
Reasoning with a Domain Model
S t e f f e n L e o H a n s e n

K ø b en h a v n

A b str a c t
A domain model is a knowledge base containing both domain specific and world
knowledge. You may take the domain model to be both a universe of interest and a
universe of problems. As a universe of interest the model contains all the information
relevant and necessary for the intended use of the model as a store of information, a
knowledge base. As a universe of problems the model represents a problem space and the
relevant and necessary inferential tools needed by the model for the intended use as a
problem-solving mechanism. Problem solving, in this case, means finding answers to
queries about domain-specific knowledge. In this paper we shall discuss some
fundamental problems related to the construction and use of a domain model called FRAME WORLD.

1 In tr o d u c t io n
The domain model presented in this paper is thought of as a module in a
knowledge system using a natural language interface to retrieve
information in a database. As a module of the overall system the domain
model serves the purpose of evaluating user queries with respect to
domain-specific knowledge and that of generating appropriate arguments
for subsequent SQL commands.
The domain-specific knowledge of the model comprises facts about
domain-specific entities, their properties and possible relations between
these entities, whereas world knowledge comprises information not
represented in the domain but necessary for the model as a problem
solver, e.g heuristics, general rules about causal or spatial relations and
the like. The relevant rules and facts are used by an inference machine,
not only to state information already explicitly at hand, but also to
support the system in making implicit domain-specific knowledge
explicit.
The knowledge representation schemes used in the domain model
presented are a semantic network, frames, so-called model predicates and
heuristics. In the following sections we shall present and discuss the
implementation and intended use of FRAME_WORLD, first of all
problems of reasoning with inferential structures given by virtue of a
specific representation scheme.

I l l

Proceedings of NODALIDA 1993, pages 111-121

2 T h e d o m a in m od el
The knowledge in the domain model and the structure of the model
depends entirely on the purpose it serves. As already mentioned, the
model is thought of as a kind of filter, a means of controlling and
checking the knowledge represented in the queries posed to the system by
the user and either reject the query as a senseless one or compute and
generate one or more arguments to be used in an SQL command to
retrieve the required information.
The basis for building and constructing the domain model, therefore, is
the set of possible and allowed queries to the system, like for instance;
who is the colleague of X, how many people are employed in the sales
department, or how much is the salary of X?
To answer questions of this sort you have to have access to both domain-
specific and world knowledge. To know whether X and Y are colleagues,
you have to have some rule telling you what it means to be colleagues and
some means of checking if X and Y in our domain actually do fit this
definition. If this is not the case, we do not want the system to react by
simply answering 'No', but an output like: 'X is a customer, and Y is an
employee'.
To this purpose the domain model needs information about entities and
relations in the domain and in the world outside the domain as well as
some kind of machinery that uses this knowledge for information
retrieval and query answering.
Entities and relations between entities inside and outside the domain are
represented as a network of nodes and links. The nodes in the net are
conceptual entities, the knowledge primitives of the model. The links in
the net either relate concepts as conceptual entities to each other or
concepts as arguments of a semantic predicate to each other. The former
kind of links are called conceptual links, the latter, the relational links,
are called role relations.
The description of a node comprises both the set of incoming and
outgoing links as structural information about the concept as well as the
set of conceptual features characterising the specific concept in question.
This description is implemented as a frame. The role relations, too, are
mapped into frames such that for each concept and for each role relation
in the net there will be a frame with the same name as a description of
that particular knowledge unit.

112

3 R ep resen ta tio n sch em es
3 .1 T h e n etw ork
Using a network for knowledge representation in a domain model seems
obvious. Knowledge pictured as a network makes it possible to represent
a conceptual hierarchy as a nice structure of nodes and links representing
all available information immediately ready for use. All you need is the
right algorithm extracting the information or transfering information
from more to less general nodes of concepts. It seems to reduce
knowledge retrieval to simply finding the right node or nodes and the
right path connecting two or more nodes with each other.
It is, however, not as simple as that. Reasoning with a network
presupposes a well-defined syntax and semantics of the net as discussed
and emphasized in several papers (e.g. Woods 1987 & 1990,
Thomasson/Touretzky 1991).
The idea of using networks as a representation scheme is that of making
information attached to some node X accessible for other nodes connected
to X. This property of a network is the fundamental principle of
inheritance and path-based reasoning, and probably the most important
reason for the popularity of this way of organizing knowledge and using
a network as an inferential tool.
Inheritance means that information kept in a node X is inherited by a
node Y if Y is connected to X. Path-based reasoning means infering
conclusions by way of finding a correct path through the net, in most
cases simply by computing the transitive closure of a set of links in the
net (Thomason/Touretzky 1991:239). Let us illustrate these principles
using a fragment of the domain net.
In this fragment (fig. 1) we have two different kinds of conceptual links
labelled ako and apo, a kind o f and a part of , and a relational link
labelled works_in stating that an employee works in a department. Both
the ako and apo relations are transitive relations, and without any further
restrictions one might infer that a subordinate is a kind of legal person.
This conclusion is derived by simply computing the transitive closure of
the links involved, but it not a valid one because it is based on two
different and incompatible concepts: the concept/zrin as a subconcept of
the superconcept legal person, a generic concept defined by a set of
conceptual features, and the concept firm defined by the set of parts
constituting it as a whole, one of which is a department.

113

ako

apo

FIG. 1

To avoid conclusions like the one just presented we have to define both
the syntax and the semantics of the net. The net in FRAME_WORLD
consists of the following components:

(1) A set of nodes F = {Cfi,...,Cfn}, generic concepts defined by a
set of conceptual features,

(2) A set of nodes P = {Cpi,...,Cpn}, part-whole concepts defined
by a set of parts,

(3) A link type: Lako. labelled 'ako',
(4) A link type: Lapo, labelled 'apo', and
(5) A link type: Lrole. labelled with the name of the role.

A well-formed link in the net is a triple of one of the following types:
(6) <Lako>Cfi,CQ>
(7) <Lapo.Cpk,Cpi>
(8) <Lapo,Cfm,Cpn>

A well-formed path in the net is a structure of well-formed links. The
interpretation of a well-formed link goes as follows:

114

(9) Lako(X) = Y: X < Y,
X is a subconcept of the superconcept Y,

(10) Lapo(X) = Y: X ct Y,
X is a part of Y.

Using these definitions we can reject the conclusion; a subordinate is a
kind of legal person because the final link of the path: *<Lako.Cp,Cf>, the
firm being a kind of legal person is not a wellformed link.
It is easy to see now how the definition of a well-formed link and of a
well-formed path at the same time defines the inferential structure of the
net as a sequence of well-formed links. The syntax of a well-formed link
also defines the syntax of a well-formed query, and the interpretation of a
well-formed query is the same as that of a well-formed link.
The link type Lrole is not part of the inferential structure in the net. This
link type is part of the definition of concepts and a means of associating
concepts with thematic roles like

(11) Ldeal with(X) = Y: deaI_with(X:actor,Y:locus)

3 .2 F ra m es
The network, as demonstrated in the previous section, is a knowledge
base mapping a conceptual hierarchy into nodes representing conceptual
entities and links representing conceptual relations. These nodes and links
are the knowledge primitives in the domain model. In addition, the
network also keeps information about role relations associating concepts
as arguments of a semantic predicate with thematic roles.
The description of the nodes and the role relations as objects of
information is placed in the frames in the model. A structural description
of a node comprises all incoming and outgoing labelled links in the
traditional slotrfiller structure, using the label of a link as slot and the
value of a link as filler. The description of a generic concept, further,
comprises the conceptual features defining the concept in a slot labelled
attributes.
For each concept and for each role relation there will be a frame
describing the entity in question. Role relations as knowledge objects are
treated in the same way as conceptual entities, i.e. as structured objects of
a taxonomic hierarchy. Based on the syntax adopted by the project all the

115

frames in the domain model are represented as Prolog terms like for
instance:

frame(employee,
[ako-[val physical_person],

apo-[val department],
role-[val work]

]).
The concept employee is described as a kind of physical person, as a part
of a department and as a valid argument in the role relation work.

frame(deal_with,
[ako-[val process],

roles-[calculate deal_with(X,Y)]
]).

The role relation dealjwith is described as a kind of process with a role
structure to be computed by the procedure calculate. The possible values
of X and Y are computed using the so called model predicates.

3 .3 M o d e l p red ica te s
Model predicates were introduced by (Henriksen/Haagensen 1991) as a
means of checking the validity of types of arguments. Thus the
interpretation of the model predicate;

deal_with(nRM,CUSTOMER)
defines the valid arguments of the semantic predicate deal_with to be of
the type FIRM and CUSTOMER.
In FRAME_WORLD we have extended the function of model predicates
to also associating types of arguments with thematic roles. In our domain
model we have the following three instances of handle_med (eng.
deal_with):

handle_med(actor:firma,locus:kunde)
handle_med(actor:firma,theme:vare)
handle_med(actor:kunde,locus:firma)

Instead of having a frame for each reading of the predicate the procedure
calculate will compute the relevant role structure. The actual use and
function of the model predicates will be demonstrated in section 4.4.

116

3 .4 R u le s
The core of the domain model as a reasoning system comprises the
network and the frames. In addition, the model may use both the model
predicates and a set of domain-independent rules as part of an inference
procedure. The rules, representing general world knowledge, play a very
important role in making implicit domain-specific knowledge explicit
defining where to look and what to look for in the knowledge base.
For the present only three rules have been implemented defining the
concepts superior and colleague and the role relation an_employee_of.
These rules, however, illustrate the need for and use of world knowledge
implemented as rules.

3 .5 T h e in feren ce m a ch in ery
The inference machinery of the model is a set of Prolog procedures. The
strategy implemented is based on the principle of inheritance and path-
based reasoning using build-in facilities of Prolog. The basic operation of
the machinery is that of applying the interpretation of a link as a function
to a node yielding as value another node. This is not the place, however,
to go into details with the inference machinery. Let us, instead, take a
look at how the domain model actually may be used and how it functions
as a knowledge filter and generator in a question-answering system.

4 R ea so n in g w ith th e d o m ain m od el
In this section we shall focus on the intended use of the domain model.
For the present, we can only show how to use the network, the frames,
the model predicates and the rules as part of a reasoning system. This
may, however, give you an idea of the intended performance of the
model as a whole

4 .1 T h e fra m es
The frame structure is utilized in two ways: (a) either to instantiate
variables used by the inference machinery with values found in a frame,
or (b) to find one or more frames matching a description:

(a) ?- frame(leder,S lo ts).
S lots = [ako-[val ansat], role-[val lede]]

117

?- frame(lede,S lo ts).
S lo ts = [ako-[val arbejde],

roles-[calc lede(_8210,_8211)]]

(b) ?- frame(Name,[ako-Ako,role-RoIe]).
Name = leder
A k o = [val ansat]
R o le = [val lede]

4 .2 T h e n etw o rk
As you have probably already noticed, the structure of a frame as a
description of a node is an encoded fragment of the network. The
inference machinery uses this property of a frame in path-based
reasoning. Actually, there is no network explicitly at hand in the domain
model, but using the structure of the frames the inference machinery may
generate one or more sub-nets computing the transitive closure of a link
in the net:

? - get_frame(Name,ako-Ako).
Name = person
Ako = entity
Name = physical person
Ako = person
Name = employee
Ako = physical person

?- get_frame(Name,apo-Apo).
Name = department
Apo = firm
Name = employee
Apo = department
Name = manager
Apo = department

118

Generating hierarchies of this kind may at a later time be used as an
instrument to check whether some inferred type value, say, secretary, is
subsumed by some other type value, employee, and, consequently, a valid
argument of the semantic predicate work as in: work(secretary, department).

4 .3 In h e r ita n c e
Inheritance normally means inheriting properties. This is also true of the
domain model although inheritance in this case rather means structure
copying (Winston 1974:263). The concept physical person in the net is
defined by the features: Navn, Adresse and CPR. These features are
representend in the corresponding frame in a slot labelled attributes and
may be inherited by all subsumed concepts like

? - get_frame(sekretaer,attr-Attr).
Attr = [navn:NAVN,adresse:ADRESSE,cpr:CPR]

This is also true of role relations as features defining a generic concept:
? - get_frame(sekretaer,[role-Role,roles-Roles]).

Role = arbejde
Roles = arbejde(actor:ansat,locus:firma)

In this case the role relation and the role structure is inherited from the
superconcept employee.

4 .4 M o d e l p red ica tes
The model predicates are potential inferential tools, tools to support the
inference machinery as a means of controlling types and values
instantiated by the inference machinery. These predicates may be used in
three different ways:
(1) the procedure calculate called in a frame computes all possible role

structures of a specific predicate:
?- get_frame(handle_med,roles-RoleStr).

handle_med(actor:firma,locus:kunde)
handle_med(actor: firma, theme: vare)
handle_med(actor:kunde,locus:firma)

119

(2) given a specific conceptual entity as argument calculate computes the
corresponding role structure:

9 - get_frame(kunde,roles-RoleStr).
handle_med(actor: firma,locus: kunde)
handle_med(actor:kunde,locus:firma)

(3) the procedure calculate computes the role structure inherited from a
subsuming argument type:

? - get_frame(sekretaer,roles-Roles).
arbejde(actor:ansat,locus:firma)

4 .5 T h e ru les
The rules in the domain model are implemented as Prolog rules. The
definition of two colleagues, X and Y, presupposes that they are both in
the same department and that they are both at the same level of
employment, that is either subordinates or managers of a kind. The latter
condition means that the persons in question as nodes in the net has to be
either sister nodes or subsumed by the same superconcept, the former
condition is implemented using a shared variable, AFD, in the call of the
knowledge base. A simplified version of the actual rule, then, is:

kollega(X,Y):-
get_frame(STX,ako-Ako),
get_frame(STY,ako-Ako),
table(X,STX,AFD),
table(Y,STY,AFD),
X \== Y.

Using rules like this one is one way of incorporating domain-independent
knowledge in the domain model. The user of the system is not supposed
to have any knowledge about the data structures in the knowledge base. If
you don't want to tune the knowledge base to some specific application or
to be usable for only a limited amount of users you will have to supply
the domain model with several rules like the one just presented, changing
general knowledge about the domain into domain-specific knowledge and
making implicit knowledge explicit.

120

5 S u m m a ry
In this paper we have presented some principles and methods used to map
domain-specific and world knowledge into a domain model called
FRAME_WORLD. We also showed that, having access to knowledge
about conceptual entities and relationships in the domain in question, this
model may be used as part of a reasoning mechanism to both check and
generate types and values as valid arguments of semantic predicates . The
aim of using such a domain model is to facilitate the dialogue between the
end-user and a knowledge database. FRAME_WORLD is still just a toy
model, but yet a useful tool to investigate and test principles and methods
underlying the construction and use of a domain model.

R e fe r e n c e s
Henriksen, Lina and Lene Haagensen. 1991. Speciale om domcenemodetiering. Institut

for Datalingvistik, HHK.
Thomason, Richmond and David S. Touretzky. 1991. Inheritance Theory and Networks

with Roles In; Sowa (ed.): Principles o f Semantic Networks, Kaufmann, pp. 231-
267.

Østerby, Tom. 1992. Kunstig intelligens, metoder og systemer. Polyteknisk Forlag.
Winston, Patrick H. 1974. Artificial Intelligence, Addison-Wesley.
Woods, W.A. 1987. What's in a link? Foundations fo r Semantic Networks, in:

Brachmann/Levesque (eds): Readings in Knowledge Representation, Kaufmann, pp.
217-243.

Woods, W.A. 1991. Understanding Subsumption and Taxonomy: A Framework fo r
Progress. In: Sowa (ed.): Principles o f Semantic Networks, Kaufmann, pp. 45-95.

121

