximum likelihood or trivial
model. This model has the advantage of directly
representing the corpus. But its disadvantage is
its huge number of states. A lot of computation
time can be saved by choosing an initial model
with fewer states.

The initial model must have two properties:

1. it must be larger than the intended model, and

2. it must be easy to construct.

The trivial model has both properties. A class of
models that can serve as the initial model as well
are n-gram models. These models are smaller by
one or more orders of magnitude than the trivial
model and therefore could speed up the derivation
of a model significantly.

This choice of a starting point excludes a lot
of solutions which are allowed when starting with
the maximum likelihood model. Therefore, star-
ting with an n-gram model yields a model that is
at most equivalent to one that is generated when
starting with the trivial model, and that can be
much worse. But it should be still better than
any n-gram model that is of lower of equal order
than the initial model.

E x p e r i m e n t s

Model Merging vs. B igrams

The first experiment compares model merging
with a standard bigram model. Both are trai-
ned on the same data. We use Ntra~n -- 14,421
words of the Verbmobil corpus. The corpus
consists of transliterated dialogues on business
appointments 1. The models are tested on Ntest =
2,436 words of the same corpus. Training and test
parts are disjunct.

The bigram model yields a Markov model wit h
1,440 states. It assigns a log perplexity of 1.20 to
the training part and 2.40 to the test part.

Model merging starts with the maximum like-
lihood model for the training part. It has 14,423
states, which correspond to the 14,421 words (plus
an initial and a final state). The initial log per-
plexity of the training part is 0.12. This low value
shows that the initial model is very specialized in
the training part.

1Many thanks to the Verbmobil project for pro-
viding these data. We use dialogues that were
recorded in 1993 and 94, and which are now
available from the Bavarian Archive for Speech
Signals BAS (http://www'ph°netik'uni-muenchen'de/
Bas/BasHomeeng.html).

64

- log]o P/Ntrain
2.5-

2.0

1 .5

1 .0

0 .5

0 1

I

14

lp

dlp
constraint , t

c h a n g ~

I ' I ~ I ' i ' I ; I ' I ' I ' I ' I ' I ' I i I

2 3 4 5 6 7 8 9 10 11 12 13 14 ×10 3 merges

I I I I I I i I I I I I I I

13 12 11 10 9 8 7 6 5 4 3 2 1 0 ×10 3 states

Figure 2: Log Perplexity of the training part during merging. Constraints: same output until 12,500 / none
after 12,500. The thin lines show the further development if we retain the the same-output constraint until
no further merge is possible. The length of the training part is gtrain ---- 14,421.

- log10 p /Ntes t

2.8-

2.77-

2 .6-

2 .5-

2.4

2 .3-

2 .2-

0

i

14

I ' I I ' I ' I ' I ' [' I '

1 2 3 4 5 6 7 8

I I I I I I I

constraint
change

~\%~L~-~lP /Pbigrara (1440 states)

/Pmin (113 states)

l ' I ' I ' I ' I ' I

9 10 11 12 13 14 xl03 merges

I I i ~ I I

4 3 2 1 0 × 10 3 states 13 12 11 10 9 8 7 6 5

Figure 3: Log Perplexity of Test Part During Merging. Constraints: Same Output until 12,500 / none after
12,500. The thin line shows the further development if we retain the same-output constraint, finally yielding
a bigram model. The length of the test part is Ntest = 2,436.

6 5

We start merging with the same-output (uni-
gram) constraint to reduce computation time. Af-
ter 12,500 merges the constraint is discarded and
from then on all remaining states are allowed to
merge. The constraints and the point of changing
the constraint are chosen for pragmatic reasons.
We want the constraints to be as week as possi-
ble to allow the maximal number of solutions but
at the same time the number of merges must be
manageable by the system used for computation
(a SparcServerl000 with 250MB main memory).
As the following experiment will show, the exact
points of introducing/discarding constraints is not
important for the resulting model.

There are Ntrain (Nt,ai,~- 1)/2 ~ 10 s hypothe-
tical first merges in the unconstraint case. This
number is reduced to --~ 7 . 105 when using the
unigram constraint, thus by a factor of .v 150.
By using the constraint we need about a week of
computation time on a SparcServer 1000 for the
whole merging process. Computation would not
have been feasible without this reduction.

Figure 2 shows the increase in perplexity du-
ring merging. There is no change during the first
1,454 merges. Here, only identical sequences of
initial and final states are merged (compare figure
1.a to c). These merges do not influence the pro-
bability assigned to the training part and thus do
not change the perplexity.

Then, perplexity slowly increases. It can never
decrease: the maximum likelihood model assigns
the highest probability to the training part and
thus the lowest perplexity.

Figure 2 also shows the perplexity's slope. It
is low until about 12,000 merges, then drastically
increases. At about this point, after 12,500 mer-
ges, we discard the constraint. For this reason, the
curve is discontinuous at 12,500 merges. The effect
of further retaining the constraint is shown by the
thin lines. These stop after t2,983 merges, when
all states with the same outputs are merged (i.e.,
when a bigram model is reached). Merging with-
out a constraint continues until only three states
remain: the initial and the final state plus one
proper state.

Note that the perplexity changes very slowly
for the largest part, and then changes drastically
during the last merges. There is a constant phase
between 0 and 1,454 merges. Between 1,454 and
~11,000 merges the log perplexity roughly linearly
increases with the number of merges, and it explo-
des afterwards.

What happens to the test part? Model mer-
ging starts with a very special model which then is
generalized. Therefore, the perplexity of some ran-
dom sample of dialogue data (what the test part is
supposed to be) should decrease during merging.

Table 1: Number of states and Log Perplexity for
the derived models and an additional, previously
test part, consisting of 9,784 words. (a) stan-
dard bigram model, (b) constrained model mer-
ging (first experiment), (c) model merging starting
with a bigram model(second experiment)

(a) (b) (c)
model MM start

type bigrams merging with bigrams
states 1,440 113 113

Log PP 2.78 2.41 2.39

This is exactly what we find in the experiment.

Figure 3 shows the log perplexity of the test
part during merging. Again, we find the disconti-
nuity at the point where the constraint is changed.
And again, we find very little change in perple-
xity during about 12,000 initial merges, and large
changes during the last merges.

Model merging finds a model with 113 states,
which assigns a log perplexity of 2.26 to the test
part. Thus, in addition to finding a model with
lower log perplexity than the bigram model (2.26
vs. 2.40), we find a model that at the same time
has less than 1/10 of the states (113 vs. 1,440).

To test if we found a model that predicts new
data better than the bigram model and to be sure
that we did not find a model that is simply very
specialized to the test part, we use a new, previ-
ously unseen part of the Verbmobil corpus. This
part consists of 9,784 words. The bigram model
assigns a log perplexity of 2.78, the merged model
with 113 states assigns a log perplexity of 2.41 (see
table 1). Thus, the model found by model merging
can be regarded generally better than the bigram
model.

Im p r o v e m e n t s

The derivation of the optimal model took about
a week although the size of the training part was
relatively small. Standard speech applications do
not use 14,000 words for training as we do in this
experiment, but 100,000, 200,000 or more. It is
not possible to start with a model of 100,000 states
and to successively merge them, at least it is not
possible on today's machines. Each step would
require the test of ,~ 10 9 merges.

In the previous experiment, we abandoned
the same-output constraint after 12,500 merges to
keep the influence on the final result as small as
possible. It can not be skipped from the begin-
ning because somehow the time complexity has to
be reduced. But it can be further retained, until
no further merge under this constraint is possible.

66

- log10 P/Ntrain
2 . 5 -

2 . 0

1.5

1 .0

0.5 s / J r

10 11 12
I I I

4 3 2

Ip

/

- log10 p/Ntest
2.8

2.7 - --,

2 . 6 - ~ ,~

2 . 5 - '" \

2.4 - z - ~

2 . 3 -

2 . 2 -
' I ' I

10 11 12
I J I

13 14 x 103 merges i i
i i 4 3 2
1 0 × 10 3 states

lpbigram

lpmin

13 14 ×103 merges

I I

1 0 × 103 states

Figure 4: Log Perplexity of training and test parts when starting with a bigram model. The start ing point
is indicated with o, the curves of the previous experiment are shown in thin lines.

This yields a bigram model. The second experi-
ment uses the bigram model with 1,440 states as
its start ing point and imposes no constraints on
the merges. The results are shown in figure 4.

We see that the perplexity curves approach
very fast their counterparts from the previous ex-
periment. The states differ from those of the pre-
viously found model, but there is no difference in
the number of states and corpus perplexity in the
optimal point. So, one could in fact, at least in the
shown case, start with the bigram model without
loosing anything. Finally, we calculate the perple-
xity for the additional test part. It is 2.39, thus
again lower than the perplexity of the bigram mo-
del (see table 1). It is even slightly lower than in
the previous experiment, but most probably due
to random variation.

The derived models are not in any case equiva-
lent (with respect to perplexity), regardless whe-
ther we start with the trivial model or the bigram
model. We ascribe the equivalence in the experi-
ment to the particular size of the training corpus.
For a larger training corpus, the optimal model
should be closer in size to the bigram model, or
even larger than a bigram model. In such a case
starting with bigrams does not lead to an optimal
model, and a t r igram model must be used.

C o n c l u s i o n

We investigated model merging, a technique to in-
duce Markov models from corpora.. The original
procedure is improved by introducing constraints
and a different initial model. The procedures are
shown to be applicable to a transliterated speech

corpus. The derived models assign lower perplexi-
ties to test data than the standard bigram model
derived from the same training corpus. Additio-
nally, the merged model was much smaller than
the bigram model.

The experiments revealed a feature of model
merging that allows for improvement of the me-
thod's t ime complexity. There is a large initial
part of merges that do not change the model 's
perplexity w.r.t, the test part, and that do not in-
fluence the final optimal model. The t ime needed
to derive a model is drastically reduced by abbre-
viating these initial merges. Instead of starting
with the trivial model, one can start with a smal-
ler, easy-to-produce model, but one has to ensure
that its size is still larger than the opt imal model.

A c k n o w l e d g e m e n t s

I would like to thank Christer Samuelsson for very
useful comments on this paper. This work was
supported by the Graduiertenkolleg Kognitions-
wissenschaft, Saarbriicken.

R e f e r e n c e s

[Bahl et al., 1983] Lalit R. Bahl, Frederick Jel i -
nek, and Robert L. Mercer. 1983. A max imum
likelihood approach to continuous speech reco-
gnition. IEEE Transactions on Pattern Analy-
sis and Machine Inlelligence, 5(2):179-190.

[Baum et al., 1970] Leonard E. Baum, Ted Petrie,
George Soules, and Norman Weiss. 1970. A
maximization technique occuring in the statisti-
cal analysis of probabilistic functions in markov

6 7

chains. The Annals of Methematical Statistics,
41:164-171.

[Brants, 1995] Thorsten Brants. 1995. Estima-
ting HMM topologies. In Tbilisi Symposium
on Language, Logic, and Computation, Human
Communication Research Centre, Edinburgh,
HCRC/RP-72.

[Church, 1988] Kenneth Ward Church. 1988. A
stochastic parts program and noun phrase par-
ser for unrestricted text. In Proc. Second Confe-
rence on Applied Natural Language Processing,
pages 136-143, Austin, Texas, USA.

[Cutting et al., 1992] Doug Cutting, Julian Ku-
piec, Jan Pedersen, and Penelope Sibun. 1992.
A practical part-of-speech tagger. In Procee-
dings of the 3rd Conference on Applied Natural
Language Processing (ACL), pages 133-140.

[Jelinek, 1990] F. Jelinek. 1990. Self-organized
language modeling for speech recognition. In
A. Waibel and K.-F. Lee, editors, Readings in
Speech Recognition, pages 450-506. Kaufmann,
San Mateo, CA.

[Omohundro, 1992] S. M. Omohundro. 1992.
Best-first model merging for dynamic learning
and recognition. In J. E. Moody, S. J. Han-
son, and R. P. Lippmann, editors, Advances in
Neural Information Processing Systems 4, pages
958-965. Kaufmann, San Mateo, CA.

[Pereira et al., 1993] Fernando Pereira, Naftali
Tishby, and Lillian Lee. 1993. Distributional
clustering of english words. In Proceedings of
the 31st ACL, Columbus, Ohio.

[Rabiner, 1989] L. R. Rabiner. 1989. A tutorial
on hidden markov models and selected applica-
tions in speech recognition. In Proceedings of
the IEEE, volume 77(2), pages 257-285.

[Stolcke and Omohundro, 1994] Andreas Stolcke
and Stephen M. Omohundro. 1994. Best-first
model merging for hidden markov model induc-
tion. Technical Report TR-94-003, Internatio-
nal Computer Science Institute, Berkeley, Cali-
fornia, USA.

[Viterbi, 1967] A. Viterbi. 1967. Error bounds for
convolutional codes and an asymptotically op-
timum decoding algorithm. In IEEE Transac-
tions on Information Theory, pages 260-269.

68

