
The Role of Underlying Structure in Text Generation

Robert Alan Granville
BBN Systems and Technologies Corporation

33 Moulton Street
Cambridge, Massachusetts 02138

Abstract
While a coherent organization is necessary for the genera-
tion of a multisentential paragraph, this organization itself
conveys information, such as what knowledge is primary
and what is secondary, and which of the various possible
relationships between the pieces of knowledge the speaker
wishes to make explicit. The organization of the message
is an integral part of the message. Given this, it is wrong to
assign the task of text structuring to any component other
than the one that desires to convey the message in the first
place. This paper describes George, a proposed system
that organizes its text before the task of generation is be-
gun. Particular attention is given to a new knowledge base
paradigm called functional hierarchy, which is designed to
facilitate explanation generation, and how it can be used
to build Rhetorical Structure Theory representations that
specify text organization before actual generation is begun.

Introduction
It is a well known fact that just as we can't string together
a collection of words in an arbitrary order and achieve a
well-formed sentence, we can't string sentences together in
an arbitrary fashion and achieve a meaningful paragraph.
The underlying structure of text and how this contributes
to coherence is the subject of active research, most notably
by Hovy [I-Iov88]. However this research seems to ignore
that different organizations of sentences yield paragraphs
with different meanings, that the structure of a paragraph
is an integral part of what the paragraph conveys. Given
this, it is wrong to assign the task of text structuring to any
component other than the one that desires to convey the
message in the first place.

This paper describes George, a proposed system that
organizes its text before the task of generation is begun.
George is an extension of the MACH-HI intelligent tutor-
ing system [KGM90] that uses the expert system knowl-
edge base to choose the appropriate underlying text struc-
ture along with the knowledge to be presented in the text,
rather than have the text generator try to build the un-
derlying structure when presented with only the pieces of
knowledge to be conveyed.

After a brief review of Hovy's approach toward text

structuring in the next section, we explore the role of text
structure and how it affects the total message being con-
veyed in the third section. The fourth section describes
George, paying particular attention to the intelligent tutor-
ing system knowledge base and its unique organization into
a functional hierarchy, a new knowledge base paradigm de-
signed to facilitate explanation generation. The fifth section
discusses how we can use the functional hierarchy knowl-
edge base to help direct the selection of the message struc-
ture, using examples from MACH-HI which demonstrate
again why this selection process must occur before gen-
eration. We conclude this section with a brief discussion
of some of the open issues to be resolved as part of this
research effort.

Hovy's Approach

In [Hov88] Hovy correctly states that arbitrary orderings
of facts will not lead to satisfactory text. The problem as
he sees it then is to determine which orderings will lead
to acceptable text, and with his text structuring system he
attempts to address this problem.

Hovy takes his input to be an unordered set of chunks
of knowledge of equal weight (importance) generated by
an expert system. Since an arbitrary ordering won't work,
and there are far too many possible combinations for an
exhaustive search (n! for n sentences), the structure must
somehow be built, and this building must be guided by the
sentences themselves.

Hovy uses Rhetorical Structure Theory [MT87], or RST,
as the basis for his structure. RST is a formalism for spec-
ifying the relationships between pieces of text. Hovy's text
structuring system builds a communicative plan using RST
relations as its operators. The constraints of the RST rela-
tions become the operator preconditions, and the effect or
goal fields of the relations become the effects of the opera-
tots. These operators are used in a standard plan generation
system with the resulting plan being an RST structure repre-
senting the organization of a coherent paragraph conveying
all the input facts.

105

S t r u c t u r e a s M e s s a g e

An underlying assumption in Hovy's approach is that the
expert system intends merely to convey a set of facts or
"chunks of knowledge". This is an overly simplifying as-
sumption. A coherent paragraph communicates more than
the simple chunk.~ of knowledge stated in its sentences. It
also communicates the relationships between these chunks,
the very relationships RST represents. When a speaker has
a communicative goal, the goal is not to present a set of
facts in any coherent fashion, but rather to present them in
an organization that conveys in addition to the facts how
the speaker perceives them to be related. The underlying
structure of the message is as much a part of the message
as is the contents of the message.

Consider the following two example paragraphs:

[1] You must start the ignition by turning the car key.
Otherwise you don't start the motor, and can't drive
the car.

[2] You must turn the car key. Otherwise you can't
drive the car since you didn't start the motor by start-
ing the ignition.

Paragraphs I l l and [2] contain the same four simple facts,
but they use different organizations and have different ef-
fects. One difference is the points each paragraph empha-
sizes. In [A], starting the ignition is most central, with
starting the motor as the second most important clause.
In contrast, [B] emphasizes turning the car key strongest,
followed next by being able to drive the car. Another dif-
ference is that Paragraph A] explicitly shows a relationship
between starting the ignition and turning the car key, while
no such relationship is stated in Paragraph B. Even though
the two paragraphs contain exactly the same four simple
facts, the messages the convey are not equivalent.

Now let us return to Hovy, and consider his example in
[I-Iov88] of a coherent paragraph with the RST structure
shown in Figure 1:

(1) The system asks the user to tell it the character-
istic of the program to be enhanced. (2) Then the
system applies transformations to the program. (3) In
particular, the system scans the program (4)/n order
to foul opportunities to apply transformations to the
program. (5) Then the system resolves conflicts. (6) It
con~rms the enhancement with the user. (7) Finally,
It performs the enhancement.

He contrasts this with the following, which presents the
same information, he says, but in an incoherent fashion:

(!) The system performs the enhancement. (2) Before
that, the system resolves conflicts. (3) First, the sys-
tem asks the user to tell it the characteristic of the
program to be enhanced. (4) The system applies the
transformations to the program. (5) It confirms the en-
hancement with the user. (6) It scans the program (7)
in order to find opportunities to apply transformations
to the program.

But we can, of course, find an RST for this second para-
graph, as in Figure 2, so the problem with this example is
not that it doesn't have an underlying structure. Rather, the
underlying structure doesn't represent the relationships be-
tween the facts as we know them to be. These facts simply
do not make sense as seven unrelated steps performed in
the order presented in this paragraph. That is, part of the
complete message (it's organization) is incorrect.

A n A l t e r n a t i v e Approach
Rather than attempt to build an appropriate RST that will fit
isolated, unstructured input from an expert system, George
takes both the facts to be presented and the relational struc-
ture of these facts as its input. This is possible because in
the case of MACH-III the knowledge base of the expert
system component is organized as a functional hierarchy.

Func t iona l H i e r a r c h y
Functional Hierarchy is a new paradigm for organizing ex-
pert system knowledge bases, based on the procedural ab-
straction principles of Liskov and Guttag [LG86]. Func-
tional hierarchy differs greatly from production rules (the
customary basis of an expert system) in that functional hi-
erarchy rules define the actions a system can take, rather
than the conditions under which actions may take place.
The concept of "action" is expanded to include all actions
the system takes, including control decisions, rather than
just changes to the database, thereby eliminating the need
for a separate control structure. These rules are arranged
into a hierarchy, where the action of a rule is defined as a
combination of other actions.

There are several advantages to using a functional hier-
archy over a production rule system. All the benefits that
accrue from the use of procedural abstraction are manifest:
• easier to understand

• easier to write

• easier to maintain and modify
All the knowledge in the system can be explicitly rep-

resented in the system since there is no need for external
mechanisms (such as conflict resolution procedures) where
knowledge can be hidden. This allows enhanced expla-
nation capabilities. Finally, the knowledge can be easily
organized into a desirable framework.

Functional hierarchy was used very successfully in
MACH-III (Maintenance Aid Computer for HAWK - In-
telligent Institutional Instructor), an intelligent simulation
and tutoring system to help train novice mechanics to trou-
bleshoot the HAWK HIPIR radar (ANPQ-57) developed
by BBN Systems and Technologies Corporation for the
Army Research Institute. The system is currently being
used as part of the curriculum of the US Army's training
school. For a complete description of MAC'H-HI and the
use of functional hierarchy, see [KGM90], [KGM89], and
[MTG89].
An example from the functional hierarchy used in

MACH-III (called the troubleshooting tree) is shown in

106

2 3-7

6 7

Figure I: RST for Hovy's Coherent Paragraph

6 7

Figure 2: RST for Hovy's Incoherent Paragraph

,~CHS~LOI

[C~LOPOW~ [CHZCKLOPL~ I CABLEW1 ~1 I P~2as I CHECKRF I
SIGNAL INPUT I

ws I

NOT BF.~G

o'r-CK PUJG I I CH~:XPWG
W l P12J3 I [W l P19J2

Figure 3: I..O Fault Example

107

Figure 3. The root node of this tree, labelled LO LAMP,
defines how to determine why the IX) Lamp is lit, indicating
a "local oscillator fault. In other words, this node defines
how to isolate an LO problem. According to the tree, isolat-
ing the LO fault is done by checking for an LO malfunction
(the left child of the LO LAMP node), and checking to see
if the LO function is being monitored correctly (the right
child of the LO LAMP node). It is important to note that
at this root node neither subaction is defined. That is, the
rule defined by this node contains calls to the procedures to
check for an LO malfunction and to check to see if the LO
function is being monitored correctly, but does not contain
definitions for these procedures.

Continuing our example, checking for an LO malfunction
(the MALFUNCTIONING LO node in the tree) consists
of checking LO inputs (the left child) and checking the LO
itself (the right child). Since checking individual devices,
such as the LO, is a primitive action in the MACH-III
simulation that needs no further definition, the CHECK
LO node has no children. The CHECK LO INPUTS
node, defining how to check LO inputs, has three children,
and so checking LO inputs consists of three steps: checking
the LO power cable Wl, checking the LO plug P12J3, and
checking the RF signal input cable W6. Since these actions
are again primitive in the simulation, they need no further
definition, and their corresponding nodes have no children.

It should he noted that from a strictly functional point
of view the intermediate rules are not necessary. We could
have simply defined the action of isolating an LO fault as
performing the seven primitive actions, resulting in the tree
in Figure 4, and the resulting system would still be able to
correctly solve the problem. However, the system would
not be able to explain why these steps were being taken. In
contrast, the system of Figure 3 knows, for example, that
checking LO plug P12J3 is necessary to determine whether
the LO inputs are functioning properly, which in turn must
he known to determine whether the local oscillator is mal-
functioning. The point is that the functional hierarchy con-
cisely specifies the knowledge the system explicitly has in
its knowledge base, and exactly how the pieces of knowl-
edge are interrelated. Thus the hierarchy defines the level
of explanation of which the system is capable.

Explanat ions from a Functional Hierarchy

Since the troubleshooting expert system knowledge base
is organized as a tree, troubleshooting the radar consists
of moving correctly through that tree from node to node.
This simplifies the task of evaluating the appropriateness
of a student's actions, since each action she takes "moves"
the student from one node (the current node) to another.
Each move can be one of four types. The simplest case
is when the node moved to represents an action already
done. (In the troubleshooting procedures for the HAWK,
there is never any need to repeat steps.) The next case is
when the node moved to is a child of the current node, in
which case the system judges the action as good. The third
case is when the action moves the student to a node that

is not a descendant of the current node, but is part of the
troubleshooting tree for the current problem. The system
evaluates such moves to be skipping around from task to
task before they are completed. The final case is when the
node isn't in the current problem's troubleshooting tree, and
the system determines that the action is inappropriate for
the problem at hand.

The current MACH-m system takes these evaluations
coupled with the knowledge of the nodes involved to cre-
ate messages in English for the student using a scheme
based on templates with slots. Each of the four cases has
templates with slots to be filled by information contained
in the nodes, such as which components of the radar are in-
volved and what tests are performed on them by the action
represented.

For example, the following is a typical message actually
generated by MACH-III to report an action judged to be
"skipping around":

Checking the W4 Pl P2J3 is a reasonable step since
it is part of checking RCVR RF inputs. However. this
leaves investigating whether noise is being introduced
during modulation unaone.

If the student asks for more information, the system gen-
erates the following:

Checking the W4 Pl P2J5 is part of checking RCVR
RF inputs, which is part of investigating whether
feedthrough is not being correctly removed, which is
part of considering the RCVR Noise Lamp. On the
other hand, investigating whether noise is being intro-
duced during modulation consists of checking the Spin
Motor power input, the W2, checking the Nutating
Scanner Assembly, and checking the Scan Driver
Assembly. Therefore, checking the W4 P1 P2J5 is
not part of investigating whether noise is being intro-
duced during modulation.
Investigating whether noise is being introduced dur-
ing modulation isn't finished yet since checking the
Scan Driver Assembly, which is part of investigating
whether noise is being introduced during modulation,
isn't done.

Functional Hierarchy with RST
George is an extension of MACH-III that dynamically gen-
erates the critiques for the expert troubleshooting system.
Instead of using the knowledge resident in the nodes of
the troubleshooting tree to instantiate slots in a prewritten
template, the system organizes this knowledge into an RST
structure representing those relationships of the facts the
troubleshooter wishes to convey. The instantiated struc-
tures are then traversed in left to right order to build in-
put messages for the Mumble-86 text generation system
[MMA*87].

Preliminary research has shown that subtle differences in
what is being stressed in a text, what is made secondary,
and what is being assumed can be manifested by variations
in the underlying RST representation. By definition, the

108

O-I[O~ PLtg~ Cte3K I c, E c ~ , o ~ - q i ~ . c ~ P U ~ l e e ~ I c~-r_c~pu.~

Figure 4: LO Fault Revisited

nuclei of an RST structure are more central to the text than
are the satellites. Additionally, the relationships explicitly
represented in the structure are conveyed in the text (ei-
ther explicitly or through the use of "clue words"), while
relationships not represented are left tacit.

As an example, consider the ten paragraphs shown in
Figure 5. Paragraphs B through J are variations of an
actual text produced by MACH-IH, Paragraph A. All ten
paragraphs contain the same "chunks" of knowledge, but
each presents this knowledge differently. The main thrust
of Paragraph A is that you should execute a Lamp Test
in order to know whether the BITE Test indications are
correct. The synopsis of Paragraph B is that if you don't
push the Lamp Test Switch, you won't know how to pro-
ceed. The other two facts are merely used to support this
contention.

These two paragraphs also express different relationships
between the four facts. In Paragraph A, we are told explic-
itly that a Lamp Test is executed by pushing the Lamp Test
Switch. In contrast, Paragraph B has no direct relation be-
tween executing a Lamp Test and pushing the Lamp Test
Switch. Figures 6 and 7 show the differing RST struc-
tures for these two paragraphs. (Note that we have not
labelled the relationships in these two figures for clarity's
sake, since for this example we have only discussed the ex-
istence or nonexistence of relationships, and not what those
relationships are.)

With ten different ways of stating the same four facts (by
no means an exhaustive list), each of which presents them
in a different light, and each of which makes explicit and
tacit different relationships between these facts, it would be
impossible for a text generating system to determine which
was the "best" variation given only the four facts. Con-
sequently, the component that decides these four facts are
the correct ones to present must also be the component that
decides what is the primary information, what is the sec-
ondary or supporting information, and what relationships
between these pieces of information must be stated. That
is, this component must also decide the underlying RST
structure for itself.

Geor8e is capable of deciding the RST structures for its
text through fairly straightforward mechanisms. It follows
from the particular functional hierarchy knowledge base in
the troubleshooting expert system, there are basically four

types of messages that have to be communicated, and se-
lection among these four types is dictated by the functional
hierarchy and the student's position in this structure. Then
instead of choosing from among a relatively small set of
templates with slots instantlated by the appropriate trou-
bleshooting tree nodes as was done in MACH-III, we can
choose from among a relatively small set of RST structures
(essentially the RST structures for the templates) with the
same troubleshooting tree nodes providing the pieces of
knowledge the RST structures are organizing. This gives
the resulting system veater flexibility in generation over
the template and slot generator of MACH-III, where indi-
vidual paragraphs (the granularity of the MACH-III tem-
plates) read well enough, but multiparagraph texts (as were
sometimes required) were predictably poor since each para-
graph was generated in isolation.

There are of course two important issues that remain to
be discussed, because they remain to be resolved. The
first issue concerns the choice of a specific RST for a mes-
sage. While the MACH-III functional hierarchy contributes
a great deal to the selection process, it is by itself not suf-
ficient. While some relationships and emphases can be de-
termined from the contents of the message, there are many
subtle variations, such as those shown in the paragraphs of
Figure 5, which make the selection of an RST harder. Ex-
actly how changes in the RST affect the resulting surface
structure and what influences contribute to decisions about
these changes remain open problems.

The second issue is the problem of mulfiparagraph text.
Our experience with MACH-III showed us that there is
more to multiparagraph text than stringing together iso-
lated well-formed paragraphs, not surprising since the same
is true of multisentential paragraphs and multiword sen-
tences. The underlying structure of the entire text, depict-
ing interparagraph relationships and emphases, must also
be determined for successful generation. Fortunately, RST
is capable of representing interparagraph structure as well
as intraparagraph structure, giving us the framework for
exploring how paragraph structure and total text structure
interact and how these structures affect the surface text.

109

A.
(2) ~t_ecufing a Lamp Test by (1) pushing the Lamp Test Switch should be the first thing
you should do. (3) Otherwise you have no way of knowing whether the BITE Test
indications are cocrect, (4) and thus no way of knowing how to proceed.

B .
(1) Pushing the Lmnp Test Switch should be the first thing you should do. (4) Otherwise
you have no way of knowing how to proceed. (3) since you didn't determine whether the
BITE Test indications are correct (2) by executing • lamp Test.

C.
(1) Pushing the Lamp Test Switch should be the first thing you should do. (2) Otherwise
you dou't execute a Lamp Test, (3) which means you have no way of knowing whethex the
BITE Test indications are ourrect, (4) and thus no way of knowing how to proceed.

D,
(1) Pushing the Lamp Test Switch (2) in m'der to execute • Lamp Test should be the first
thing you should do. (3) Otherwise you have no way of knowing whether the BITE Test
indications are correct. (4) md thus no way of knowing how to prococd.

E .
(1) Pushing the launp Test Switch should be the in'st thing you should do. (2) Otherwise
you don't execute a Lamp Test. (4) which means you have no way of knowing how to
~oceed. (3) since you have no way of knowing whether the BITE Test indications are
correct.

F .
(2) Executing • Lamp Test (1) by pushing the lamp Test Switch should be the first thing
you should do. (4) Otherwise you have no way of knowing how to proceed. (3)since you
have no way of knowins whether the BITE Test indications are correct.

G.
(1) Pushing the Lamp Test Switch (2) in arder to execute • Lamp Test should be the first
thing you should do. (4) Otherwise you have no way of knowing how to proceed. (3) since
you have no way of knowing whether the BITE Test indications are correct.

H .
(1) Pushing the Lamp Test Switch should be the first thins you should do. (2) Otherwise
you don't execute • Lamp Test (3) in order to determine whether the BITE Test indications
are correct, (4) stud thus you have no way of knowing how to proceed.

I .
(1) Pushing the Lamp Test Switch should be the f i rs t thing you should do. (3) Otherwise
you have no way of knowing whether the BITE Test indications are co~ect (2) since you
didn't execute a Lamp Test, (4) and thus you have no way of knowin S how to proceed.

J .
(1) Pushing the Lamp Test Switch should be the first thins you should do. (4) Otherwise
you have no way of knowing how to proceed. (2) since you don't execute • Lamp Test (3) in
order to determine whether the BITE Test indications arc correct.

F i g u r e 5 : 1 0 P a r a g r a p h Var i a t i ons

1 2

2 1

F i g u r e 6: R S T fo r P a r a g r a p h A

ii0

3 2

Figure 7: RST for Paragraph B

Condusions
While a coherent organization is necessary for the genera-
tion of a multisentential paragraph, this organization itself
conveys information, such as what knowledge is primary
and what is secondary, and which of the various possible
relationships between the pieces of knowledge the speaker
wishes to make explicit. The organization of the message
is an integral part of the message, Given this, it is wrong to
assign the task of text structuring to any component other
than the one that desires to convey the message in the first
place.

George is a proposed extension of MACH-III that ac-
cepts this fact. Use of the functional hierarchy trou-
bleshooting tree developed for MACH-RI directs the choice
of the correct RST structure from a small set of ~ i d a t e s ,
with information resident in appropriate troubleshooting
tree nodes instantiating the structure. This instantiated RST
structure can then be used to build an input message for the
MUMBLE-86 generator. Thus text generation in George is
more flexible than in MACH-IIL and better flowing text is
produced.

There are still several important issues to be resolved,
most notably how the selection of a message's underlying
structure is controlled and how multiparagraph texts can
be properly organized and how this organization affects the
final text. The combined use of functional hierarchy and
RST as described in this paper gives a solid framework in
which these issues can be explored.

Acknowledgements
Thanks to David McDonald, without whose encouragement
and timely reviews of drafts this paper would never have
been written.

tHov88]

[KGM89]

[KGM90]

[LG86]

[MMA*87]

[MT87]

[MTG89]

References
Eduard H. Hovy. Planning coherent multisen-
tential text. In Proceedings of the 26th Annual
Meeting of the Association for Computational
Linguistics, 1988.

Laura C. Kurland, Robert Granville, and Dawn
MacLaughlin. HAWK MACH-III Explanations
of the Receiver Troubleshooting Tree. Techni.
cal Report, BBN Systems and Technologies
Corporation, 1989.

Laura C. Kurland, Robert Alan Granville, and
Dawn M. MacLaughlin. Design, Development
and Implementation of an Intelligent Tutor-
ing System (ITS) for Training Radar Mechan-
ics to Troubleshoot. In Journal of Machine-
Mediated Learning, Taylor & Francis, New
York, 1990. in publication.

Barbara Liskov and John Guttag. Abstrac-
tion and Specification in Program Develop-
ment. MIT Press, Cambridge, Massachusetts,
1986.

Marie W. Meteer, David D. McDonald,
Scott D. Anderson, David Forster, Linda S.
Gay, Alison K. Huettner, and Penelope Si-
bun. Mumble-86: Design and Implementation.
Technical Report COINS Technical Report 87-
87, University of Massachusetts at Amherst,
Amherst, Massachusetts, 1987.

William C. Mann and Sandra A. Thompson.
Rhetorical Structure Theory: A Theory of Text
Organization. Technical Report ISI/RS-87-
190, Information Sciences Institute, Marina
del Re),, California, 1987.

Dawn MacLaughlin, Yvette Tenney, and
Robert Granville. HAWK MACH-III Expiana-
tions of the Transmitter Troubleshooting Tree.
Technical Report, BBN Systems and Tech-
nologies Corporation, 1989.

iii

