
Learning similarity-based word sense disambiguation
from sparse data

Yael Karov and Shimon E d e l m a n
Dept . of App l i ed M a t h e m a t i c s and C o m p u t e r Science

T h e W e i z m a n n In s t i t u t e of Science
R ehovo t 76100, Israel

[yaelk,edelman]@wisdom.weizmann.ac.il

J u n e 10, 1996

Abs t r ac t

We describe a method for automatic word sense disambiguation using a text corpus and
a machine-readable dictionary (MRD). The method is based on word similarity and context
similarity measures. Words are considered similar if they appear in similar contexts; contexts are
similar if they contain similar words. The circularity of this definition is resolved by an iterative,
converging process, in which the system learns from the corpus a set of typical usages for each
of the senses of the polysemous word listed in the MRD. A new instance of a polysemous word
is assigned the sense associated with the typical usage most similar to its context. Experiments
show that this method performs well, and can learn even from very sparse training data.

Introduct ion

Word Sense Disambiguation (WSD) is the problem of assigning a sense to an ambiguous word,
using its context. We assume that different senses of a word correspond to different entries in its
dictionary definition. For example, s u i t has two senses listed in a dictionary: an action in court,
and suit of clothes. Given the sentence The union's lawyers are reviewing the suit, we would like
the system to decide automatical ly that s u i t is used there in its court-related sense (we assume
that the part of speech of the polysemous word is known).

In recent years, text corpora have been the main source of information for learning automat ic
WSD (see, e.g., (Gale et al., 1992)). A typical corpus-based algorithm constructs a training set
from all contexts of a polysemous word W in the corpus, and uses it to learn a classifier tha t maps
instances of W (each supplied with its context) into the senses. Because learning requires tha t the
examples in the training set be part i t ioned into the different senses, and because sense information
is not available in the corpus explicitly, this approach depends critically on manuM sense tagging - -
a laborious and time-consuming process that has to be repeated for every word, in every language,
and, more likely than not, for every topic of discourse or source of information.

The need for tagged examples creates a problem referred to in previous works as the knowledge
acquisition bottleneck: training a disambiguator for W requires tha t the examples in the corpus be
part i t ioned into senses, which, in turn, requires a fully operational disambiguator. The method we
propose circumvents this problem by automatically tagging the training set examples for W using
other examples, that do not contain W, but do contain related words extracted from its dictionary

4 2

definition. For instance, in the training set for suit, we would use, in addition to the contexts of
s u i t , all the contexts of cour'c and of c l o t h e s in the corpus, because c o u r t and c l o t h e s appear
in the MRD entry of s u i t that defines its two senses. Note that , unfike the contexts of s u i t , which
may discuss either court action or clothing, the contexts of c o u r t are not fikely to be especially
related to clothing, and, similarly, those of c l o t h e s will normally have tittle to do with lawsuits.
We will use this observation to tag the original contexts of s u i c .

Another problem that affects the corpus-based WSD methods is the sparseness of data: these
methods typically rely on the statistics of cooccurrences of words, while many of the possible
cooccurrences are not observed even in a very large corpus (Church and Mercer, 1993). We address
this problem in several ways. First, instead of tallying word statistics for the examples of each
sense (which may be unrefiable when the examples are few), we collect sentence-level statistics,
representing each sentence by the set of features it contains. Second, we define a similarity measure
on the feature space, which allows us to pool the statistics of similar features. Third, in addition
to the examples of the polysemous word W in the corpus, we learn also from the examples of all
the words in the dictionary definition of W. In our experiments, this resulted in a training set that
could be up to 20 times larger than the set of original examples.

The rest of this paper is organized as follows. Section 1 describes the approach we have de-
veloped. In section 2, we report the results of tests we have conducted on the Treebank-2 corpus.
Section 3 describes related work. Proofs and other details of our scheme can be found in (Karov
and Edelman, 1996).

1 Similarity-based disambiguation

Our aim is to have the system learn to disambiguate the appearances of a polysemous word W with
senses S l , . . . , s k , using the appearances of W in an untagged corpus as examples. To avoid the
need to tag the training examples manually, we augment the training set by additional sense-related
examples, which we call a feedback set. The feedback set for sense si of word W is the union of all
contexts that contain some noun found in the entry of s~(W) in a MRD 1 (high-frequency nouns,
and nouns in the intersection of any two sense entries, as well as examples in the intersection of two
feedback sets, are discarded). The feedback sets can be augmented, in turn, by original training-set
sentences that are closely related (in a sense defined below) to one of the feedback set sentences;
these additional examples can then at t ract other original examples.

The feedback sets constitute a rich source of data that are known to be sorted by sense. Specif-
ically, the feedback set of s~ is known to be more closely related to si than to the other senses of the
same word. We rely on this observation to tag automatically the examples of W, as follows. Each
original sentence containing W is assigned the sense of its most similar sentence in the feedback
sets. Two sentences are considered to be similar insofar as they contain similar words (they do not
have to share any word); words are considered to be similar if they appear in similar sentences.
The circularity of this definition is resolved by an iterative, converging process, described below.

1.1 T e r m i n o l o g y

A context, or example of the target word W is any sentence that contains W, and (optionally)
the two adjacent sentences in the corpus. The features of a sentence are its nouns, verbs, and
the adjectives of W and of the nouns from W's MRD definition, all used after s temming (it is

1 By M R D we m e a n a m a c h i n e - r e a d a b l e d i c t i o n a r y or a t h e s a u r u s , or a n y c o m b i n a t i o n of such k n o w l e d g e sources .

4 3

also possible to use other types of features, such as word n-grams or syntactic construcs, such as
subject-verb or verb-object pairs). As the number of features in the training data can be very
large, we automatically assign each relevant feature a weight indicating the extent to which it is
indicative of the sense (see section A.2). Features that appear less than two times, and features
whose weight falls under a certain threshold are excluded. A sentence is represented by the set of
the remaining relevant features it contains.

1.2 C o m p u t a t i o n of s imi lar i ty

Our method hinges on the possibility to compute similarity between the original contexts of W and
the sentences in the feedback sets. We concentrate on similarities in the way sentences use W, and
not in their meaning. Thus, similar words tend to appear in similar contexts, and their textuM
proximity to the ambiguous word W is indicative of the sense of W. Note that contextually similar
words do not have to be synonyms, or to belong to the same lexical category. For example, we
consider the words doctor and health to be similar because they frequently share contexts, although
they are far removed from each other in a typical semantic hierarchy such as the WordNet (Miller
et al., 1993). Note, further, that because we learn similarity from the training set of W, and not
from the entire corpus, it tends to capture regularities with respect to the usage of W, rather than
abstract or generM regularities. For example, the otherwise unrelated words war and trafficking are
similar in the contexts of the polysemous word drug (narcotic~medicine), because the expressions
drug trafficking and the war on drugs appear in related contexts of drug. As a result, both war and
trafficking are similar in being strongly indicative of the narcotic sense of drug.

Words and sentences play complementary roles in our approach: a sentence is represented by
the set of words it contains, and a word - - by the set of sentences in which it appears. Sentences
are similar to the extent they contain similar words; words are similar to the extent they appear
in similar sentences. Although this definition is circular, it turns out to be of great use, if applied
iteratively, as described below.

In each iteration, we update a word similarity matrix M (w) , whose rows and columns are labeled
by all the words encountered in the training set of W. In that matrix, the cell M(W)(i,j) holds a
value between 0 and 1, indicating the extent to which word i is contextually similar to word j . In

addition, we keep and update a separate sentence similarity matrix M/(s) for each sense si of W

(including a matrix M0 (s) that contains the similarities of the original examples to themselves). The

rows in a sentence matrix M~ ~) correspond to the original examples of W, and the columns - - to
the originM examples of W for i = 0, and to the feedback-set examples for sense si, for i > 0.

To compute the similarities, we initialize the word similarity matrix to the identity matrix (each
word is fully similar to itself, and completely dissimilar to other words), and iterate (see Figure 1):

1. update the sentence similarity matrices Mi (~}, using the word similarity matrix M(~);

2. update the word similarity matrix M (w), using the sentence similarity matrices M! ~).

until the changes in the similarity values are small enough (see section A.1 for a detailed description
of the stopping conditions; a proof of convergence appears in (Karov and Edelman, 1996)).

1.2.1 The affinity formula

The algorithm for updating the similarity matrices involves an auxiliary relation between words
and sentences, which we call affinity, introduced to simplify the symmetric iterative t reatment of

44

Word

Similarity

Matrix

Sentence

Similarity

Matrix

Figure 1: Iterative computation of word and sentence similarities.

similarity between words and sentences. A word W is assumed to have a certain affinity to every
sentence. Affinity (a real number between 0 and 1) reflects the contextual relationships between W
and the words of the sentence. If W belongs to a sentence S, its affinity to S is 1; if W is totally
unrelated to S, the affinity is close to 0 (this is the most common case); if W is contextually similar
to the words of S, its affinity to S is between 0 and 1. In a symmetric manner, a sentence S has
some affinity to every word, reflecting the similarity of S to sentences involving that word.

We say that a word belongs to a sentence, denoted as W E S, if it textually contained there; in
this case, sentence is said to include the word: S ~ W. Affinity is then defined as follows:

affn(W, S) = max siren(W, Wi) (1)
Wi ES

aftn(8, W) = max sims(S, 8j) (2)
s~w

where n denotes the iteration number. 2 The initial representation of a sentence, as the set of words
tha t it directly contains, is now augmented by a similarity-based representation; The sentence
contains more information or features than the words directly contained in it. Every word has some
affinity to the sentence, and the sentence can be represented by a vector indicating the affinity of
each word to it. Similarly, every word can be represented by the affinity of every sentence to it.
Note that affinity is asymmetric: aft(S, W) # aft(W, S), because W may be similar to one of the
words in S, which, however, is not one of the topic words of S; it is not an important word in s. In
this case, aft(W, S) is high, because W is similar to a word in S, but aft(S, 142) is low, because S
is not a representative example of the usage of the word W.

1.2.2 T h e s i m i l a r i t y f o r m u l a

We define the similarity of W1 to l/Y2 to be the average affinity of sentences that include W1 to
those that include W2. The similarity of a sentence $1 to another sentence $2 is a weighted average
of the affinity of the words in $1 to those in $2:

2At a first glance it may seem that the mean rather than the maximal similarity of W to the words of a sentence
should determine the affinity between the two. However, any definition of affinity tha t takes into account more words
than jus t the one with the maximal similarity to W, may result in a word being directly contained in the sentence,
but having an affinity to it that is smaller than 1.

45

simn+l ('51, `52)

sim=+l (~'Yl, 1422)

where the weights sum to 1. 3

= ~ weight(W, "51)" affn(W, `52)
YYE$1

= ~ weight('5, W1)" afro(,5, ¥Y2)
S~W1

(3)

(4)

1.2.3 T h e i m p o r t a n c e of i t e r a t ion

Initially, only identical words are considered similar, so that aff(W, ,5) = 1 if YV E `5; the affinity
is zero otherwise. Thus, in the first iteration, the similarity between "51 and `52 depends on the
number of words from "51 that appear in `52, divided by the length of `52 (note that each word
may carry a different weight). In the subsequent iterations, each word W E "51 contributes to the
similarity of "51 to `52 a value between 0 and 1, indicating its affinity to `52, instead of voting either
0 (if)4; e `52) or i (if kY ~ `52). Analogously, sentences contribute values to word similarity.

One may view the iterations as successively capturing parameterized "genealogical" relation-
ships. Let words that share contexts be called direct relatives; then words that share neighbors
(have similar cooccurrence patterns) are once-removed relatives. These two family relationships are
captured by the first iteration, and also by most traditional similarity measures, which are based
on cooccurrences. The second iteration then brings together twice-removed relatives. The third
iteration captures higher similarity relationships, and so on. Note that the level of relationship here
is a gradually consohdated real-valued quantity, and is dictated by the amount and the quality of
the evidence gleaned from the corpus; it is not an all-or-none "relatedness" tag, as in genealogy.

The following simple example demonstrates the difference between our similarity measure and
pure cooccurrence-based similarity measures, which cannot capture higher-order relationships.
Consider the set of three sentence fragments:

sl: eat banana

s2: taste banana

s3: eat apple

In this "corpus," the similarity of taste and apple, according to the cooccurrence-based methods,
is 0, because the contexts of these two words are disjoint. In comparison, our iterative algorithm
will capture some similarity:

• Ini t ial ization. Every word is similar to itself only.

• Firs t iteration. The sentences eat banana and eat apple have similarity of 0.5, because of the
common word eat. Furthermore, the sentences eat banana and taste banana have similarity 0.5:

- banana is learned to be similar to apple because of their common usage (eat banana and
eat apple);

3The weight of a word estimates its expected contribution to the disambiguation task, and is a product of several
factors: the frequency of the word in the corpus, its frequency in the training set relative to that in the entire corpus;
the textual distance from the target word, and its part of speech (more details on word weights appear in section A.2).
All the sentences that include a given word are assigned identical weights.

46

- taste is similar to eat because of their common usage (taste banana and eat banana);

- taste and apple are not similar (yet).

• Second iteration. The sentence taste banana has now some similarity to eat apple, because
in the previous iteration taste was similar to eat and banana was similar to apple. The word
taste is now similar to apple because the taste sentence (taste banana) is similar to the apple
sentence (eat apple). Yet, banana is more similar to apple than taste, because the similarity
value of banana and apple further increases in the second iteration.

This simple example demonstrates the transitivity of our similarity measure, which allows it to
extract high-order contextual relationships. In more complex situations, the transitivity-dependent
spread of similarity is slower, because each word is represented by many more sentences. Iteration
stops when the changes in the similarity values are small enough (see section A.1). In practice, this
happens after about three iterations, which, intuitively, suffice to exhaust the transitive exploration
of similarities. After that , although the similarity values may continue to increase, their rank order
does not change significantly. That is, if in the third iteration a sentence S was more similar to 7~
than to T2, this order will, by and large, prevail also in the subsequent iterations, even though the
similarity values may still increase.

The most important properties of the similarity computation algorithm are convergence, and
utility in supporting disambiguation (described in section 2); three other properties are as follows.
First, word similarity computed according to the above algorithm is asymmetric. For example,
drug is more similar to traffic than traffic is to drug, because traffic is mentioned more frequently
in drug contexts than drug is mentioned in contexts of traffic (which has many other usages).
Likewise, sentence similarity is asymmetric: if $1 is fully contained in $2, then sim(Sl, $2) = 1,
whereas sim(S2, $1) < 1. Second, words with a small count in the training set will have unreliable
similarity values. These, however, are multiplied by a very low weight when used in sentence
similarity evaluation, because the frequency in the training set is taken into account in computing
the word weights. Third, in the computation of sire(}41, }4;2) for a very frequent }42, the set of
its sentences is very large, potentially inflating the affinity of }41 to the sentences that contain }42-
We counter this tendency by multiplying sim(}41, }42) by a weight that is reciprocally related to
the global frequency of }42.

1.3 U s i n g s i m i l a r i t y t o t a g t h e t r a i n i n g se t

Following convergence, each sentence in the training set is assigned the sense of its most similar
sentence in one of the feedback sets of sense si, using the final sentence similarity matrix. Note
that some sentences in the training set belong also to one of the feedback sets, because they contain
words from the MRD definition of the target word. Those sentences are automatically assigned the
sense of the feedback set to which they belong, since they are most similar to themselves. Note
also that an original training-set sentence S can be attracted to a sentence F from a feedback set,
even if S and F do not share any word, because of the transitivity of the similarity measure.

1.4 L e a r n i n g t h e t y p i c a l u s e s o f e a c h s e n s e

We partition the examples of each sense into typical use sets, by grouping all the sentences that
were attracted to the same feedback-set sentence. That sentence, and all the original sentences
attracted to it, form a class of examples for a typical usage. Feedback-set examples that did not

4 7

attract any original sentences are discarded. If the number of resulting classes is too high, further
clustering can be carried out on the basis of the distance metric defined by 1 - sire(x, y), where
sire(x, y) are values taken from the final sentence similarity matrix.

A typical usage of a sense is represented by the affinity information generalized from its exam-
ples. For each word W, and each cluster C of examples of the same usage, we define:

aft(W, C) = maxaffOJY , S) (5)
SEC

= max max sim(l'Y, kVi) (6)
SEC WiES

For each cluster we construct its affinity vector, whose i ' th component indicates the affinity of word i
to the cluster. It suffices to generalize the affinity information (rather than similarity), because
new examples are judged on the basis of their similarity to each cluster: in the computat ion of
sim(S1, 82) (equation 3), the only information concerning $2 is its affinity values.

1.5 T e s t i n g n e w e x a m p l e s

Given a new sentence S containing a target word W, we determine its sense by computing the
similarity of S to each of the previously obtained clusters Ck, and returning the sense of the most
similar cluster:

sim(Snew, Ck) = E weight(W, Snew)'aff(t'Y, Ck) (7)
W E S ~

sire(SKew, sl) = maxs im(Sn~ , C) (8)
CEsi

2 E x p e r i m e n t a l eva l ua t ion of the m e t h o d

We tested the algorithm on the Treebank-2 corpus, which contains 1 million words from the Wall
Street Journal, 1989, and is considered a small corpus for the present task. As the MRD, we used
a combination of the Webster, the Oxford and the WordNet online dictionaries (the latter used as
a thesaurus only). During the development and the tuning of the algorithm, we used the method
of pseudo-words (Gale et al., 1992; Schutze, 1992), to save the need for manual verification of the
resulting sense tags.

The final algorithm was tested on a total of 500 examples of four polysemous words: drug,
sentence, suit, and player (see Table 1). The relatively small number of polysemous words we
studied was dictated by the size and nature of the corpus (we are currently testing additional
words, using texts from the British National Corpus).

The average success rate of our algorithm was 92%. The original training set (before the addition
of the feedback sets) consisted of a few dozen examples, in comparison to thousands of examples
needed in other corpus-based methods (Schutze, 1992; Yarowsky, 1995).

Results on two of the words on which we tested our algorithm (drug and suit) have been also
reported in the works of Schutze and Yarowsky. It is interesting to compare the performance of
the different methods on these words. On the word drug, our algorithm achieved performance of
90.5%, after being trained on 148 examples (contexts). In comparison, (Yarowsky, 1995) achieved

48

Table 1: A summary of the experimental results on four polysemous words.

Word Senses Sample Feedback 7o correct % correct
Size Size per sense total

drug narcotic 65 100 92.3 90.5
medicine 83 65 89.1

sentence judgement 23 327 100 92.5
grammar 4 42 50

suit court 212 1461 98.59 94.8
garment 21 81 55

player performer 48 230 87.5 92.3
participant 44 1552 97.7

91.4% correct performance, using 1380 contexts and the dictionary definitions in training. 4 On the
word suit, our method achieved performance of 94.8%, using 233 training contexts; in comparison,
(Schutze, 1992) achieved 957o correct performance, using 8206 contexts. In summary, our algorithm
achieved performance comparable to some of the best reported results, using much less data for
training. This feature of our approach is important, because the size of the available training set
is usually severely constrained for most senses of most words (Gale et al., 1992). Finally, we note
that , as in most corpus-based methods, supplying additional examples is expected to improve the
performance.

We now present in detail several of the results obtained with the word drug. A plot of the
improvement in the performance vs. iteration number appears in Figure 2. The success rate is
plotted for each sense, and for the weighted average of both senses we considered (the weights are
proportional to the numb~er of examples of each sense).

Figure 3 shows how the similarity values develop with iteration number. For each example S of
the narcotic sense of drug, the value of sims(S, narcotic) increases with n. Note that after several
iterations the similarity values are close to 1, and, because they are bounded by 1, they cannot
change significantly with further iterations.

Figure 4 compares the similarities of a narcotic example to the narcotic sense and to the medicine
sense, for each iteration. The medicine sense assignment, made in the first iteration, has been
corrected in the following iterations.

Table 2 shows the most similar words found for the words with the highest weights in the drug
example (low-similarity words have been omitted). Note that the similarity is contextual, and is
affected by the polysemous target word. For example, traJficking was found to be similar to crime,
because in drug contexts the expressions drug trajficking and crime are highly related. In general,
traJficking and crime need not be similar, of course.

4Yarowsky subsequently improved that result to 93.9%, using his "one sense per discourse" constraint. We expect
that a similar improvement could be achieved if that constraint were used in conjunction with our method.

49

Word Most contextually similar words
The medicine sense:
medication antibiotic blood prescription medicine percentage pressure
prescription analyst antibiotic blood campaign introduction law line-up medication medicine

percentage print profit publicity quarter sedative state television tranquilizer use
medicine prescription campaign competition dollar earnings law manufacturing

margin print product publicity quarter result sale saving sedative
staff state television tranquilizer unit use

disease antibiotic blood line-up medication medicine prescription
symptom hypoglycemia insulin warning manufacturer product

plant animal death diabetic evidence finding metabolism study
insulin hypoglycemia manufacturer product symptom warning

death diabetic finding report study
tranquilizer campaign law medicine prescription print publicity sedative

television use analyst profit state
dose appeal death impact injury liability manufacturer miscarriage refusing ruling

diethylstilbestrol hormone damage effect female prospect state
The narcotic sense:

i

consumer distributor effort cessation consumption country reduction requirement
victory battle capacity cartel government mafia newspaper people

mafia terrorism censorship dictatorship newspaper press brother nothing aspiration
assassination editor leader politics rise action country doubt freedom
mafioso medium menace solidarity structure trade world

terrorism censorship doubt freedom mafia medium menace newspaper
press solidarity structure

murder capital-punishment symbolism trafficking furor killing substance crime
restaurant law bill case problem

menace terrorism freedom solidarity structure medium press censorship country doubt
mafia newspaper way attack government magnitude people relation threat world

trafficking crime capital-punishment furor killing murder restaurant substance symbolism
dictatorship aspiration brother editor mafia nothing politics press

assassination censorship leader newspaper rise terrorism
assassination brother censorship dictatorship mafia nothing press terrorism

aspiration editor leader newspaper politics rise
laundering army lot money arsenal baron economy explosive government hand

materiel military none opinion portion talk
censorship mafia newspaper press terrorism country doubt freedom

medium menace solidarity structure

Table 2: The drug experiment; the nearest neighbors of the highest-weight words. The words in the entries
are those with the highest weights, whose similarity values have, therefore, the greatest effect. Note that the
similarity is contextual, and is highly dependent on the polysemous target word. For example, trafficking
was found to be similar to crime, because in the drug contexts the expressions drug trafficking and crime
are highly related. In general, trafficking and crime need not be similar, of course. Also note that the
similarity is affected by the training corpus. For example, in the Wall Street Journal, the word medicine is
mentioned mostly in contexts of making profit, and in advertisements. Thus, in the medicine cluster there
one finds words such as analyst, campaign, profit, quarter, dollar, which serve as hints for the medicine
sense. Although profit and medicine are not closely related semantically (relative to a more balanced corpus
than WSJ), their contexts in the WSJ contain words that are similarly indicative of the sense of the target
word. This kind of similarity, therefore, suits its purpose, which is sense disambiguation, although it may
run counter to some of our intuitions regarding general semantic similarity.

50

O8

9 0

' 2 3 4 5 B 7 8 9 10

Figure 2: The drug experiment; the change in the disambiguation performance with iteration
number is plotted separately for each sense. The asterisk marks the plot of the success rate for the
narcotic sense.

1

0.8 :i:

o)?

E~ml~kD •

Sitl~ikJr~y ol s~'tcttt I exettlpJloa to sul~ttl ;tree,tick t in

Figure 3: The drug experiment; example runs, Sorted by the second-iteration similarity values.

3 R e l a t e d work

3.1 T h e k n o w l e d g e a c q u i s i t i o n b o t t l e n e c k

Brown et al. (1991) and Gale et al. (1992) used the translations of the ambiguous word in a
bilingual corpus as sense tags. This does not obviate the need for manual work, as producing
bilingual corpora requires manual translation work. S

Dagan and Itai (1991) used a bilingual lexicon and a monolingual corpus, to save the need for
translating the corpus. The problem remains, however, that the word translations do not necessarily
overlap with the desired sense distinctions.

Schutze (1992) clustered the examples in the training set, and manually assigned each cluster
a sense by observing 10-20 members of the cluster. Each sense was usually represented by several
clusters. Although this approach significantly decreased the need for manual intervention, about a
hundred examples had still to be tagged manually for each word. Moreover, the resulting clusters
did not necessarily correspond to the desired sense distinctions.

Yarowsky (1992) learned discriminators for each Roget's category, saving the need to separate

SMRD's are, of course, also const ructed manually, but, unlike bilingual corpora, these are existing resources, made
for general use.

51

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3'

0.2

O-t~ ~ ~ ~ ~ ~ ~ ~ ,0

Figure 4: The drug experiment; the similarity between a narcotic-sense example to each of the two
senses. The asterisk marks the plot for the narcotic sense. The sentence was The American people
and their government also woke up too late to the menace drugs posed to the moral structure of
their country.

The word menace which is a hint for the narcotic sense in this sentence, d id not help in the first
iteration, because it did not appear in the narcotic feedback set at all. Thus, in iteration 1, the
similarity of this sentence to the medicine sense was 0.15, vs. similarity of 0.1 to the narcotic sense.
In iteration 2, menace was learned to be similar to other narcotic-related words, yielding a small
advantage for the narcotic sense. In iteration 3, further similarity values were updated, and there
was a clear advantage to the narcotic sense (0.93, vs. 0.89 for medicine).

the training set into senses. However, using such hand-crafted categories usually leads to a coverage
problem for specific domains, or for domains other than the one for which the list of categories has
been prepared.

Using MRDs for WSD was suggested in (Lesk, 1986); several researchers subsequently continued
and improved this line of work (Krovetz and Croft, 1989; Guthrie et al., 1991; Veronis and Ide,
1990). Unlike the information in a corpus, the information in the MP~D definitions is presorted into
senses. However, as noted above, the MRD definitions alone do not contain enough information
to allow reliable disambiguation. Recently, Yarowsky (1995) combined a MIlD and a corpus in
a bootstrapping process. In tha t work, the definition words were used as initial sense indicators,
tagging automatically the target word examples containing them. These tagged examples were then
used as seed examples in the bootstrapping process. In comparison, we suggest to combine fur ther
the corpus and the MRD by use all the corpus examples of the MP~D definition words, instead of
those words alone. This yields much more sense-presorted training information.

3 .2 T h e p r o b l e m o f s p a r s e d a t a

Most previous works define word similarity based on cooccurrence information, and hence face a
severe problem of sparse data. Many of the possible cooccurrences are not observed even in a very
large corpus (Church and Mercer, 1993). Our algorithm addresses this problem in two ways. First,
we replace the an-or-none indicator of cooccurrence by a graded measure of contextual similarity.
Our measure of similarity is transitive, allowing two words to be considered similar even if they are
neither observed in the same sentence, nor share neighbor words. Second, we extend the training
set by adding examples of related words. The performance of our system compares favorably to
tha t of systems trained on sets larger by a factor of 100 (the results described in section 2 were

52

obtained following learning from several dozen examples, in comparison to thousands of examples
in other automatic methods).

Traditionally, the problem of sparse data is approached by estimating the probability of un-
observed cooccurrences using the actual cooccurrences in the training set. This can be done by
smoothing the observed frequencies (Church and Mercer, 1993), or by class-based methods (Brown
et al., 1991; Pereira and Tishby, 1992; Pereira et ah, 1993; Hirschman, 1986; Resnik, 1992; Brill
et ah, 1990; Dagan et al., 1993). In comparison to these approaches, we use similarity information
throughout training, and not merely for estimating cooccurrence statistics. This allows the system
to learn successfully from very sparse data.

A Appendix

A.1 S t o p p i n g c o n d i t i o n s o f t h e i t e r a t i v e a l g o r i t h m

Let fi be the increase in the similarity value in iteration i:

f i (X ,Y) = simi(X, Y) - simi_l(,¥, Y) (9)

where X, Y can be either words or sentences. For each item X, the algorithm stops updating its
similarity values to other items (that is, updating its row in the similarity matrix) in the first
iteration that satisfies rnaxyfi(2d, y) < e, where e > 0 is a preset threshold.

1 iterations (oth- According to this stopping condition, the algorithm terminates after at most
erwise, in ! iterations with each fi > e, we obtain sim(,¥, y) > e- ! = 1, in contradiction to upper
bound of 1 on the similarity values). 6

We found that the best results are obtained within three iterations. After that, the disam-
biguation results tend not to change significantly, although the similarity values may continue to
increase. Intuitively, the transitive exploration of similarities is exhausted after three iterations.

A . 2 W o r d w e i g h t s

In our algorithm, the weight of a word estimates its expected contribution to the disambiguation
task, and the extent to which the word is indicative in sentence similarity. The weights do not
change with iterations. They are used to reduce the number of features to a manageable size, and
to exclude words that are expected to be given unreliable similarity values. The weight of a word is
a product of several factors: frequency in the corpus, the bias inherent in the training set, distance
from the target word, and part of speech label:

1. Global frequency. Frequent words are less informative of the sense and of the sentence similar-
ity (e.g., the appearance of this in two different sentences does not indicate similarity between
them, and does not indicate the sense of any target word). The contribution of frequency is
max{0, 1 - freq(w) , where maxhxfreq(X) is a function of the five highest frequencies in

m a x ~ x t r e q ~ ,~)

the corpus. This factor excludes only the most frequent words from further consideration. As
long as the frequencies are not very high, it does not label }/Yl whose frequency is twice that
of W2 as less informative.

SSimilarity s ims(X, y) is a non-decreasing function of the number of iteration n, and the similarity values are
bounded by 1. Proofs in (Karov and Edelman, 1996).

53

2. Log likelihood factor. Words that are indicative of the sense usually appear in the training set
more than what would have been expected from their frequency in the general corpus. The
log likelihood factor captures this tendency. It is computed as

.

.

Pr (Wi I W)
log Pr (W~) (10)

where Pr0d]i) is estimated from the frequency of W in the entire corpus, and Pr(Wi [W) - -
from the frequency of I'Yi in the training set, given the examples of the current ambiguous
word },V (cf. (Gale et al., 1992)). 7 To avoid poor estimation for words with a low count in
the training set, we multiply the log likelihood by min{1, co~t(w).~ where count(W) is the 10 J
number of occurrences of W in the training set.

Part of speech. Each part of speech is assigned an initial weight (1.0 for nouns and 0.6 for
verbs).

Distance from the target word. Context words that are far from the target word are less
indicative than nearby ones. The contribution of this factor is reciprocally related to the
normalized distance.

The total weight of a word is the product of the above factors, each normalized by the sum of
factor(W/, $) factors of the words in the sentence: weight(Wi, S) = ~ w esf~Ctor(Wj, s) ' where factor(., .) is the

weight before normalization.

Acknowledgments

We thank Dan Roth for comments on a draft of this paper.

R e f e r e n c e s

BriU, E., Magerman, D., Marcus, M., and Santorini, B. (June 1990). Deducing linguistic structure
from the statistics of large corpora. DARPA speech and natural language workshop.

Brown, P., Pietra, S. D., Pietra, V. D., and Mercer, R. L. (1991). Word sense disambiguation using
statistical methods. In Proceedings of the 29th Annual Meeting of the ACL, pages 264-270.

Church, K. W. and Mercer, R. L. (1993). Introduction to the special issue in computational
linguistics using large corpora. Computational Linguistics, 19:1-24.

Dagan, I. and Itai, A. (1991). Two languages are more informative than one. In Proceedings of the
29th Annual Meeting of the ACL, pages 130-137.

Dagan, I., Marcus, S., and Markovitch, S. (1993). Contextual word similarity and estimation from
sparse data. In Proceedings of the 31st Annual Meeting of the ACL, pages 164-174.

rBecause this estimate is unreliable for words with low frequencies in each sense set, Gale et al. (1992) suggested to
interpolate between probabilities computed within the sub-corpus and probabilities computed over the entire corpus.
In our case, the denominator is the frequency in the general corpus instead of the frequency in the sense examples,
so it is more reliable.

54

Gale, W., Church, K., and Yarowsky, D. (1992). A method for disambiguating word senses in a
large corpus. Computers and the Humanities, 26:415-439.

Guthrie, J. A., Guthrie, L., Wilks, Y., and Aidinejad, H. (1991). Subject-dependent cooccurrence
and word sense disambiguation. In Proceedings of the 29th Annual Meeting of the A CL, pages
146-152.

Hirschman, L. (1986). Discovering sublanguage structure. In Grishman, R. and Kittredge, P~.,
editors, Analyzing Language in Restricted Domains: Sublanguage description and processing,
pages 211-234. Lawrence Erlbaum, ttillsdale, NJ.

Karov, Y. and Edelman, S. (1996). Learning similarity-based word sense disambiguation from sparse
data. Cs-tr 96-05, The Weizmann Institute of Science. URL http://x_xx.lanl.gov/ps/cmp-
lg/9605009.

Krovetz, R. and Croft, W. B. (1989). Word sense disambiguation using machine readable dictio-
naries. In Proceedings of ACM SIGIR'89, pages 127-136.

Lesk, M. (1986). Automatic sense disambiguation: How to tell a pine cone from an ice cream cone.
In Proceedings of the 1986 ACM SIGDOC Conference, pages 24-26.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. (1993). Introduction to Word-
Net: an on-line lexical database. CSL 43, Cognitive Science Laboratory, Princeton University,
Princeton, NJ.

Pereira, F. and Tishby, N. (1992). Distibutional similarity, phase transitions and hierarchical
clustering. In Working Notes of the AAAI Fall Symposium on probabilistic approaches to
natural language, pages 108-112.

Pereira, F., Tishby, N., and Lee, L. (1993). Distibutional clustering of English words. In Proceedings
of the 31st Annual Meeting of the ACL, pages 183-190.

Resnik, P. (July 1992). WordNet and distribuitional analysis: A class-based approach to lexical
discovery. In AAAI workshop on statistically-based natural language processing techniques,
pages 56-64.

Schutze, H. (1992). Dimensions of meaning. In Proceedings of Supercomputing Symposium, pages
787-796, Minneapolis, MN.

Veronis, J. and Ide, N. (1990). Word sense disambiguation with very large neurM networks extracted
from machine readable dictionaries. In Proceedings of COLING-90, pages 389-394.

Yarowsky, D. (1992). Word sense disambiguation using statistical models of Roget's categories
trained on large corpora. In Proceedings of COLING-92, pages 454-460, Nantes.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods. In
Proceedings of the 33rd Annual Meeting of the ACL, pages 189-196, Cambridge, MA.

55

