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A b s t r a c t  
Recognizing the plan underlying a query aids in the 
generation of an appropriate response. In this paper, 
we address the problem of how to generate coopera- 
tive responses when the user's plan is ambiguous. We 
show that it is not always necessary to resolve the 
ambiguity, and provide a procedure that estimates 
whether the ambiguity matters to the task of formu- 
lating a response. If the ambiguity does matter, we 
propose to resolve the ambiguity by entering into a 
clarification dialogue with the user and provide a pro- 
cedure that performs this task. Together, these pro- 
cedures allow a question-answering system to take 
advantage of the interactive and collaborative nature 
of dialogue in recognizing plans and resolving ambi- 
guity. 

Introduction 
Somewhat obviously, plan recognition is the process 
of inferring an agent's plan from observation of the 
agent 's actions. The agent's actions can be physical 
actions or speech actions. Four  principal methods 
for plan recognition have been proposed in the 
literature. The methods are plausible inference 
(Allen [1], Carberry  [2], Litman [15], Sidner [25]), 
parsing (Huff and Lesser [9]), circumscribing a 
hierarchical representat ion of plans and using deduc- 
tion (Kautz [12, 13]), and abduction (Charniak and 
McDermot t  [6], Konolige and Pollack [14], Poole 
[24]). 

Our particular interest is in the use of plan recog- 
nition in question-answering systems, where recog- 
nizing the plan underlying a user's queries aids in the 
generation of an appropriate response. Here, the 
plans and goals of the user, once recognized, have 
been used to: supply more information than is expli- 
citly requested (Allen [1], Luria [16]), handle prag- 
matically ill-formed queries and resolve some inter- 
sentential ellipses (Carberry [2, 3, 4]), provide an 
explanation from the appropriate perspective 
(McKeown et hi. [17]), respond to queries that  result 
from an invalid plan (Pollack [20, 21, 22]), and avoid 
misleading responses and produce user-specific 
cooperative responses (Joshi et a]. [10, 11], van Beck 
and Cohen [26, 27], Cohen et al. [7]). 

E x a m p l e  1 (Joshi et al. [11]). As an example of 
a cooperative response consider the following 
exchange between student  and student-advisor sys- 
tem. The plan of the student is to avoid failing the 

course by dropping it. 

User: Can I drop numerical analysis? 
System: Yes, however you will still fail the course 

since your  mark will be recorded as with- 
drawal while failing. 

If the system just  gives the direct answer, "Yes" the 
student will remain unaware tha t  the plan is faulty. 
The more cooperative answer warns the student.  

An important  weakness of this work in response 
generation, however, is the reliance on a plan recog- 
nition component being able to uniquely determine 
the plan of the user. This is clearly too strong an 
assumption as the user's actions often will be con- 
sistent with more than one plan, especially after only 
one or a few utterances when there is insufficient 
context to help decide the plan of the user. In 
Example 1 there are many reasons why a student 
may want to drop a course, such as resolving a 
scheduling conflict, avoiding failing the course, or 
finding the material uninteresting. There  may be no 
reason to prefer one alternative over the other,  yet  
we may still want  to generate a response tha t  does 
more than just  give a direct answer to the user's 
query. 

In this paper, we address the problem of what  the 
system should do when the user's actions are ambi- 
guous as they are consistent with more than one 
plan. To the extent  tha t  this problem has been con- 
sidered by researchers in plan recognition, it is gen- 
erally assumed that  the plan recognition system 
overcomes the ambiguity problem by inferring the 
most likely interpretat ion,  given its assessment of the 
context and dialogue so far and knowledge of typical 
plans of action. Thus there is a dependence on sali- 
ence heuristics to solve the ambiguity problem [e.g. 
1, 2, 17, and see the final section]. Existing propo- 
sals for resolving ambiguity beyond heuristics are 
underspecified and what  usually underlies these pro- 
posals is the assumption that  we a lways  want  to 
determine one unique plan [2, 15, 19, 25]. 

We show how to relax the assumption that  the 
plan recognition component  returns a single plan. 
Tha t  is, given that  the result of the plan recognition 
phase will usually be a disjunction of possible plans, 
we show how to design a response component  to 
generate cooperative responses given the disjunction. 
We show tha t  it is not  always necessary to resolve 
ambiguity, and provide a procedure tha t  allows the 
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response component to estimate whether  the ambi- 
guity matters  to the task of formulating a response. 
If the ambiguity does not matter,  the response com- 
ponent can continue to answer the user's queries and 
ignore the ambiguity in the underlying goals and 
plan until fur ther  queries help clarify which plan the 
user is pursuing. If the ambiguity does matter,  the 
system should take advantage of the interactive and 
collaborative nature of dialogue in recognizing plans 
and resolving ambiguity. A key contribution of this 
work therefore is providing a clear criterion for 
when to respond to a question with a question that  
will differentiate between some of the possibilities. 
We also propose a specific solution to what questions 
should then be asked of the user. Moreover, these 
questions are asked only to resolve the ambiguity to 
the point where it no longer matters  (this is not 
necessarily to a unique plan). 

E x a m p l e  2. Here are two different examples to 
give a flavor of what  we are proposing. There are 
two agents: a cook and an expert who is cooperative, 
helpful, and adept  at recognizing plans. The expert  
observes the cook making marinara sauce and recog- 
nizes the cook could be pursuing three possible 
plans, all with the same top level goal of preparing a 
meal: make fettucini marinara or spaghetti  marinara 
(both a pasta dish) or chicken marinara (a meat 
dish). 

a. Suppose the cook then asks the expert: "Is a red 
wine a good choice?" The expert has the criteria for 
wine selection that red wine should be served if the 
meal is chicken, fettucini marinara, or spaghetti 
marinara and white if fettucini alfredo. There is 
enough information for the expert to decide that red 
wine should be bought and the ambiguity does not 
need to be resolved to cooperatively answer the 
question. 

b. Now suppose the expert also knows that the 
guest of honor is allergic to gluten and so would not 
be able to eat if a pasta dish was served. Here the 
ambiguity is important  as the expert  has recognized 
that  the cook's prepare-a-meal goal may conflict 
with the cook's entertain-important-guest  goal. The 
expert  will want to resolve the ambiguity enough to 
he assured that  the proposed meal does not include a 
pasta dish and so clarifies this with the cook. 

E s t i m a t i n g  W h e t h e r  the  
A m b i g u i t y  M a t t e r s  

Example 2, above, showed that  sometimes it is 
necessary to resolve ambiguity and sometimes it is 
not. Here we give criteria for judging which is the 
case. The result is a procedure that  allows the 
response component to estimate whether  the ambi- 
guity matters  to the task of formulating a response. 

Assuming we can answer the user's query, deciding 
when we want to give more than just a direct 
answer to the user's query depends on the plan of 
the user. Previous work has identified several kinds 

of faults in a plan that a cooperative response should 
warn a user about. We generalize this work in iden- 
tifying faults and call it plan critiquing. Our propo- 
sal therefore is to first apply a plan critiquing pro- 
cedure to determine possible faults. 

Plan Critiquing 
A plan may be labeled as faulty if it will fail to 
achieve its high level goal (e.g. Allen [1]) or if there 
are simply be t te r  alternatives for reaching that  goal 
(e.g. Pollack [20]). Joshi et al. [10, 11] formalize the 
above and identify additional cases (such as warning 
the user tha t  a certain plan is the only way to 
achieve a goal). 

In [26, 27], we make some extensions to Joshi et al. 
[10, 11] and give a procedure to determine faults in 
plans and to address these faults through coopera- 
tive responses. Faults include both plans which fail 
and plans which can be replaced by bet ter  alterna- 
tives. In [26, 27], we also include the critical exten- 
sion of domain goals. T o  explain, the system needs 
to not only respond to goals inferred from the 
current  discourse but  also to the domain goals a user 
is likely to have or known to have even though they 
are not stated in, or derivable from, the discourse. 

Example 3. 
User: I 'm not  interested in the material and so 

would like to drop the course. Can I? 
The ideal response should say more than just "Yes", 
but  also warn the s tudent  tha t  the domain goal of 
achieving a degree conflicts with the immediate goal 
of dropping the course. This example shows how 
competing goals may exist and need to be addressed 
in a response. 

To determine whether  the ambiguity matters, we 
propose to apply an extension of the procedure of 
[26, 27], which will be sensitive to complementary 
goals as well. The standard assumption in coopera- 
tive response work is tha t  the user is pursuing only a 
single chain of goals; we allow actions to be used to 
achieve more than one complementary goal. For 
example, in the course-advising domain we can 
assume that  all users have the goal to avoid failing a 
course. If a user then asks "I 'm not interested in the 
course and so would like to drop it. Can I?" the 
response should address not just  the goal of avoiding 
uninteresting courses but  also the complementary 
goal of avoiding failing courses. For  example, the 
response should warn the user if he will fail the 
course because of withdrawal while failing (as in 
Example I). 

The algorithm to estimate whether the ambiguity 
matters  is below. The deciding criterion is whether 
the critiques for all plans are the same. By same cri- 
tique or same fault (Case 1. b. in the algorithm) we 
mean, for example, same bet ter  way or same conflict 
with competing domain goal. 
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Input: A set of possible plans (the output  from a 
plan recognition algorithm). 

Output:  The set of possible plans with critiques 
a t tached to each plan. 

Algorithm Critique: 
begin 

for each plan in the set of possible plans do 
critique the plan and, if there is a fault, anno- 
ta te  the plan with the fault 

Input: A set of critiqued possible plans. 
Output:  "Yes",  the ambigui ty  mat ters ,  or " N o "  

the ambigui ty  does not mat te r .  

Algorithm Ambiguity_matters: 
We are in one of the following two cases: 

Case 1. "No", the ambiguity  does not  matter.  
The critiques are the same for all the plans. T h a t  
is, either 
a. every plan is faultless, or 
b. every plan is annota ted  with the same fault. 

Case 2. "Yes", the ambiguity  does matter .  
The critiques are different for some or all of the 
plans. T h a t  is, either 
a. some, but  not all, of the plans are faultless (the 

faults may or may not  be the same), or 
b. every plan is annota ted  with a fault  and the 

faults are not all the same. 
end 

A n  E x a m p l e  t o  I l l u s t r a t e  t h e  P r o p o s a l  
Suppose the user asks "Can  I drop numerical  
analysis?". First, a plan recognition algorithm is 
called to determine the possible plans of the user. 
They  are found to be: 

end ~ resolve schedule conflict --~ drop course 
end ~ avoid uninterest ing prof  --~ drop course 

Second, algori thm Critique is called to critique the 
plans. As a result, both  plans are labeled with the 
same fault  tha t  there is a be t ter  plan for achieving 
the goal. Third,  Mgorithm Ambiguity_matter8 is 
called to determine whether  the ambigui ty  regarding 
the plan of the user mat te rs  to the task of formulat-  
ing a response. I t  is found tha t  the ambigui ty  does 
not  ma t t e r  as both  plans are annota ted  with the 
same fault  (Case 1.b of the algorithm). Finally, the 
critiqued plans are passed to a response generation 
procedure.  The answer then given in this example 
is, "Yes, but  a be t te r  way is to switch to another  
section." 

In general, in (Case 1.a) a response generation pro- 
cedure can just  give a direct answer to the user 's 
query, and in (Case 1.b) can give a direct answer 
plus any war ran ted  additional information,  such as 
telling the user about  the fault. 

In the above example it was found tha t  the ambi- 
guity did not ma t t e r  as there was enough informa- 
tion to generate a cooperative response. If instead it 
was found tha t  the ambigui ty  did ma t t e r  (Case 2 of 
the algorithm) we propose tha t  we we enter  into a 
clarification dialogue with the user to resolve the 
ambiguity to the point where it no longer does 
mat ter .  T h a t  is, until we are in Case 1. A response 
generation procedure would then be called. 

C l a r i f i c a t i o n  D i a l o g u e s :  
Q u e s t i o n s  in  R e s p o n s e  t o  Q u e s t i o n s  

What  should we ask the user when a clarification is 
necessary? Clearly, we do not want  to simply list 
the set of possible plans and ask which is being pur- 
sued. Below is an algori thm tha t  determines what  to 
say. Our  algori thm for est imating whether  the 
ambigui ty  mat te rs  is not dependent  on the method 
of plan recognition used. Now our proposal for cla- 
rification dialogues is tied to a hierarchical plan 
l ibrary in the style of Kau tz  [12]. The input to the 
algorithm is a set of possible plans where the user 's 
action is related to top-level or end goals through 
chMns of goals. Each plan in the set is annota ted  
with a a critique. The key idea is to ask about  the 
highest level possible, check whether  the ambiguity 
still needs to be fur ther  resolved, and if so, ask at 
the next  level down, iteratively, through the hierar- 
chy of goals. 

Input: A set of critiqued possible plans (the out- 
put  f rom Mgorithm Critique). 

Output: The pruned set of possible plans such tha t  
the ambigui ty  no longer matters .  

Algorithm Clarify: 
begin 

initiMize the current level to be the first branch 
point f rom the top in the set of possible plans 

while Ambiguity_matter8 = "Yes"  do 

separate  out  the distinct goals in the set of 
remaining possible plans tha t  are one level 
below the current level and are annota ted  with 
a fault  

list the goals (perhaps with their  accompanying 
annotat ions as justification for why we are ask- 
ing) and ask the user whether  one of them is 
pa r t  of the plan being pursued 

according to the answer, remove the plans tha t  
are not being pursued f rom the set of possible 
plans and update  the current  level in the hierar- 
chy tha t  is being looked at  to be the next 
branch point 

end whi l e  
end 
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next query 
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Fig. 1. Major modules of  our proposed query-answering system 

E x a m p l e  2b (Revisited). In our story in the 
introduction about cooking for our allergic guest the 
expert  has recognized the following three plans: 

1. end ~ prepare meal ~ make meat  dish ~ make 
chicken marinara ~ make marinara 

2. end ~ prepare meal ~ make pasta dish ~ make 
fettucini marinara ~ make marinara 

3. end ~ prepare meal ~ make pasta dish ~ make 
spaghetti  marinara ~ make marinara 

Using the algorithm of the previous section, the 
three plans are critiqued and it is found that  the 
ambiguity matters.  The plan involving a meat dish 
is found to be faultless but  the two plans involving a 
pasta dish are found to conflict with another  goal of 
the cook: to entertain the guest. Using the algo- 
r i thm of this section, the question asked to resolve 
the ambiguity would be "Are you making a pasta 
dish (perhaps with justification of why we are ask- 
ing)?" After  either answer of yes or no we know 
enough that  the ambiguity no longer matters. Note 
that  if we just ask the more general "What  are you 
making?" this allows such uninformative responses as 
"dinner"  or just "you'll  see". 

When asking a question we propose to ask about 
as high a level of goal as possible tha t  still helps to 
resolve the ambiguity and to work top down. A top 
down approach is bet ter  as it provides a useful con- 
text for any later queries and makes users give us an 
answer at a higher level than they may otherwise do. 
Moreover, the user may be mistaken about  decompo- 
sitions or have some other wrong view of the domain 
and by stepping downward through the paths of pos- 
sible plans these misconceptions may be detected. 
Here is an example. Suppose the user asks "Can I 
take numerical analysis?". The system recognizes 
two plans. 

end ~ get_degree ~ B.A. ~ electives ~ course 
end ~ get_degree ~ B.Sc. ~ required ~ course 

a. System: Are you pursuing a B.Sc.? 
b. System: Are you trying to fulfill your  elected or 

required courses? 

Question (a) is what  our algorithm would ask. Ques- 
tion (b) is what a procedure which uses a bot tom up 

approach would ask. But  (b) allows potential confu- 
sion to go undetected. The user could answer 
"required",  believing that  the course is required for 
a B.A., for example. Thus, we advocate Kautz  style 
plan recognition [12], as other  plan recognition 
methods [2, 15, 25] would stop after branch points 
points and thus could only propose electives and 
required as the two possible plans. Question (b) is 
the only question this previous work could ask the 
user. 

Starting with the top most goals and working 
down may sometimes give as many questions as bot- 
tom up approaches. However, others have noted 
that  bot tom up dialogues are difficult to assimilate 
without misinterpretation [2, p. 54]. Therefore,  we 
maintain that  the top down approach is more desir- 
able. Moreover, some higher level questions, such as 
question (a), above, can be eliminated using goals 
known from the previous discourse or background 
knowledge about  the user. 

Current  extensions we are examining include 
allowing the user to have multiple goals so that  more 
than one path from top level goals to action may be 
correct. This requires resolving ambiguity in multi- 
ple paths through the set of possible plans. This 
could be done in a depth-first manner, using clue or 
redirection words to guide the user when we return 
to resolve the ambiguity in the other  branches. We 
are also investigating selecting the minimal subset of 
the possible plans from those with faults and those 
without faults (at the moment the algorithm always 
takes the subset with faults). 

D i s c u s s i o n  a n d  C o n c l u s i o n  
In this section we summarize our proposals and 
defend our position that  this straightforward way of 
doing things is a good way. With reference to Fig. 
1, we discuss the design of boxes 2, 3, and 4 and the 
tradeoffs involved between boxes 2 and 3. 

B o x  2: Resolve the ambiguity with heuris- 
tics. As mentioned earlier, many researchers have 
proposed heuristics to prefer one plan over another 
[1, 2, 17, 8, 18, 12, 23, 14]. Some of these heuristics 
can be incompatible with cooperative response 
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generation. For  example, Allen's [1] preference 
heuristics are generally incompatible with recogniz- 
ing and responding to faulty plans (such as the 
response in Example 1). Because we are using plan 
recognition for response generation, this should 
affect the design of Box 2 and therefore what  gets 
passed to Box 3. 

B o x  3: R e s o l v e  t h e  a m b i g u i t y  w i t h  t h e  user .  
Previous work in response generation makes the 
assumption tha t  what  gets passed to the RG com- 
ponent  is a single plan the PR 'component proposes 
the user is pursuing. We argue that ,  unless we are 
willing to sometimes arbitrarily commit to one plan 
instead of another,  there will be times when one plan 
cannot be chosen over another  and therefore there 
will be ambiguity about  which plan the user is pur- 
suing. Result: we need a method to resolve the 
ambiguity. In plan recognition in a discourse setting 
(as opposed to key-hole recognition), the goals and 
plan the user holds are knowable simply by asking 
the user. But  we do not  want  to always just ask if it 
is not necessary so we need to know when to s tar t  a 
clarification dialogue and what  to say. And when we 
do ask, we want  to ask the minimal number of ques- 
tions necessary to resolve the ambiguity until it no 
longer matters.  To this end, box 3 contains a pro- 
cedure tha t  estimates by plan critiquing whether the 
ambiguity matters  to the task of formulating a 
response. If the ambiguity does not  mat ter  the 
result is passed to box 4. If the ambiguity does 
matter ,  a procedure is called that  starts  a clarifica- 
tion dialogue, responding to the user's question with 
questions tha t  i teratively differentiate between the 
possibilities. 

B o x  2 vs .  B o x  3: T h e  t r a d e o f f s .  Much previ- 
ous work in plan recognition makes the assumption 
that  we want  the PR  component to commit to and 
re turn a single plan. Carberry  and McKeown, for 
example, use a strong heuristic to commit to a single 
plan [2, 17]. However, this means the system will at  
times commit to the wrong plan. Doing it this way 
requires the ability to handle natural  language 
debugging dialogues. Why we do not  want to com- 
mit to a single plan and then, if we are wrong, repair 
using a debugging dialogue? Carberry  [5, p.4] argues 
that  a system will appear "unintelligent, obtuse, and 
uncooperat ive"  if it engages in lengthy clarification 
dialogues. However, a procedure to perform a 
debugging dialogue is not  specified and is, we specu- 
late, a difficult problem. We argue for not commit- 
ting early. Our hypothesis is tha t  a clarification 
dialogue is bet ter  than a debugging dialogue. The 
questions in the clarification dialogues are simple to 
answer, whereas determining that  the system has 
misunderstood your  goals and plan requires users to 
engage in plan recognition. Tha t  is, users must 
recognize the plan the RG component  is using from 
its responses and note tha t  it differs from their 
plans. Moreover,  the user may not recognize we are 
wrong and be mislead. Finally, we argue that ,  if the 

questions are carefully chosen, the clarification dialo- 
gues need not be lengthy or too frequent. Note that  
preference heuristics can still be used in our 
approach. These would best be applied when too 
many top level goals give an unwieldy clarification 
question. 

B o x  4: G e n e r a t e  t h e  r e s p o n s e .  Once Box 3 has 
estimated tha t  any remaining ambiguity does not 
mat ter  to generating a cooperative response, the dis- 
junction of possible plans is passed to Box 4. There 
are two cases; both can now be handled as in previ- 
ous work except tha t  there is now the additional 
complication tha t  we allow one action to contribute 
to more than one chain of goals. The response com- 
ponent must then generate a conjunctive response 
that  addresses each of the goals. 
1 .Every  plan is faultless, so we just  give a direct 

answer to the user's query but  ignore the underly- 
ing goals and plan until fur ther  queries help clarify 
which plan the user is pursuing, and 

2. Every plan has the same fault, so we give a direct 
answer plus some additional information that  
warns the user about  the deficiency and perhaps 
suggests some alternatives (see [10], [26]). 
S o a p  Box :  This paper offers an important  con- 

tr ibution to natural  language generation. It 
discusses a clear criterion for when to initiate a cla- 
rification dialogue and proposes a specific solution to 
what questions should be asked of the user to 
achieve clarification. We believe tha t  natural  
language response generation systems should be 
designed to involve the user more directly and this is 
sometimes achieved quite successfully with our pro- 
posals. 

There may be tradeoffs between overcommitt ing 
in the plan recognition process and engaging in 
lengthy clarification dialogue, particularly with a 
large set of complex candidate plans. This may sug- 
gest applying pruning heuristics more actively in the 
plan recognition process (Box 2) to reduce the 
number of questions asked in the clarification dialo- 
gue (Box 3). For  future work, these tradeoffs will be 
examined more closely as we test the algorithms 
more extensively. 
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