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A B S T R A C T  

This paper represents initial work on corpus methods for ac- 
quiring lexical/semantic pattern lexicons for text  understand- 
ing. Recently, implementors of information extraction (IE) 
systems have moved away from using conventional syntac- 
tic parsing methods, instead adopting a variety of pattern 
based approaches for complex IE tasks. While there has been 
much work towards automated acquisition of lexicons for con- 
ventional syntactic processing, little progress has been made 
towards those for pattern systems, due primarily, in the au- 
thor 's opinion, to a lack of a linguistic framework in which 
to view their use. In combining a functional view of both de- 
notational semantics and syntactic structure, this paper pro- 
vides a basis for examining the structural  constraints between 
the two. This functional viewpoint is the starting point for 
methods to investigate the characteristics of the interaction 
between text  and denotation, from the perspective of pattern- 
based systems. An approach for determining and exploiting 
these structural constraints is outlined in terms of building 
hierarchical lexical structures for text understanding. Exper- 
iment results for such a method are given, demonstrating the 
functionality of the approach. 

1. I n t r o d u c t i o n .  

Recently, implementors of information extraction (IE) 
systems have moved away from using conventional syn- 
tactic parsing methods, instead adopting a variety of 
pattern based approaches for complex IE tasks (such as 
the MUC contests and the ARPA-sponsored TIPSTER 
research). These pattern-based systems use short and 
fairly specific lexical patterns to specify the relation be- 
tween strings in the source text and particular entries 
in a problem-dependent knowledge representation. This 
one-step process substitutes for a conventional two-level 
process of a full syntactic parse followed by semantic 
interpretation. With considerably less time and devel- 
opment effort (notably demonstrated by [11, 8]), these 
systems achieve performance comparable to more stan- 
dard systems that  rely heavily on full syntactic analy- 
sis ([9, 5]). However, because these pattern-based sys- 
tems are still viewed as linguistically ungrounded and 
somewhat ad hoc, formal work in the application and 
acquisition of lexical patterns has lagged system devel- 
opment. In most current systems, patterns are produced 

through tedious hand analysis of text ([11, 4, 8]), while 
system coverage is gained either through extensive lin- 
guistic knowledge on the part  of the researcher (in judg- 
ing appropriate pattern generalizations), or by generat- 
ing and testing massive numbers of patterns. 

One exception to hand analysis is Lehnert's work in [12], 
in which machine learning techniques are used to infer 
possible patterns for extraction. While this AutoSlog 
technique has dramatically reduced system development 
time, the inference techniques use only sparse linguis- 
tic information, provide no means of generalizing pat- 
terns across domains, and still require that the rules be 
checked by the researcher for applicability. 

1 .1 .  A t h e o r e t i c a l  f r a m e w o r k  

By placing pattern-based approaches in a lexical seman- 
tic framework, such as Pustejovsky's Generative Lexicon 
theory ([16]), my aim is to provide a basis for pattern- 
based understanding systems which can be used to relate 
pattern-based approaches to more conventional linguis- 
tic approaches. Within such a framework, methods for 
pattern acquisition can be studied and developed and 
the effectiveness of patterns can be assessed. 

My main contention is that  this framework can be devel- 
oped by viewing the lexieal patterns as structural map- 
pings from text to denotation in a compositional lexi- 
cal semantics, merging the distinction between syntactic 
and semantic analysis, and obviating the need for sep- 
arate syntactic and semantic processing systems. This 
interpretation follows directly from an appeal to func- 
tional semantic principles. In the framework I present, 
patterns indexed to individual words relate semantic in- 
terpretations to lexical constraints, in a manner dictated 
by context. Patterns for multiple words in context can be 
combined to provide a consistent interpretation for large 
constructions - -  a mechanism that  could be viewed as a 
lexically distributed semantic grammar.  

A combined approach to pattern acquisition is out- 
lined here, with two orthogonal methods whose combi- 
nation leads to the construction of organized sets of lex- 
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teal/semantic patterns which relate strings in the source 
text to denotations in a predicate structured knowledge 
representation. A key feature of the mechanism is that 
these resulting patterns are organized hierarchically in 
terms of the specificity of both syntactic and semantic 
constraints. 

The methods presented are based on the strncturalprop- 
erties of the text and denotation, attacking the prob- 
lem of pattern acquisition from the separate directions 
of a purely syntactic approach and a purely semantic 
approach. The natural merger of the two methods re- 
sults in an automatic machine learning technique for the 
production of lexical/semantic patterns, relating use in 
context to denotation. 

Related works describing corpus techniques for deducing 
lexical structure ([lS, 19]) and semantically marked se- 
lectional frames ([6]) suggest that  lexical/semantic pat- 
terns can be induced from corpora, but do not directly 
apply to the generation of these distributed patterns. 

2. I n f o r m a t i o n  E x t r a c t i o n  

The recent Message Understanding Conferences (MUCs) 
and APt.PA Tipster project have posed a complex and 
fairly specific problem in information extraction (IE). 
The problem given is that  of creating semantic tem- 
plates or frames to correspond to newswire and newspa- 
per articles. The expressiveness of the templates is re- 
stricted and somewhat skeletal, capturing the bare facts 
of the text, and not its complete meaning. Hobbs ([8]) 
has argued effectively that  the problem is not one of 
full text understanding, but specifically one of informa- 
tion extraction ---: many types of information, such as 
speaker attitude, intensional constructs, facts not rele- 
vant to the chosen domain, etc., are not required; only a 
representation-specific set of domain information is the 
target for extraction. 

These types of systems provide a useful groundwork for 
the study of text interpretation systems because of the 
relative lack of difficulty in representing and manipulat- 
ing the resulting knowledge structures. Although deno- 
tational structures for the type of factual information 
required in IE can be quite complex, they are still far 
more tractable than representations of speaker attitude, 
opaque contexts, or intensionai constructions. 

For example, in the ongoing TIPSTER project, informa- 
tion in only two specific domains is to be extracted - 
one domain is joint ventures and business ownership, the 
other the microelectronics industry. The domains are 
further restricted by the particular hierarchy of predi- 
cate types used in the knowledge representation. Each 
domain has a set of templates (a particular implementa- 

tion of frames) which rigidly define what types of facts 
and relations from the text are representable. 

2 .1 .  M a p p i n g -  I E  : t e x t ~ - - ~ K R  

These information extraction tasks, as a subset of text 
understanding tasks, can be viewed as mapping prob- 
lems, in which the problem is to find the proper repre- 
sentation, in terms of templates, for the source text. The 
problem is one of mapping from the strings of the source 
text to a problem-dependent knowledge representation 
scheme. 

The template knowledge representation used in the TxP- 
STER/MUC tasks is based on a frame-like system com- 
monly known as the entity-relation, or ER., model. 

The El:t model codes information as multi-place rela- 
tions. Typically, each type of relation has a fixed number 
of arguments, each of which is an entity in the model. 
Entities can either be atomic - -  in the case of Ill'STEP,. 
atoms can be strings from text or items from a prede- 
termined hierarchy of types - -  or they can be composite, 
referring to other relational structures. 

Objects referenced in text often participate in more than 
one relationship. For example, the direct object of a sen- 
tence will often be the subject of a subordinate clause, 
either explicitly, or by pronominal reference. In a strict 
El:t model, this direct object would have to be repre- 
sented twice, once for each clause. By a slight extension, 
atoms in the ER model can be generalized to objects 
which can take multiple references. Thus, no real atoms 
appear in relations, but only references to atoms, or to 
other relations. This model is often termed an object- 
oriented model, but because of the overloading of that 
name in so many fields, I prefer to call these models 
reference-relation models (RR). The important extention 
from the ER model is that relations themselves may I)e 
treated as objects of reference by other relations. 

3.  L e x i c a l  S e m a n t i c s  

The structure of the denotational representation is im- 
portant not only for its expressiveness, but also in its 
relationship to the structure of the language it is to be 
derived from. In part, the structure of the language is 
determined by the semantic constraints of relations that 
are conveyed by its use. If the model is accurate enough, 
these constraints will be reflected in the representation. 

Many, if not most, semantic theories used in computa- 
tional linguistics today assume some degree of function- 
ality in language - -  words act as operators, or take ar- 
guments, or act as logical quantifiers over the things de- 
noted in their context. The corresponding grammatical 
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theories (e.g. CFG, LFG, HPSG, GB) assume a par- 
allel functional structure, incorporating notions of com- 
binational categories, argument structure, or selectional 
frames into the lexical representation. These structures 
use individual words or constituent phrases as functional 
objects, projecting expectations or constraints to subcat- 
cgorize for arguments to be incorporated into the func- 
tion. 

3.1. Structural ly  specif ied semant ic  
relations 

The functional semantics of the operators, then, spec- 
ify the nature and lexical appearance of the arguments. 
The appearance of a particular head will generate ex- 
pectations for the number and kind of arguments to be 
found, and dictate the semantic relation to be applied 
to them - -  because we have seen the operator, we can 
expect to find its operands in the vicinity. Further, if 
these operands do not have distinct types, we will need 
some other mechanism, such as position or order, to be 
ablc to distinguish them. In this way, the need for syn- 
tactic structure is driven by typing ambiguities in the 
semantics. 

There is an immediate parallel between the semantic 
specification of function/argument structure and the 
specification of the reference-relation representations: 
the function is analogous to the predicate relation, while 
the arguments are the referenced components of the re- 
lation. In computational linguistic models, this sort 
of functional semantics has proved very useful in pro- 
viding a mechanism for deriving frame-like denotations 
when processing language (predicate logic and unifica- 
tion frames, two of the more popular denotation schemes, 
can both be transformed to general RR models). In fact, 
it is often the case that  the relations of the RR model 
are the same as the semantic relations specified by the 
language. (Whether this is because of a desire for rep- 
resentational efficiency or for other reasons I will leave 
unexplored.) 

S e m a n t i c a l l y  spec i f ied  s t r u c t u r a l  i n t e r p r e t a t i o n :  
We can rephrase the relation between a functional head 
and its arguments in the following way: since the head 
requires a particular semantic relation to its arguments, 
an argument with an otherwise ambiguous interpreta- 
tion must be treated as being of the type required by 
the head. Because we know the interpretation of the op- 
erator, we can constrain the various arguments to have 
a corresponding and consistent interpretation. 

This type of argument disambiguation is exhibited in the 
phenomenon of type coercion ([16]). 

3.2. The  syntax-semantics boundary 

In terms of the function-argument structure or reference- 
relation representations, words or categories with similar 
type amibiguities and similar argument number are de- 
scribed as being syntactically similar, while differing in 
interpretation. On the other side, categories with similar 
functional or relational type are said to have similar se- 
mantics, even though the number and typical realization 
of arguments might differ considerably. 

As the specificity of the relational constraints varies, 
the distinction between the two can also vary. Some 
highly cased languages (e.g. Japanese and Latin) have 
loose syntactic constraints; the case marking develops 
constraints for the consistent semantic incorporation of 
the various arguments within the functional scope of the 
heads. Other languages, such as English, have a much 
more definite word order, where the configuration of ar- 
guments and heads constrains their semantic relation- 
ships. Some constructions, such as idiomatic expres- 
sions, have both completely a fixed syntax and seman- 
tics. Poetic use has both a freedom of word order and 
a loose interpretation. Each form of linguistic construc- 
tion, however, has a consistency of interpretation derived 
from its components. 

By using a mechanism of language interpretation that 
explicitly examines the degree of specificity in argument 
position and in argument type, and especially their in- 
teraction with one another in use, one should be better 
able to achieve the goals of interpretation; that is, to 
relate the text to a particular denotation. 

4. The Generative Lexicon 
Theoretical approaches to lexical semantics have begun 
to incorporate this merging of syntactic and semantic 
description. The incorporation of argument structure or 
selectional frames is a large step in this direction. While 
the notion of argument structure is usually reserved for 
verbs, some theories, such as Pustejovsky's generative 
lexicon (GL), extend the idea to include all lexical cat- 
egories ([16, 17]). For the purposes of this discussion, 
we can consider the GL lexicon to carry two sorts of 
selectional information with every term: 

• Qualia structure, which provide semantic type con- 
straints on arguments. These constraints are used 
both in deriving expectations for the syntactic form 
of arguments, and in coercing ambiguous or polyse- 
mous arguments into the required types ([16]). 

• Cospecifications, which constrain the syntactic real- 
izations and ordering of arguments in relation to the 
lexical entry and to each other. These constraints 

130 



are specified much like regular expressions, and can 
provide varying degrees of 'fit '  to the syntax. 

In addition to these selectional constraints, each term 
has a mapping from the arguments to a predicate logic 
denotation, detailing the relationship in which the argu- 
ments participate. 

These three together embody what Pustejovsky calls a 
lexieal-eouceptuai paradigm (LCP), a representation of 
the expression of a particular concept, and the paradig- 
matic usage in context of the lexical entry to express 
that concept ([19]). 

It is easy to see how a theoretical approach such as GL 
can be operationalized: A local grammar,  correspond- 
ing to the cospecifications, and indexed off the lexical 
entry, could be used in conjunction with a type match- 
ing system which imposes the semantic constraints of 
the qualia structure. The resulting mechanism, when 
matched against text, could place the matching argu- 
ments appropriately in the predicate denotation to re- 
turn an interpretation of the text. 

This system, which by conjoining argument type and 
positional information avoids making a distinction be- 
tween separate syntactic and semantic analysis, would 
be a pattern system. 

This system has been implemented, in part, in the 
D1BEROT information extraction system ([4]). 

5. P a t t e r n s  

Pattern-based extraction systems combine syntactic and 
semantic processing through the use of patterns. Pat- 
terns consist of lexically specified syntactic templates 
that are matched to text, in much the same way as reg- 
ular expressions, that are applied along with type con- 
straints on substrings of the match. These patterns are 
iexically indexed local grammar  fragments, annotated 
with semantic relations between the various arguments 
and the knowledge representation. In the most general 
system, the units of matching could range from single 
lexical items to phrasal components or variables with 
arbitrary type constraints. The variables in the pattern 
can be mapped directly into the knowledge representa- 
tion, or, through type constraints, used as abstract spec- 
ifications on the syntax. Pattern-based systems operate 
by combining numerous local parses, without relying on 
a full syntactic analysis. 

5 .1 .  DIDEROT,  a p a t t e r n  e x a m p l e  

For example, in the DIDEROT project ([4]), a pattern is 
represented as a GL structure (GLS) which gives the syn- 

gls (es tabl i sh ,  
s y n ( . . .  ) ,  
args( [argl (AI, 

syn( [ type  (np) ] ) ,  
qualia( [formal ( [code_2, organization] )] ) ), 

arg2 (h2, 
syn( [type (np)] ), 
qualia( [formal ( [code_2, organization] )] ) ), 

arE3 (A3, 
syn( [type (np)]) ,  
qualia( [formal( [code_2, j oint_organ] )] ) )] ) ,  

qualia( [formal (t ie_up_icp) ] ), 
¢ospe¢ ( [ 

[hi  ,* ,  s e l f  ,* ,A2,* ,wi th ,  A3], 
[A1, and,A3,*, sel f  ,* ,A2],  
[A 1, together,  with,  A3, * ,  se l f ,  * ,  A2] , 
[ A 2 , i s , t o , b e , s e l f , * , w i t h ,  A3], 
[ A l , * , s i g n e d , * , a g r e e m e n t , * , s e l f ,  A2], 
[At, *, self, *, joint, venture, A2,.ith, A3], 
[self, include ,h2], 
[A2, I~as ,self, with, h3] ] ), 

types (tie_up_verb), 
t empl at e_ s emant i c s (pt_t ie_up, 

tie_up( [AI ,A3] ,A2,_,existing,_))). 

Figure 1: A GLS for 'establish' 

tactic context along with mappings from text variables 
to an predicate logic knowledge representation. A typi- 
cal set of patterns used to cxtract joint-venture events, 
indexed here from the word 'establish', is given in fig- 
ure 1. 

The GL cospecification information is contained in thc 
cospec field. The index variable ' s e l f '  is used to rcfer 
to an appearance of any of the morphological forms of 
'establish'. These forms are given in the g y n ( . . .  ) ) field 
(omitted here for brevity). Literals, such as 'venture' or 
'agreement '  must match the text exactly. The a rgs  field 
indicates that argument variables AI and A2 must bc re- 
alized syntactically as t y p e ( n p ) ,  where np designates a 
class of strings which are heuristically noun phrases. The 
argument variables are further restricted to the semantic 
type path [ c o d e _ 2 , j o i n t _ o r g a n ) ] .  The type path es- 
tablishes a region in a type hierarchy which must contain 
the type of the argument ([20]). The last component of 
the cospec, '* ' ,  is a Kleene star over all tokens - -  any- 
thing or nothing may appear in this position. 

Because of the difficulty and expense of deriving pat- 
terns, GLSs cannot be produced for every term of im- 
portance. Rather, large segments of the lexicon are stat- 
ically typed in a sublexicon less intricate than the GLS 
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lexicon. When the GLS is applied to text, the matching 
of argument variables is accomplished either by calls to 
GLSs of the appropriate type, or by the invocation of 
small heuristic grammars.  These small grammars com- 
bine the type information of their constituents to match 
the constraints of the governing GLS. 

These grammars  are used especially for proper name 
recognition. Both company names and human names are 
matched using small grammars based on part-of-speech 
tags and the sublexicon typing. Some company names 
are keyed from semantic indicators such as 'Corp. '  and 
'Inc.', while many human and place names are identified 
from a large fixed name lexicon. 

Overall, other pattern-based systems operate in much 
the same manner, varying somewhat in the amount of 
machinery for pattern-matching, and the richness of the 
typing systems. 

6.  T h e  c u r r e n t  s t a t e  o f  P a t t e r n  
A c q u i s i t i o n  

The TIPSTER and MUC projects have provided a wealth 
of knowledge about building pattern-based systems. The 
hardest and most time-consuming task involved is cer- 
tainly the acquisition of patterns, which is still done pri- 
marily by tedious hand analysis. Working backwards 
from the key templates (hand generated knowledge rep- 
resentations of texts as interpretted by the project spon- 
sors), one can, by careful reading of the text, usually find 
those segments of text which corresponds to the repre- 
sentation entries Although the key templates are orig- 
inally created by a researcher doing a careful reading, 
the correspondence between text segments and the key 
templates has not been recorded, making the process er- 
ror prone and leaving the text open for reinterpretation. 
The next step, that  of correlating the text with the rep- 
resentation and deriving a pattern which captures the re- 
lation, is the most tedious and difficult part  of the task. 
Typing constraints for each class of predicate must be 
remembered by the researcher performing the task, and 
interactions between patterns must be identified and an- 
alyzed for possible interference. 

Here is a short (and most likely incomplete) review of 
the state-of-the-art in pattern acquisition, as it exists in 
the IE community: 

CIRCUS (Lehnert et al. [11]) - -  Handwritten CN (con- 
cept node) patterns for partial template extraction. 
Many man-hours were spent reading text, extracting all 
possibly relevant contexts. Patterns were checked by 
running the system. A knowledge-poor method with 
good coverage due to large numbers of trials. 

Shogun (Jacobs et al) - -  Handwritten AWK scripts. De- 
rived from compiled lists of company names, locations, 
and other semi-regular semantic types. Also from re- 
searcher analysis of these in context. Designed to aug- 
ment or replace previous methods with similar function- 
ality. 

FASTUS (Hobbs, Appelt, et al [8]) - -  Handwritten reg- 
ular expression-like patterns for partial template extrac- 
tion. Years of linguistic system building expertise im- 
proved pattern generality and helped avoid interactions 
between patterns. 

DIDEROT (Cowie, Pustejovsky, et al [4]) - -  Patterns for 
full template extraction. Initial patterns automatically 
derived from structured dictionary entries [2, 25] give 
moderately effective high level patterns. Partly auto~ 
mated tuning to corpus usage. Hand analysis of contexts 
and addition of patterns was used to complete coverage. 

CIRCUS + AutoSlog (Lehnert et al [12]) - -  Automated 
reference from template to text, using machine learning 
inference techniques, gives much of the coverage previ- 
ously provided by hand-analysis. Patterns must still be 
corrected by the researcher. 

The AutoSlog approach has obtained the most signif- 
icant benefit from automated acquisition. In this sys- 
tem, a sentence containing a string which corresponds 
to a template entry is analyzed for part-of-speech and 
major phrasal boundaries. If  the string entry from the 
template aligns with one of the phrases, a pattern is gem 
crated corresponding to the observed syntactic structure. 
However, since the generated AutoSlog patterns are pro- 
duced from single occurrences of context patterns, they 
are not likely to capture patterns generalizing to vary- 
ing contexts. In addition, the acquisition method is so 
closely tied only to specific parts of the knowledge repre- 
sentation (in that string entries only are matched) that 
extending the coverage, or generalizing the domain ap- 
pears to be as difficult as porting to entirely new do- 
mains. 

7.  S t r u c t u r a l  S i m i l a r i t y  C l u s t e r i n g  

The pattern systems described here a t tempt  to relate 
the use of terms in context to corresponding denotations. 
One of the major assumptions made here, as well as in all 
algorithmic computational linguistic systems, is one of 
consislency of use and meaning - -  that a term or phrase 
(or any linguistic structure) used in a particular fashion 
will give rise to a particular denotation. The goals of 
any grammar  induction or lexical semantic acquisition 
problem are to define those particulars - -  to find the 
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distinguishing features of the usage as they relate to the 
features of the denotation. 

The approach given here chooses to focus only on the 
structural features of usage and denotation. By classify- 
ing features relevant to the text~--,denotation mapping, 
the aim is to provide a vocabulary and mechanism for 
deriving and evaluating interpretation procedures. 

It has been noted already that there exist paradig- 
matic usages of terms to express particular concepts (the 
LCPs). It  is not a large leap to venture also that  partic- 
ular concepts have paradigmatic expressions in words - 
idiomatic expressions, 'stock phrases' and proper names 
being the most obvious examples. The relationship be- 
tween the two can be approached from both directions - 
by classifying the uses of a word in terms of their conven- 
tional expression of a concept, or by classifying the ex- 
pressions of a concept in terms of the words used. These 
classifications create a vocabulary that can be used to 
compare and relate words with concepts. 

This work provides a step in forming such a vocab- 
ulary by examining methods for classifying the struc- 
tural properties of the words and denotations separately, 
and in suggesting methods by which they could be uni- 
fied. Classification methods for both lexical and seman- 
tic structure are outlined here. An experimental im- 
plementation of the lexical approach is presented in the 
latter sections of the paper. 

7 .1 .  L e x i c a l  s t r u c t u r e  

Without considering its semantics, the use of a word can 
be expressed solely by its lexical environment, or con- 
text. Grammar-driven systems as well as pattern sys- 
tems achieve their performance by relying on the ex- 
pected structural properties of the language. We can 
express the consistencies and paradigms in the usage of 
a word in explicit terms of the similarities and common 
structural properties of the lexical environment in which 
that word appears, 

A large collection of usages could be analyzed to find 
natural classes of context, defined purely in terms of 
the lexical environment, to give a vocabulary of context 
types that  can be used to compare and relate differing 
words. The similarities of context would be determined 
by the structural similarities of their component strings 
of words. The presence and relative ordering of identical 
words, words belonging to the same structural similar- 
ity classes, or phrasal components, recursively defined in 
terms of context types, would be the environment fea- 
tures necessary for determining these classes. 

Groups of contexts could be organized into context types 

based on these similarity measures, with group member- 
ship determined by similarity. The contexts could be 
assembled into a hierarchical structure, in which groups 
of high similarity combine to form higher-order clusters 
encompassing the structural features of their component 
groups. 

Word classes could be defined inductively on this tree 
of context types by classifying words according to the 
sets of context types in which they have appeared. The 
hierarchy of context types and word classes encodes the 
specificity of the relation to the category. Lower levels 
of the hierarchy have strict context constraints, while 
higher levels, combining the classes beneath them, place 
looser constraints on context patterns. By studying the 
lexical context classes in relation to the semantic prop- 
erties of the terms, we could illuminate those features of 
context which correlate with, and in theory constrain, 
their semantic properties. 

An experimental method for performing these sorts of 
classification is presented in the later part of this pa- 
per, using string edit distance as a metric of similarity, 
and agglomerative clustering techniques to provide the 
classification structure. 

7 .2 .  S e m a n t i c  s t r u c t u r e  

In an analogous way, the predicate denotations of text 
could be classified purely from their structural proper- 
ties. In exactly the same manner as for context classes, 
relation predicates could be grouped hierarchically based 
on their structural features. The features one could use 
to derive predicate classes include predicate arity, speci- 
ficity, argument types, and structure depth, as well as 
a semantic type hierarchy or lattice defined for specific 
domain. 

The large databases of parallel text and denotations that, 
would be necessary for this are not as freely available as 
text corpora for study. Representations would have to be 
generated by hand. However, the work in template filling 
and analysis contributed by the research community to 
the TIPSTER effort has shown that deriving a sufficient 
volume is not out of the question. 

This classification of predicate structure would provide 
a basis for examining the constraints which predicate 
structure enforces on lexical realization. 

7.3.  I n t e g r a t i o n  

The natural integration of these two lines of study would 
result in a vocabulary of semantic and lexical classes that 
would enable the correlation of the lexieal structure of a 
text with its denotational structure, and the derivation 
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of structural mappings between the two. 

As an example of the benefits this integration might give 
to interpretation or IE systems, consider the following 
example, from the TIPSTER/MUC-5 domain: 

Imagine a researcher developing the domain-dependent 
vocabulary for an IE system. Assume that the system 
has a classification of the structural properties of gen- 
eral text, and has also a type hierarchy for general and 
domain-specific representations. 

The researcher has annotated a short segment of text 
with its interpretation in the problem domain. (See 
fig. 2). In the figure, the indices relate segments of text 
to their corresponding denotations. SMALL CAPS are 
used in the denotation to indicate known quantities in 
thc domain specific type hierarchy; mixed case is used 
for unknown types. 

[A[BIBM]B is jointly developing [cpractical X- 
ray tools 
for [Dthe manufacture of [Gdevices]G [Bbased 
on 0.25 micron or small geometries]E]D]C with 
[fUotorola]F]A. 

DEVELOPMENTA 
AGENT: 
"IBM" B 
"Motorola" F 
PRODUCT: 
"tools" c 

TYPE: 
X-RAY 
USE: 
MANUFACTURED 

PiODUCT: 
"devices" a 

FEATURE_SIZE: 
0.25 /~M E 

Figure 2: A segment of text, marked against a predicate 
interpretation 

Now that  the researcher has provided a connection be- 
tween text and denotation, the system can use the clas- 
sifications of context and mapping types as a vocabu- 
lary to describe the relation. For instance, it is now 
known that  ' IBM',  and also 'Motorola' ,  can be AGENT 
arguments, and specifically the A G E N T  arguments of a 
DEVELOPMENT predicate. The system probably has an  
LCP encoding the co-agentive functionality of 'wi th ' ,  but 
now learns specifically that  the DEVELOPMENT predicate 

allows this behavior, and that a configuration giving that 
interpretation is: 

[A1 . . .  PRODUCT with A2] 

This knowledge can augment both the LCP for 'with'  
and the mapping structures for DEVELOPMENT relations. 

Once the system has been provided with more text- 
denotation pairs particular to the domain, it may find 
a correlation between lexical structures containing the 
word 'developing' and DEVELOPMENT predicate struc- 
tures, and then postulate mappings between the two, 
building an LCP for 'developing'. Or, relying more heav- 
ily on general structural knowledge, the system could use 
an existing LCP for the word 'is', as represented by the 
syntactic pattern 

[ARGlis'X'ARG2 ...] 

and the predicate structure 
X-PRED 

ARG1 
ARG 2 

(where the word 'X '  is correlated with the predicate X- 
PRED). This general mapping for ' is '  could be used to 
postulate a correlation between 'developing' and DEVEL- 
OPMENT. 

Only through the development of a catalog and vocabu- 
lary of structural descriptions, however, could one hope 
to build a system such as this. 

8. Ed i t  D i s t a n c e  

One method for judging the similarity between strings 
of lexical items (tokens) is the edit distance formulated 
by Levenshtein ([13]). This is a similarity measure based 
on the minimum number of token insertions, deletions, 
and substitutions (mutations) required to transform one 
string into another. A generalization of this edit distance 
can be made by assigning differing weights to insertions 
of particular tokens or classes of tokens, and by also as- 
signing weights to token substitution pairs. Straight- 
forward computational methods for finding the edit dis- 
tance between two strings ([22, 24]) have been used on 
a variety of problems in biology, genetics, speech and 
handwriting analysis ([21]), as well as in syntactic anal- 
ysis of formal languages ([14]). (For a good introduction 
with applications to many domains, see [21].) 

To demonstrate the generalized edit distance, consider 
the two strings: 
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the path that  is the path 
the way that i:~ not the way 

The first string can be transformed into the second by 
a number of insertion, deletion, and substitution oper- 
ations. Substitutions are commonly counted as two op- 
erations, since they give the same effect as a deletion- 
insertion combination. In this example, 'not '  could be 
inserted; 'pa th '  could be substituted by 'way', then the 
second 'pa th '  deleted at the end, then 'way'  inserted; 
' tha t '  could be deleted then reinserted, and then 'not '  
inserted; etc. Many different sequences lead to the same 
result, but there will be a minimum number of opera- 
tions required for the transformation. 

After a short inspection, we could expect a minimum 
of 5 operations in this case - two for each change from 
'path '  to 'way',  and one for the insertion of 'not ' .  

This distance measure can be generalized to compensate 
for different similarities between types of tokens. For in- 
stance, if one decides that 'way'  and 'pa th '  are more sim- 
ilar to each other than either is, say, to 'is '  or ' the' ,  then 
it would be good to have the substitution o f ' p a t h ' - ' w a y '  
amount to less than the possible substitution 'pa th ' - ' i s ' .  
To accomplish this, a cost can be associated with each 
operation, perhaps even a different cost for each sort 
of insertion or substitution. Then a transformation of 
minimum cost, rather than minimum operations, can be 
defined. If one makes the simple assumption that a sub- 
stitution costs no more than the corresponding deletion- 
insertion pair, then this minimum cost can be shown to 
obey metric properties, and defines the generalized edit 
distance between the two strings, with larger distances 
corresponding to less similar strings. 

There is a straightforward method for computing edit 
distance. In a prime example of dynamic programming, 
the edit distance is computed for every pair of initial 
substrings of the two strings under study, with results 
for shorter substrings combining to give results for longer 
substrings. 

More explicitly, let our two strings be A = 
( a 0 , a l , . . . , a m )  and B = (bo,bl,...,bn), where a, is the 
ith token in string A, starting with token 1. We let the 
first component of the the string, a0, be a null token, 
representing an empty position into which we can insert. 

Define also the initial substring Ai = (a0, h i , . . . ,  hi) of 
a string to be the first i tokens, including the null token 
at the beginning. 

The computation starts by assigning D(A0, B0)) = 0, 
the cost of transforming a0 to b0, the null token to itself. 

A 

B I II-I  the path ] that  is the [ path 
- 0 1 2 3 4 5 6 

the 1 0 1 2 3 4 5 
way 2 1 2 3 4 5 6 
that  3 2 3 2 3 4 5 

is 4 3 4 3 2 3 4 
not 5 4 5 4 3 4 4 
the 6 5 6 5 4 3 4 
way 7 6 7 6 5 4 5 

Figure 3: Dynamic programming for edit distance ( ' - '  is 
the null token) 

Each subsequent step in the computation proceeds with 
the simple rule: 

D(Ai, Bj_i) + Din.~rt(bj) 
D(Ai, Bj) = min D(A,_,, Bj) + Dinsert(a,) 

D( Ai-1, B j - 1 )  "l- Dsubstitute ( ai , bj ) 

where Dinsert(X) is the cost for inserting z, and 
Dsubstitute($~, y) is the cost of substituting x for y. 

Starting with D(0,0), one can fill each D(i,j) in a ta- 
ble, ending at D(m, n), the edit distance between the 
two strings. The table is filled from upper left to lower 
right, as each entry is computed from its upper, leftward, 
and diagonal neighbors using the minimum rule above. 
Figure 3 gives this table for the example strings. 

8 . 1 .  S t r i n g  a l i g n m e n t s  

As a by-product of the edit distance computation, one 
can create an alignment of the two strings. This align- 
ment matches the elements of the two sequences in linear 
order and shows the correspondence between tokens and 
substrings of the two matched strings. An alignment can 
be generated directly from the table created in the edit 
distance computation by following the path of minima 
chosen during the computation from the upper left cor- 
ner to the lower right. Rightward travel along this path 
corresponds to insertion of a token from string A, down- 
ward travel to tokens from string B, and diagonal paths 
to substitutions. (Multiple minimum paths may result, 
giving alternate but equivalent alignments.) 

The alignment created from our two example strings (fig- 
ure 4) gives the correspondence between the tokens of the 
two initial strings. From the figure, it is easy to see the 
structural similarities of the two strings. 

Alignments can be created for sets of more than two 
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p i the i pat  i that i isl j the i path I 
the way that is not the way 

Figure 4: A string alignment table 

strings. These can be expressed in terms of extended 
alignment tables, with added rows corresponding to the 
additional strings. These alignment tables could fur- 
ther be abstracted to probabilistic descriptions of the 
sequences, using either a zero-order or Markov chain de- 
scription. Chan and Wang ([3]) have used syntheses, 
zero-order probabilistic descriptions of alignment tables 
in order to generalize the edit distance and capture the 
notion of distance between two sets of sequences. Tech- 
niques such as this may prove useful in later work. 

9.  C o n t e x t  C l u s t e r i n g  

Ill keeping with a straightforward approach to this pre- 
liminary work, a simple clustering technique was chosen 
to produce hierarchical sets of keyword contexts with 
similar structural properties. In this approach, contexts 
judged most similar in terms of a generalized edit dis- 
tance were grouped into clusters. This technique is sim- 
ilar to some methods used in automatic grammar induc- 
t, ion ([14]). 

Clustering was chosen over grammar induction or other 
abstract techniques for the simple reason that the result 
is more easily explained from the data. The resultant 
groupings indicate exactly which data contribute, and 
alignments or syntheses can help to determine the exact 
nature of the contribution. Grammar induction tech- 
niques give results so far abstracted from the data that 
analysis is often unclear. 

The clustering procedure used was the group average 
method, a variety of agglomerative hierarchical cluster- 
ing often used in biological and genetic studies in nu- 
merical taxonomy ([1]). The technique is agglomerative 
in that groups of increasing size are built from smaller 
groups. It is hierarchical in that each the members of a 
cluster retain their pre-existing cluster organization, as 
opposed to a flat structure in which the origins of cluster 
members are not retained. 

The hierarchy produced by the clustering algorithm is 
useful in judging similarity in a variety of ways. Compar- 
ing the clusters at one similarity level with those groups 
either above or below in the hierarchy gives a good in- 
dication of which properties are responsible for the indi- 
cated level similarity. Properties of the data may become 
apparent due to their uniform presence (or absence) at 
a given level in the hierarchy. 
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9 .1 .  L o c a l i t y  in  t h e  e d i t  d i s t a n c e  

There is a degree to which purely configurational (syn- 
tactic) considerations are local in nature. Syntactic well- 
formedness and syntactic interactions are properties and 
behaviors that seem to have a high locality of effect. The 
presence of phrasal constituents in almost every syntac- 
tic theory is evidence of the degree to which this belief 
is held - -  phrasal boundaries mark the limits of local 
syntactic interactions for most word classes. Only some 
word classes, such as verbs and event-denoting nouns, 
seem to affect the placement and configuration of more 
distant constituents. Most word types seem to affect 
(and, conversely, are affected by) primarily the configu- 
ration in their immediate vicinity. 

In order to highlight the locality of these configurational 
effects, the edit distance used in the experiments was 
modified so as to decrease the importance of token dis- 
tance from the keyword. One would like to weight near 
tokens more heavily, but without ignoring the contri- 
butions of distant ones. A window function (sometimes 
called a step function) would be simplest, but would only 
count near tokens and completely discount far ones. A 
linear dropoff function would be able to include contri- 
butions of all tokens, but because some strings are very 
long, it would necessitate a slow dropoff if even the very 
distant tokens were to contribute to the measure. 

In the end, a geometrically decreasing weight function 
was chosen, due to its useful properties: 

• Near tokens are weighted more heavily than far to- 
kens. 

• All tokens in the string still contribute to the dis- 
tance measure. 

• A half power distance can be defined, which helps 
in the understanding and analysis of the results. 

The half power distance is the distance for which the 
tokens on one side (those near the keyword) account for 
half of the total possible edit distance, while those on 
the other side (farther from the keyword) account for 
the remainder. This helps give a more intuitive read- 
ing for the resulting distance, with an effective window 
around the keyword which can be treated equally with 
the remainder of the string. 



The implementation of this geometric dropoff requires 
only a small change to the original dynamic program- 
ming algorithm for edit distance. The table-filling rule 
becomes: 

D(Ai, Bj) = 

D(Ai, Bj-1) + L i+j x Dinsert(bj) 
min D(Ai.1, Bj) + L i+j x Dinsert(ai) 

D(Ai-1, Bj-1) + L i+j X Dsubstitute(ai, bj) 

where L is the locality factor, which is defined in terms 
of the half power distance, Ph: 

1 l / P h  L p , ,  _ 1 L =  ~ , s o t h a t  - 3 "  

9 . 2 .  P r o b l e m ~ - s p e c i f i c  w e i g h t s  

While it would be ideal to perform the analysis using 
only perfect equality of lexical items as a criterion, both 
the number of contexts required for useful generalization, 
and the immense computational cost of performing such 
experiments are prohibitive. In order to make the test 
procedures tractable in these experiments, lexical items 
were not treated uniformly as purely lexical tokens. The 
input was first divided into word classes based on stan- 
dard part-of-speech classification, and edit distance costs 
were assigned on the basis of those classes. 

The text was initially tagged using a stochastic part-oh 
speech tagger ([15]). The 48 tag types used were divided 
into 12 equivalence classes (verbs, nouns, determiners, 
adjectives, etc.) in order to simplify weight assignment. 
To give members of a given class a higher self-similarity, 
intra-class substitutions were assigned lower cost than 
inter-class substitutions. Perfect lexical equality was still 
accorded a cost of zero. 

These particular classes were chosen on the basis of gen- 
eral linguistic knowledge with respect to the underlying 
functional aspects~ of the theory. It is hoped that in later 
analyses, untagged text can be used in the system from 
end to end, with context type and word classifications 
coming as a result of the pattern clustering scheme. 

10.  C o n t e x t  m e t h o d  r e s u l t s  

The context clustering algorithm described above was 
run using a variety of different keywords. Two exam- 
pies, of and without, are given to provide a basis of com- 
parison with other methods in grammar  induction and 
selectional frame acquisition. One example of a word 
relevant to the TIPSTER project is given, to illustrate 
applications of the similarity clustering technique in ac- 
quiring domain-specific lexicons. 

199 occurrences of of, 197 of without and 150 of joint 

were chosen randomly from the 1988 Wall Street Jour- 
nal [26], part-of-speech tagged, and clustered using the 
localized edit distance and the group average clustering 
method. The half-power distance used was 6, giving 3 to- 
kens per string. Because of processing constraints, only 
the right-hand side of each lexical environment was used 
in the clustering. In order to achieve clusters of equal 
significance correlating both sides of the context, with- 
out assuming some intrinsic cross-correlation, the sample 
size would need to be increased dramatically. 

The results of the clustering are given in two forms. 
Dendogram tree structures are shown on the final page. 
These diagram are presented in order to provide a rela- 
tive indication of the structuring properties of the tech- 
nique - to show that  the clustering algorithm used pro- 
vides more than a flat grouping. In these tree diagrams, 
the vertical scale represents the similarity of merged clus- 
ters. Two segments of the tree joined by a horizontal 
segment indicates the merger of two clusters whose dis- 
tance corresponds to the height of the commcting seg- 
ment. Higher connections correspond to greater distance 
(less similarity). 

In addition to the dendograms, the context strings of 
some of the significant clusters are given as aligmnents 
in figures 5 through 13. The context strings are indexed 
by number, matching identical (although almost illegibly 
small) indices on the diagrams. 

1 0 . 1 .  P r e p o s i t i o n a l  a r g u m e n t s  

The prepositional keyword of was used to test whether 
the method could extract general noun-phrase structure 
(NPs being the usual right-hand complement of of). 
Clusters representing the expected short NP patterns, 
such as [DEW N], [DEW Adj N], and [DEW N-plural] were 
generated. 

Two of the more interesting low level clusters are illus- 
trated in figures 5 and 6. Figure 6 is a cluster which 
groups genetive NPs as the argument to of. Figure 5 il- 
lustrates phrasal delineation by punctuation, promising 
perhaps that  the method could also derive the syntac- 
tic phrase-structuring properties .and conventional uses 
of punctuation. 

Another test was run with the prepositional keyword 
without, again to test the for NP structure, and to illus- 
trate semantic subtyping of the arguments. Most of the 
argument clusters found were phrases denoting an event 
or action, either with a nominal event head (figure 7), or 
with a participial phrase (figure 8). 

The clustering for without also revealed as significant tile 
idiomatic expression 'without admitting or denying x, '  
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121: of  the  a sahan  au thor i ty  - I  
96: o f  the  dealer  , 

136: of  the  gross  na t iona l  p r o d u c t  
84: of the old one 
63: of the proposed actions 

Figure 5: of: the [MOD] NOUN DELIMITER 

where x is a term carrying negative connotations (fig- 
ure 9). 

1 0 . 2 .  D o m a i n - s p e c i f i c  v o c a b u l a r y :  j o i n t  

A trial using an exemplary word from the TIPSTER do- 
main was also run, to test whether the method could 
extract paradigmatic  use carrying semantic information. 
The word joint was selected because of its semantic re- 
latedness to the cooperative nature of the business tie-up 
events (the domain of  the TIPSTER task), and because 
of its observed heavy use in relevant context. 150 oc- 
currences of joint were taken randomly from the same 
corpus, and clustered using the same techniques as for 
of and without. 

The simplest clusters for joint are of the form 'joint x ' ,  
where x is a group behavior or a group (figure 10). This 
kind of semantic collocation information can also be de- 
rived through statistical hi-gram analysis ([7, 18]). 

Tile phrasal clusters produced by the method,  however, 
cannot be obtained with bi-gram methods. Figures 11,12 
and 13 illustrate clusters of  paradigmatic  usage of joint 
ill the business reporting domain.  These clusters reflect 
tile semantic collocations tha t  can be expected to appear 
with joint. The appearance of these clusters shows that  
the paradigmatic  use embodied by the LCP is derivable 
by purely structural lexical methods.  

The more structured clusters shown here for joint (fig- 
ures 11, 12, and 13) give patterns with direct applicabil- 
ity to IE systems. In fact, these patterns were derived 
previously through other techniques and are currently 
used in the DIDEROT system to trigger extraction of joint 
venture events. 

1 1 .  C o n c l u s i o n  

This paper has presented a linguistic framework in which 
to view the use of pattern-based extraction systems for 

85: of the code 's spirit 
47: of the dollar 's recent rise 

146: of the company 's quarterly dividend 
182: of the president-elect's favorite phrases 

Figure 6: of: the N's NP 

119: without a significant correction 
38: without a significant retreat 
19: without a proper hearing 
ll:lwithout a legislative vote 
42:lwithout a bone 

168: w i t hou t  any coat ta i l s  
155: w i thou t  any resul ts  

61: w i t h o u t  any au thor i za t ion  wha t soever  
36: without any congressional authorization 

136: without any prior regulatory approval 

Figure 7: w i t h o u t :  [alany ] EVENT-NOMINAL 

93: 
7: 

138: 
166: 

4: 
120: 
192: 

186: 
20: 

134: 

47: 
16: 

150: 
159: 

without raising tax rates 
without  raising taxes 
without hurting customer~ 
without telling them 
without recognizing it 
without borrowing money 
without using installment notes 

without  taking a strike 
without fomenting a revolutior 
without complying with federal disclosure 

without put t ing up any cash 
without buying any shares 
without  ever entering the courthouse 
without  bail pending a hearing 

Figure 8: w i t h o u t :  xing Y 

100: 
91: 

115: 
104: 
105: 
146: 
145: 
140: 
117: 

52: 
34: 
38: 
39: 
50: 

joint bid 
joint bid 
joint effort 
joint appearances 
joint appearance 
oint ventures 
oint ventures 
oint ventures 
oint ventures 
oint venture 
oint venture 
oint ventures 
oint ventures 
oint chiefs 

Figure 10: j o i n t :  cooperative 

122: joint venture of enron corp and sonat  inc I 
26: joint  venture of sammis corp and transameric~ corp 

124: joint  venture of general motors  corp and allied-signal inc 

Figure 11: j o i n t :  venture of x coRP and v INC 
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text understanding. The framework is based on the func- 
tional aspects of denotational lexical semantics, treating 
the lexical and semantic components of an expression as 
mutual constraining parts, each imposing constraints on 
the structure of the other. 

The viewpoint leads to an investigation of the lexical- 
semantic interaction in terms of a classification of struc- 
tural properties. The two ends of the spectrum can 
be analyzed separately, bringing independent structural 
classifications to bear on the analysis of the interaction. 

Methods were outlined for creating classifications of this 
sort, to create hierarchical descriptions of context and 
predicate types, which form a descriptive vocabulary for 
analyzing the interaction of lexical and semantic proper- 
ties in use. 

Experiments were performed on structural clustering of 
lexical context, using a localized edit distance as a mea- 
sure of similarity. These experiments showed that struc- 
ture clustering can derive the lexical information re- 
quired for constructing LCPs. 

F u t u r e  d i rec t ions :  Obviously, the current level of 
these techniques is not sufficient to automatically create 
patterns mapping lexical structure to semantic denota- 
tions. What they do show, however, is that edit-distance 
clustering is a useful technique for extracting the syntac- 
tic portions of such patterns - from a set of less than 200 
contexts in each case we see significant clusters, identi- 
cal to patterns used in an existing IE system. Further 
work is needed in order to fold the semantic mapping 
into the clustering process. Metrics are needed for clas- 
sifying both semantic structure and for the integrated 
mappings. One solution might be to augment the string 
edit distance with a predicate-similarity metric based on 
tree-matching, with the relational structure treated as a 
tree of predicates and arguments. This combined metric 
could provide a measure of similarity for classifying the 
structural mappings themselves. 

Much of the community has discussed the need for se- 
mantically marked text, much like that in the example 
of figure 2, over which to run machine learning methods 
such as these. A collection of text with relations explic- 
itly marked out would provide an ideal set of learning 
examples for the clustering technique shown, and for ex- 
tension into methods integrating the semantic and syn- 
tactic clustering. 

Because of the cost in analysis time, the creation of such 
a collection is currently unreasonable. In parallel re- 
search, I am constructing tools to allow the researcher 
to easily mark text relative to an arbitrary RR knowl- 
edge representation scheme. 

The similarity measure could benefit from further re- 
search. As it is given, the edit distance provides no dis- 
tinction between contiguous substring matches and arbi- 
trary subsequence matching. A measurement for rever- 
sals - the alternation of a pair A B  with BA, for tokens 
(or substrings) A and B - would be useful, &s this sort 
of swapping is common in natural language. There have 
been some attempts toward this in the genetics commu- 
nity, but no significant success has been achieved. 

The metric also could benefit from more advanced meth- 
ods of comparing sets of strings, rather than pairs only. 
In order for these techniques to be most effective in de- 
riving lexical structure, the comparison metric should 
give credit explicitly to those substructures responsible 
for the assessed similarity. The present metric can only 
do this on a pair-wise basis. The syntheses presented in 
[3] provide one method for extension to sets of strings, 
probabilistic grammars another. 

The method also suffers from its computational complex- 
ity. The clustering method is O(n~), where n is the num- 
ber of contexts, while the edit-distance computations are 
O(k2), where k is the average context length, making the 
entire method O(k2n2). The context length, k is rela- 
tively fixed, but the number of separate contexts n is 
unbounded. For large numbers of context strings, the 
computational cost is prohibitive. However, there is a 
simple parallel reduction of the clustering which brings 
the cost down to a tractable O(nk ~) for n processors. I 
have begun to experiment with this algorithm on a CM-5 
parallel computer. 

References related to edit distance and context evalu- 
ation, primarily from the biological literature, are con- 
tinually coming to my attention. Unfortunately, I have 
not had ample opportunity to judge their relation to the 
present work. 

Acknowledgements: I would like to thank James Puste- 
jovsky and Paul Buitelaar for useful discussions in developing 
this material. I would also like to thank the anonymous re- 
viewers for their helpful comments in its improvement. 
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195: without  admi t t ing  or denying wrongdoing 
59: without  admi t t ing  or denying guilt 

123: without  admi t t ing  or denying any wrongdoing 
194: without  admi t t ing  or denying wrongdoing 
122: wi thout  admi t t ing  or denying the allegations 

Figure 9: w i t h o u t :  admit t ing  or denying x 

131:lJoint venture with bp america  !nc [ 
l l9 : ] jo int  venture with icn pharmaceut icals  mc I 

73:l joint  venture with aaa  development corp I 
] 67:lJoint venture with komori  printing machinery co I 
I 10:l joint  venture agreement  with pt  as t ra  international inc I [ 16:lJoint venture with french publisher hachette sa I 

Figure 12: j o i n t :  venture with x INC. 

113: joint venture of dow chemical co , detroit , and corning glass works coming , n YY York 
64: joint venture of dow chemical co in midland , mich , and corning glass works in corning, n 
98: joint venture of landmark land corp , carmel , calif , and ranieri wilson co new 

Figure 13: j o i n t :  venture of x c o .  LOCATIONx and Y co .  LOCATIONy 
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