
Real-time Natural Language Generation in NL-Soar

Robert Rubinoff
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15123
rubinoff@cs.cmu.edu

Jill Fain Lehman
• Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15123

jef@cs.cmu.edu

Abstract

NL-Soar is a computer system that performs language com-
prehension and generation within the framework of the Soar
architecture [New90]. NL-Soar provides language capabilities
for systems working in a real-time environment. Responding in
real time to changing situations requires a flexible way to shift
control between language and task operations. To provide this
flexibility, NL-Soar organizes generation as a sequence of in-
cremental steps that can be interleaved with task actions as the
situation requires. This capability has been demonstrated via
the integration of NL-Soar with two different independently-
developed Soar-based systems.

1 Real-time generation and NL-Soar

NL-Soar is a language comprehension and generation facility
designed to provide integrated real-time 1 language capabilities
for other systems built within the Soar architecture [New90].
In particular, this requires integrating NL-Soar's generation
subsystem with other task(s) that Soar is performing. 2 One
possible way to achieve this integration would be to use gen-
eration as a kind of "back end" which other task(s) can call
as a subroutine whenever they need to say something. This
approach is widely used in applications such as database query
systems or expert systems, where the main system invokes the
generator to express the answer to a query or to explain some
aspect of its reasoning or conclusions.

In applications that need to provide real-time behavior,
though, this "subroutine" approach is problematic. There is
no way for the task to interrupt generation in order to handle
some other (perhaps urgent) work. In addition, if generation is
an unbounded process, it may proceed to complete an utterance
that may have become unnecessary or even harmful because of
changes in the situation; the task has no way to modify what it
wants to say once generation has been invoked. While the task
could of course simply stop NL-Soar in either of these cases,

I NL-Soar is being used in applications that perform in both simulated and
actual real-time environments.

2Similar issues arise in NL-Soar's language comprehension subsystem,
which is not described here; see [LLN91, Lew93] for a discussion of this part
of NL-Soar.

there is no way to guarantee that generation will be interrupted
in a state from which it can recover if reinvoked later.

Furthermore, the problem isn't simply one of the speed of
generation; using faster processors to run Soar won't eliminate
the difficulties. It might seem that we could simply assume
NL-Soar can run fast enough to finish constructing an utterance
before the task has time to do anything else, this is not the case.
First, generation is potentially unbounded; no matter how fast
a computer is used, there will still be occasions when NL-Soar
takes longer than the task can afford to wait. More significantly,
this assumes that NL-Soar can absorb all the speedup; this is
not reasonable. I f we have faster processors, we want all the
tasks to share the speedup equally; a faster NL-Soar will be
invoked by a task that can respond more quickly as well, and
will thus want to interrupt NL-Soar more quickly.

The underlying difficulty with the subroutine approach is
that generation can take an unbounded amount of time; in a
real-time situation, we need to guarantee that generation can't
prevent the task from responding promptly to changes in the
situation. Generation must be incremental and interruptible.
NL-Soar accomplishes this by dividing generation into small
steps that Can be interleaved with task steps. In cases where
the small steps can' t be directly carried out and require more
complex computation, the sub-steps are designed so that inter-
ruptions leave the system in a clean state (although some work
may be lost and need to be redone). This allows NL-Soar to
operate without limiting the task's ability to respond to things
that happen during generation, and vice versa.

2 A Brief Introduction to Soar 3

Soar is an architecture for building cognitive models and AI
systems that has been applied to a wide range of problems
[RLN93]. Soar carries out a task by applying a sequence of
operators to the state of a problem-space until it reaches a state
that solves the goal Soar is working on. When Soar is unable
to directly carry out some step (e.g. selecting or applying an
operator or selecting a problem space), it creates a subgoal to
resolve the impasse that is preventing it from proceeding. In
response to this subgoal, Soar selects an appropriate problem

3For a more detailed description of Soar than is possible here, see [LNR87]
or [New90"l.

199

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

space, sets up the initial (sub-)state, and proceeds to apply op-
erators until it determines a way to resolve the initial impasse.
This process is recursive; processing in a sub-goal can itself hit
an impasse leading to a further sub-goal, and so on. The ele-
ments of the Soar architecture are shown in Figure 1; numbers
in the rest of this section refer to parts of the figure.

(1) ~ C O G N ~ O N M E M O R Y
(I m m e d i ~ e l y a v m l ~ l e ~ o w l ~ g e)

(2)

(11)
chunking

W O R K I N G M E M O R Y
(Problem spaces in context)

(?) !8)
(3) ~ " ~ . l m p a s s e (11)

~ . ~ J ~ [P r ° ~ c e e ~ Decision Cycl(l:) ~

Figure 1: The Soar Architecture

Soar has two different memories: a short-term or working
memory (2) and a long-term production or recognition mem-
ory (1). Working memory consists of a set of states, one
state per active problem-space (3) and (9); each state has a set
of attribute-value pairs. The values can be simple constants
or can themselves have attached sets of attribute-value pairs;
thus working memory is composed of trees (or networks) of
attributes and values rooted at the states.

The production memory stores the knowledge Soar uses to
carry out its processing. It contains productions whose left-
hand-sides test for the presence and/or absence of structures
in working memory. Production right-hand-sides indicate at-
tributes and values to add to or remove from working mem-
ory. The right-hand-side can also contain proposals for new
problem-spaces, initial states, and operators for Soar to select.

Note that, unlike many production-based systems, individual
produetionsin Soar do not correspond to its operators. Instead,
the knowledge about when to apply an operator and how to ap-
ply it is spread out among a number of productions; thus the
effect of an operator can vary considerably depending on the
state to which it is applied.

Soar's processing is organized around a sequence of "deci-
sion cycles" (4). In each decision cycle, all the productions
whose left-hand-sides match working memory are fired in par-
allel; this process is called "elaboration" (5). Since the changes
that result may trigger additional productions, the decision cy-
cle will proceed through a series of parallel production-finngs,
until "quiescence" is reached when no more. productions fire.
The productions actually carry out two distinct tasks: they im-
plement the operator that was selected in the previous cycle,
and they also make proposals about which operator to apply
next. Thus the productions are simultaneously carrying out
the previous decision and gathering proposals for the next de-
cision. When quiescence is reached at the end of a decision
cycle, Soar attempts to decide what to do next (6). If the cur-
rent operator has been successfully applied, 4 and only one new
operator has been proposed, the new operator is selected and
Soar proceeds with the next decision cycle.

If the current operator could not be applied, no new operator
has been proposed for the next cycle, or more than one has
been proposed with no way to decide between them, then Soar
reaches an impasse (8) and creates a subgoal (9) to resolve the
impasse. The new subgoal triggers productions that select and
set up an appropriate sub-space for dealing with the impasse.
Operators are then applied in the subspace until the condition
that prevented Soar from proceeding in the superspace is re-
solved (e.g. in (s) Soar figures out which operator to apply
next), Once the impasse is resolved, Soar removes the subgoal
and continues processing in the higher problem space (3).

Thus the basic structure of Soar is to select and apply a
sequence of operators in an attempt to reach some desired state.
In the top space (3), the desired state(s) depend on the task Soar
is working on. In sub-spaces (9), the desired state is one in
which the impasse blocking Soar from proceeding in the super-
space is eliminated. In addition to simply resolving impasses,
subgoals allow Soar to learn new productions via "chunking"
(11). Soar builds new productions (called "chunks") whenever
processing in a subgoal produces a result in the state of a
higher goal (i.e. adds or removes an attribute-value pair). The
left-hand-side of the chunk contains any attributes or values in
the higher state that were used in the subgoal processing that
led to the result. Thus chunks record the work done in the
subgoal, allowing Soar to produce the same result directly in
subsequent cases, bypassing the impasse and subgoal that led
to them. Chunking effectively moves the knowledge used for
problem-solving in the subgoal up into a higher space; Soar
will subsequently be able to use this knowledge automatically

4This must be explicitly indicated by a production that recognizes the
conditions characterizing successful complete application of the operator.

200

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

(or"recognitionally") without having to do deliberate problem-
solving in a sub-space.

3 NL-Soar: Models and Operators

Since NL-Soar is responsible for carrying on a conversation, it
needs to maintain models of the ongoing discourse as well as
the semantics and syntax of individual utterances it is compre-
hending and producing~ Four models are produced:

Utterance Model (or u -mode l)Th i s models the syntactic
structure of an utterance, using structures from Govern-
ment and Binding Theory [Cho81]; each utterance is rep-
resented by a tree ~whose links are labeled with syntactic
relations such as head, specifier, and complement, and
an explicit linear ordering on the leaves. Utterances that
are not yet complete may be modeled by several GB tree
structures and/or have some of the leaves of the tree filled
by pointers to objects in the situation model.

Situation Model (or s-model) This models the objects, prop-
erties, and relations discussed in the discourse, i.e. a rep-
resentation of the semantics of what is being said.

Discourse Model (or d,modei) This models individual dis-
course turns. 5 For each turn, the model indicates the type
of discourse move ibeing made, the speaker and intended
hearer, the content, and the corresponding structures in
the situation-mode! and utterance-model.

Disc6urse Segment Model This models the overall discourse
the agent is currently engaged in. The discourse segment
model keeps track Of the participants in the discourse and
a history of the discourse moves they have made, 6 the
situation-model objects that have been introduced into
the discourse, and the goals the agent is trying to achieve
through the discourse.

NL-Soar manages the generation process by successively
applying operators that make small modifications to the vari-
ous models, gradually Working towards the decision of what
word(s) to actually produce. The operators used by generation
currently include:

Discourse move opera tors These operators implement deci-
sions about what sort of discourse move the agent wishes
to make next. They generate a new discourse move in
the discourse segment model and make any other ap-
propriate modifications to that model. For example, the
accept-discourse-segment operator can be used to indicate
willingness to participate in a conversation someone else

5Actually, only the current and previous turn are kept in working memory
at this level of detail.

6The representation of the 'discourse moves at this level is more abstract
than in the discourse model, containing only the type of the move and the
speaker.

has started; whereas the open-discourse-segment operator
initiates a new conversation.

d-generate This operator constructs a new discourse turn
in the d-model to implement a move in the discourse-
segment model.

d-realize This operator realizes a d-model element as one or
more s-model and/or u-model elements, i.e. as a set of
semantic and/or syntactic structures.

s-realize This operator realizes an s-model object as a (possi-
bly partial) u-model structure.

say This operator releases a word to the motor system to be
printed and/or spoken.

The following section will demonstrate how these models
and operators are used to generate an utterance.

4 Managing a Conversation:
NTD-Soar and NL-Soar

The first system to make use of NL-Soar's generation compo-
nent is NTD-Soar. NTD-Soar is a system designed to simulate
the activities of the NASA Test Director, the person responsi-
ble for co-ordinating the activities involved in the launch of a
space shuttle [NLJ94]. The NTD's task involves (among other
things) following along the planned launch steps in a manual,
watching a set of television monitors that display pictures of
the launch pad and related facilities, and communicating with
other members of the launch team over a multi-band radio.
Thus NTD-Soar must integrate its use of NL-Soar with the
other activities it is engaged in.

The examples here come from NTD-Soar's modeling of the
following conversation, taken from a transcript of an actual
launch attempt (CVFS and FLT are two other members of the
launch team):

Speaker Utterance

CVFS NTD, CVFS

NTD Go ahead, CVFS

CVFS Ready for BFSuplink
NTD I copy

NTD Houston Flight, NTD

NTD Perform BFS preflight
FLT In work

uplink loading

The processing by which NL-Soar produces "Go ahead,
CVFS" begins with the activity shown in the following trace.
The trace shows (in a form simplified for readability) the se-
quence of decisions made at the end of each decision cycle; in
general, this is an operator that Soar has decided to apply dur-
ing the next cycle. NL-Soar is running recognitionally here,
i.e. with all necessary knowledge built into chunks that fire
in the top space. We will see in subsequent examples what

201

7th International Generation Workshop * Kennebunkport, Maine • June 21-24, 1994

happens when NL-Soar reaches an impasse and must drop into
a subspace.

. , . (NTD-Soar performs various tasks

... and comprehends "NTD, CVFS")

57: accept-d-segment opened by "NTD, CVFS"

58: d-generate discourse move 'answer'

59: d-realize 'answer'

At the beginning of decision cycle 57, NL-Soar's compre-
hension code has built the discourse segment model shown in
Figure 2 to represent the summons from the CVFS.7 Here the
discourse segment model represents the summons that opened
the discourse, with pointers into the situation model to indicate
the participants.

Situation Model
N'ID CVFS

yes

Discourse Segment / / / • Model ~ . / / speaker
. / partici~ /

L f"- . ~k.) ._. B summons opemng-move ~yl~

Figure 2: The models after comprehending "NTD, CVFS"

The existence of the discourse segment model prompts NL-
Soar to consider discourse move operators for various ways to
respond; since the NTD is required to explicitly acknowledge
any communications, the accept-discourse-segment operator
is chosen. Application of this operator modifies the discourse
segment model as shown in the bottom portion of Figure 3.
A new turn has been added to represent the NTD's response,
and the discourse segment has been marked as a c c e p t e d to
indicate that the NTD has decided to participate in it.

Next, the d-generate operator selected in decision cycle 58
builds a d-model representation of the NTD's utterance, fol-
lowed by a d-realize operator that builds a u-model and s-model
realization of it; NL-Soar bypasses the s-model to directly
build a u-model here because the phrase "go ahead" directly
expresses the discourse move "answer" (in the specialized sub-
language of this domain). The result of the operators selected

7The utterance model and discourse model built for "NTD, CVFS"'are not
shown here because the generation operators don't make use of them.

in cycles 57-59 is the set of models for the utterance under con-
struction shown in Figure 3. The u-model structure represents
the partially-formed ut terance"<NTD>, go ahead <CVFS >",
where < N T D > and <CVFS> , are s-model objects that need to
be expanded into u-model structures by subsequent operators.

Utterance Model

/ t \ - -

optional = s.mod~l / ~ ~model

m

, si~a~o~li~~l~Tr~ -8o- "abe

o Z / Discourse S¢oment " i / /
Model ~ ~ ~ k e r

\ V -- -22S - - -
~ _ ~ type "# answer
accepted ~

speaker

Figure 3: The models after applying the d-realize operator

NL-Soar then proceeds to finish construction and output of
the utterance:

60: s-realize <NTD> as adjoin of S

61: say "go"

62 : say "ahead"

63: s-realize <CVFS> as adjoin of S

64 : say "cvfs"

... (NTD-Soar proceeds with other tasks)

The s-realize operator selected in decision cycle 60 "realizes"
<NTD> as a null phrase, because it is marked as optional, s

8This decision, as with many others in this example, is made via chunks
built up previously by processing in various subspaces. If these chunks had not

202

7th International Generation Workshop • Kennebunkport, Maine * June 21-24, 1994

The next two items in the utterance are words, so NL-Soar
simply uses say operators to output them. Finally, the s-realize
operator selected in decision cycle 63 produces "CVFS", which
is immediately output by the subsequent say operator. The
utterance is now complete.

This example is a fairly simple one, but it demonstrates the
basic top-level structure that NL-Soar uses for generation. The
example doesn't show any interleaving of generation with other
tasks, because the current implementation of NTD-Soar gives
generation operators priority over task operators. Note, though,
that the division of the generation processing into discrete op-
erators that perform individual steps allows task operators to
be interleaved with the generation operators unproblematically
(as will be shown below). In addition, the processing here is
entirely driven by NL-Soar 's language code; there is no task
goal driving the generation (although it was task knowledge
that made the decision in cycle 57 to accept the summons rather
than, say, ignoring or rejecting it.) This too is not generally the
case, as the next example will show.

5 Interactions between task and NL

The following example shows a later portion of the conversa-
tion in the previous section; here the NTD has closed off his
conversation with the CVFS and is now proceeding to talk to
Houston Flight:

... (NTD says "I copy")

153 : new-task contact-flt-for-bfs-uplink

154 : open-discourse-segment

In the decision cycles leading up to 153, the NTD has been
informed that the CVFS is ready for the BFS uplink. In cycle
153, NTD's task operations recognize that the NTD must now
tell FLT to start the BFS uplink. The new-task operator carries
this out by posting a communicative goal to order FIX to do so;
it is the presence of this goal that triggers NL-Soar's generation
component.

Since the NTD is not currently talking to FLT, NL-Soar
applies an open-discourse-segment operator to open up a con-
versation. Decision cycles 155 through 160 then proceed in a
manner similar to the previous example, producing the utter-
ance "Houston flight, NTD":

155 : d-generate discourse move ' summons '

156 : d-realize 'summons'

157 : s-realize <FLT>

158: say "houston flight"

159 : s-realize <NTD>

160: say "ntd"

Before proceeding to generate its next utterance, NL-Soar
must wait until FLT explicitly acknowledges the NTD's sum-
mons (this is a task-specific requirement). So for the decision

yet been built up, the s-realizel operator here would reach an impasse, driving
NL-Soar into a sub-space in which it would perform deliberate reasoning about
how to carry out the realization, as in the examples in Section 6.

cycles after 160, NTD-Soar selects wait operators, which don't
do anything.

wait

wait

161:"

162 :

182: wait

The important point here is that it is NTD-Soar 's task knowl-
edge that is selecting the wait operators, not any part of NL-
Soar. In decision cycles 161-182, NL-Soar doesn't propose
any operators (because it's waiting for FLT's acknowledge-
ment), so task operators are adopted even though NL-Soar is
still in the middle of responding to a communicative goal. As it
happens, the NTD doesn't have any other current tasks to carry
out, so it simply selects wait operators. If there were other tasks
the NTD needed to perform, though, they could be carried out
during these cycles without interfering with NL-Soar's work. 9

Finally, in decision cycle 183, the NTD becomes impa-
tient and proceeds to simply assume that FLT has heard the
summons and is ready to continue. 1° This is modeled by
adding an <impatient> property to NTD-Soar's representa-
tion of the NTD if it has been waiting longer than a specified
time; this in turn triggers the assumption that the FIX has im-
plicitly acknowledged the summons, indicated by adding an
<accepted> flag to the discourse segment model (as was done
when the NTD responded to the CVFS's summons in the ex-
ample above). This allows NL-Soar to resume working, and
in decision cycles 183-189 it proceeds to generate "Perform
BFS preflight uplink loading", thus achieving the original goal
posted by the task back in decision cycle 154:

183 : continue-discourse-segment

184: d-generate discourse move 'directive'

185 : d-realize 'directive'

186: s-realize <do-uplink> as top-level

187 : say "perform"

188: s-realize <uplink> as comp of V

189: say "BFS preflight uplink loading"

This conversation demonstrates how NL-Soar allows lan-
guage processing to be integrated and interleaved with other
tasks. First, the NTD acquires information from its conver-
sation with the CVFS, namely that a particular step in the
launch preparation is ready to be carried out. The NTD then
decides that its next task should be to go ahead with the launch
step, so it should tell FLT to carry it out. Doing this requires
communicating in language, so NL-Soar starts applying op-
erators to generate the necessary utterances. When NL-Soar
doesn't propose any language operators (because it's waiting
for a response), NTD-Soar can invoke other task operators to
handle whatever else it needs to do at the time. Thus language

9A previous version of NTD-Soar did, in fact, return to visually scanning
the manual page during this interval.

1°This follows the real behavior in the transcript, in which the NTD goes
on after a pause even though he's supposed to wait for the acknowledgement;
this is actually the most common deviation from NASA's official language
protocols that occurs in the transcripts.

203

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

and other tasks interact and can be interleaved as the situa-
tion allows. II This integration is still on a fairly large scale,
though; in the next example we will see how language and task
operations can be interleaved on an operator-by-operator basis.

6 Interleaving and interruption:
TacAir-Soar and NL-Soar

TacAir-Soar is a system that simulates a fighter pilot [RJJ÷94].
TacAir-Soar flies a (simulated) plane, controls its radar and
weapons, and also communicates with other planes. 12 TacAir-
Soar is being integrated with NL-Soar to handle its communi-
cation tasks. Because TacAir-Soar is engaged in a task where
rapid response can be critical, it requires a more fine-grained
interleaving of language with its other operations than NTD-
Soar. In particular, the default assumption that language oper-
ators proposed by NL-Soar should have the highest preference,
made in NTD-Soar, is not tenable here. Instead, TacAir-Soar's
(current) default is to choose between language and other op-
erators randomly; thus language and flying the plane can both
proceed as a default, while still allowing specific situations to
override the default and force TacAir-Soar to concentrate on
critical maneuvers.

The following example shows how TacAir-Soar can inter-
leave language and task operators. Here "Parrotl01" is the
call-sign of the plane TacAir-Soar is flying, and "Ostrich" is
the name of another plane supporting Parrot l01. Unlike NTD-
Soar, TacAir-Soar maintains a stack of subspaces for long pe-
riods of time, because it uses operators that perform lengthy
operations (e.g. the top-space operator for most of a mission
is simply execute-mission). As a result, NL-Soar's language
operators must be able to fire in any of TacAir-Soar's spaces,
because the top-space already has an operator that can't be re-
placed. The traces for TacAir-Soar are therefore slightly more
complex than the ones for NTD-Soar:

... (TacAir-Soar flying t o waypoint)

... (TacAir-Soar detects unknown plane)

19 ask- for-bogey-id

20 look- f or-commit-cri teria

21 open- dis c our s e - segment

In the processing before decision cycle 19, TacAir-Soar has
detected a "bogey" (i.e. an unknown plane) on its radar. In cycle
19, the ask-for-bogey-id operator is selected to ask Ostrich to
identify the bogey; this operator posts a communicative goal
to request the information. Meanwhile, though, TacAir-Soar
has other things to do, so in decision cycle 20 it decides to
check if the criteria for committing to responding to the bogey

l This also allows the task to cut off generation or alter what's being said
in the middle of an utterance by changing the goal structures driving NL-Soar,
although we have not yet implemented this.

12These can be other copies of TacAir-Soar or planes controlled by other
simulation programs. The planes are connected via ModSAF [CStY'93], a sep-
arate program which provides each plane with information about the simulated
world they are all flying in.

have been satisfied. 13 Then, in cycle 21, it decides to use
an open-discourse-segment operator to start talking to Ostrich.
The next few cycles are similar to the previous examples:

21 open-di scourse- segment

22 d-generate discourse move ' summons'

23 d-realize ' summons'

24 say "ostrich"

25 say "this"

26 say "is"

The operators in decision cycles 22-26 produce most of the
summons "Ostrich, this is <plane-call-sign>". But then start-
ing in cycle 27, more task operators fire even though NL-Soar
hasn't completed the utterance: t4 (The indentation here indi-
cates Soar when drops into a subspace because of an impasse.)

26 say "is"

27 check-commit-criteria

Commit criteria satisfied• Stopping Fly-To-Waypoint.

28 intercept

29 ==>

• ° .

32 selec t- intercept-geometry

33 : ==>

36 choose-intercept-altitude

OUTPUT: Set desired-fpa to i0

In decision cycle 27, TacAir-Soar detects that its commit cri-
teria have indeed been satisfied, so it then decides in decision
cycle 28 to apply an intercept operator in order to intercept the
bogey. TacAir-Soar can't do this in the current problem-space,
so it drops down into a subspace in which it decides (in cycle
32) to apply a select-intercept-geometry operator. This in turn
impasses into another sub-space in which TacAir-Soar applies
a choose-intercept-altitude operator which sets the desired alti-
tude to 10,000 feet. At this point, time is available for language
to continue, so language operators fire in the current task space:

37 s-realize <Parrotl01> as

adjoin of S
= = > 38

42

43

44

45

realize-by-name

name-is-known

category-match: NP adjoin S

return-result

In decision cycle 37, while in the middle of trying to intercept
the bogey, TacAir-Soar decides to continue with its current
utterance, attempting to express <Parrot l01>. In this case,
though, the necessary knowledge to implement the s-realize
operator has not yet been compiled into a chunk, so Soar drops
down into a language sub-space. The sub-space implements
the s-realize operator by selecting a realization strategy (e.g.
realize-by-name, realize-by-pronoun, or realize-lexically). If

t3Note that these don't include having identified the bogey.
14Some details of the processing that aren't relevant to the discussion are

omitted here and in subsequent portions of the trace.

204

7th International Generation Workshop • Kennebunkport, Maine • June 2t-24, 1994

the selected strategy produces a syntactic structure that satis-
fies all relevant constraints (which can be syntactic, semantic,
or pragmatic), it is returned to the top-space• I f not, other
strategies are attempted until one succeeds.

Here the realize-by-name strategy, chosen in cycle 42, builds
the noun-phrase "Parrotl01 '', which passes the relevant con-
straints. In cycle 45, Soa r returns this result, thus resolving the
impasse that arose in cycle 38.

Before a say operator can be selected for "Parrotl01",
though, TacAir-Soar invokes some further task operators:

. o.

49

50
• . °

53

search-last-position

OUTPUT: set desired-heading to -93

say "parrotlOl"

Task operators continue I to fire through decision cycle 52. Fi-
nally, in decision cycle 53, the say operator is selected and the
utterance is completed.

What this example demonstrates is how task and language
operators can be interleaved in a very flexible way. NL-Soar
was initially triggered by a communicative goal posted by
the ask-for-bogey-id operator selected in decision cycle 19;
an additional task operator, however, was applied before NL-
Soar began its work with the open-discourse-segment operator
in decision cycle 21. After a series of language operators
fired, a task operator was selected in decision cycle 27 even
though the utterance was not yet complete. Additional task
operators were then selected until decision cycle 37, when the
s-realize operator was finally selected. When this operator had
completed (which required work in a subgoal to resolve an
impasse), still more task operators were selected in decision
cycles 46---52; finally the say operator selected in decision cycle
53 finished the utterance.

In addition to this fine-grained interleaving, TacAir-Soar can
in fact interrupt languag e operators that are not yet complete to
select task operators when necessary, as in the following trace:

s-realize <detect-on-radar>
= = >

realize-lexically

Pr0blem-space: lexical-choice

72

73

. o .

77

78

79

81 pick-head

82 ==>

... [generation continues working]

Ii0 lock-radar- for-missil e

... [further task operations]

Here NL-Soar attempts to apply an s-realize operator to express
<detect-on-radar>. 15 This leads to an impasse in decision

15This will eventually lead to "I have a contact."

cycle 73, with further processing going down into several sub-
spaces as NL-Soar attempts to carry out lexical choice. Then, in
decision cycle 110, TacAir-Soar makes a decision in a problem-
space higher-up in the goal stack to apply another task operator.
Specifically, it decides to lock its radar on the enemy plane in
preparation for shooting at it. Selecting this operator causes
Soar to lose all pending work at a lower level of the goal-stack,
which in this case includes the s-realize selected in cycle 72.
In essence, TacAir-Soar has interrupted NL-Soar 's processing
in order to proceed with shooting a missile. This is just the
kind of interruptability a real-time system needs to have; if
something needs to be done right away (e.g. shooting a missile),
it must be able to interrupt less critical activities in progress
(e.g. language generation)• When critical task operations have
been completed, NL-Soar can re-select the s-realize operator
and carry on with generation. Note that not all of NL-Soar's
work has been lost; the language operators before cycle 72
had already completed, so the models reflect their changes.
Furthermore, any chunks built in the sub-spaces before the
interruption will fire when the s-realize operator is reselected,
so some of the processing in cycles 73-110 won't need to be
repeated. At worst, NL-Soar will only have to repeat a single
(top-level) operator; but the fine-grained interleaving NL-Soar
is designed around ensures that this will be a relatively small
amount of work.

7 Reactivity, Learning, and Operator
Size

The discussion so far has glossed over an important question:
how much work should each operator do? Deciding that NL-
Soar should generate incrementally doesn't necessarily imply
what the size of the incremental steps should be. There are
some obvious general guidelines, of course. Each operator
must be "large" enough to do something. Conversely, operators
must not be so large as to overcommit Soar to a particular
utterance; a single operator that generated a ten-minute speech
would be too large because it would leave Soar no way to make
even a small modification to the speech to reflect its current
situation•16 These guidelines leave a lot of freedom to choose
operator sizes; it would be useful to have some further criteria
to constrain the operators•

Soar in fact provides further constraints on operator size
through its learning mechanism. Whenever Soar is unable to
completely apply an operator, 17 it creates a subgoal to figure
out how to complete the operator. The results of the processing
in the subgoal are compiled into productions called "chunks"

16Soar could still interrupt the utterance at some point and discard the
unspoken remainder. But modifying the speech in any way would mean
redoing much of the work that originally built it, because the intermediate
steps in its construction would have been compiled out.

tTRecall from Section 2 that completion of an operator must be explicitly
asserted by a production.

205

7th International Generation Workshop • Kennebunkport, Maine * June 21-24, 1994

that are added to Soar's long-term memory. The conditions in
the left-hand-side of the chunks generalize from the particular
structures currently in working memory. Thus the chunks will
apply in other similar situations, allowing Soar to transfer what

• it has learned from the impasse in the current situation.
The possibility of transfer of knowledge depends, though,

on the size of the operator. A very large operator that integrates
a lot of problem-solving in a subgoal is likely to lead to chunks
that are very specific, because they depend on and affect a
lot of working memory; they will therefore not transfer to
other situations very often. On the other hand, very small
operators that do only a little work will not gain much from
chunking, because the chunks will compile only a small amount
knowledge, preserving the need to apply a large number of
operators at the top level. There is a tradeoff between large
operators that are very likely to have impasses (because few
previous chunks will transfer to them) and small operators
that won't allow much learning. The use of chunking thus
pushes NL-Soar towards "medium-size" operators that have
a moderate amount of transfer and whose chunks collapse a
moderate amount of processing.

There is a similar tradeoff between chunking and reactivity.
The more work a single operator does, the faster NL-Soar will
be able to generate utterances (assuming the operator doesn't
reach an impasse). On the other hand, an operator that does
a lot of work will need a lot of processing in a subgoal (or
subgoals) to build its implementation, and the more time NL-
Soar spends in the subgoal that builds the operator, the greater
the chance that some other task will interrupt NL-Soar and
replace the top-level operator without resolving the impasse
and building the corresponding chunks. At the least, this will
mean repeating work; in the worst case there might operators
that never get enough time to finish. The tradeoff here is
really between before and after chunking has occurred: larger
operators will run faster once the necessary chunks are built,
but are more likely to take too much time to get built in the
first place.

These tradeoffs provide a more refined answer to the ques-
tion of operator size. Operators should be designed so that
their pre-chunking implementation takes a moderate amount
of time and will produce general but non-trivial results. This
will provide the reactivity needed by a real-time system in
both pre-chunking and post-chunking situations; indeed, the
specific real-time requirements of a particular application can
determine the appropriate operator size.

8 Conclusion

The primary challenge for NL-Soar's generation processing is
to perform generation in a way that allows flexible shifting of
control between language and task operations. As we have
seen, NL-Soar provides this flexibility by organizing genera-
tion as a sequence of incremental steps that can be interleaved

with task actions as the situation requires. The result is a lan-
guage generation capability that can be integrated with task
operations at a broad level (as we did in NTD-Soar) or a more
fine-grained level (as we did in TacAir-Soar); in critical situ-
ations, task operations can even interrupt language operators.
This interleaving is driven by the requirements of the situation
in which the system is operating; when there are no time-critical
non-linguistic tasks pending, language can proceed uninter-
rupted. Thus NL-Soar provides the flexible control a system
operating in a real-time environment needs.

Acknowledgements

We wish to thank Greg Nelson and Rick Lewis for extensive
help and feedback during the integration of NL-Soar with NTD-
Soar.

References

[Cho81]

[CSC+93]

[Lew93]

[LLN91]

[LNR87]

[New90]

[NLJ94]

[RJJ+94]

[RLN931

Noam Chomsky. Lectures on Government and Binding.
Foils Publications, Cinnaminson, NJ, 1981.

R. B. Calder, J. E. Smith, A. J. Courtemanche, J. M. E
Mar, and A. Z. Ceranowicz. ModSAF behavior sim-
ulation and control In 3rd Conference on Computer
Generated Forces and Behavioral Representation, 1993.

Rick Lewis. An Architecturally-based Theory of Human
Sentence Comprehension. PhD thesis, Carnegie Mellon
University, 1993. Also available as Technical Report
CMU-CS-93-226.

Jill Fain Lehman, Rick Lewis, and Allen Newell. Inte-
grating knowledge sources in language comprehension.
In Proceedings of the Thirteenth Annual Conferences of
the Cognitive Science Society, 1991.

John E. Laird, Alien Newell, and Paul S. Rosenbloom.
Soar: An architecture for general intelligence. Artificial
Intelligence, 33:1-64, 1987.

Allen Newell. Unified Theories of Cognition. Harvard
University Press, Cambridge, MA, 1990.

Greg Nelson, Jill E Lehman, and Bonnie E. John. Expe-
riences in interruptible language processing. In Proceed-
ings of the 1994 AAAI Spring Symposium on Active NLP,
1994.

Paul Rosenbloom, Lewis Johnson, Randy Jones, Frank
Koss, John Laird, Jill Lehman, Robert Rubinoff, Karl
Schwamb, and Milind Tambe. Intelligent automated
agents for tactical air simulation: A progress report. In
4th Conference on Computer Generated Forces and Be-
havioralRepresentation, May 1994.

Paul Rosenbloom, John Laird, and Allen Newell. The
Soar Papers: Research on Integrated Intelligence. MIT
Press, Cambridge, Massachusetts, 1993.

206

