
The selection of a parsing strategy for an on-line machine translation
system in a sublanguage domain. A new practical comparison.

Patrick Shann
University o f Geneva (ISSCO) & University of Zurich^, Switzerland

1. Introduction

The paper reports the results o f a practical comparison of different parsing strategies. The research
was carried out in the context of a larger project for the development o f a machine translation (MT)
system for translating avalanche forecast bulletins from German to French. The design of the MT
system requires controlled input and no post-editing o f the translated texts. The parsing experiment
had as a goal to select the most suitable parsing strategy for a parser that allows the composition of the
sentences in on-line fashion with mouse and windowing2. In order to guarantee correct translation, the
input system accepts only words and sentences that are known by their grammar and dictionary and it
refuses wrong input. To minimize input errors, the user can select the possible next words with the
mouse from different windows, which display the choices at a particular point in the sentence. The
sentences are parsed word by word from left to right so that wrong input is detected immediately.
After each word, the input device has to predict, with the help of the parser, all the words that can
possibly continue the sentence that is being made. For our type of on-line parser, time is critical. The
interface window has to be refreshed immediately after each word chosen by the user.

When we looked for a suitable parser, no comparison existed between Tomita's extended LR parser
and enhanced chart parsers (top-down filter, rule compiling and lookahead) using different strategies
(CKY, LC, B P) apart from Tomita's own comparison with the Earley parser (TD). Furthermore,
practical tests (Wiren 1987) are normally performed by using only simple phrase structure grammars
and by measuring pure parse time. In our experiment we were interested in real time performance
(what is seen by a user). Since the grammar type can heavily influence the overall processing
efficiency, we chose to base our experience on three grammar types in the paradigm of context-free
parsing (monadic, simple features and unification). Our parsing experiment is a continuation of the
work of J.Slocum (1981a) and M.Tomita (1985) on parsing algorithms and parsing strategies. The
emphasis o f the research lies on the real-world performance of the parsers in connection with different
grammar types rather than on the theoretical space and time complexity of the parsers.

2. Description of the parsers

In our experiment, we have compared the Tomita parser with four chart-parsers4 that have different
nile-invocation strategies. In this section we will introduce the different parsing strategies and the
improvements that can be made, i.e. top-down filtering, lookahead and rule compilation.

2 .1 . Chart parsers

Our four chan parsers can be distinguished in the way they define the two basic operations Combine
and Propose5. Combine is the procedure that builds new edges in the chart by combining existing
ones, Propose is the rule invocation strategy that predicts new edges on the basis of the grammar. In
the next chapter we define the basic algorithms. TTie improvements o f the chart parsers are described
in the following chapters on top-down filtering, lookahead and rule compilation.

2 .1 .1 . Four different chart parsers: TD, LC, CKY, BI

Let G be a context-free grammar with S as start symbol. We will represent terminal symbols by
lowercase letters: a, b, c; nonterminals by capitals: A, B, C; strings o f terminals or nonterminals

^ This research has been supported by a grant from the University o f Zurich.
A system with a similar input facility is reported by H.R.Tennant (1983).

3 S. Steel & A. De Roeck (1987).

We assum e basic familiarity with chart parsing and with Tomita’s LR parsing algorithm. For further literature on charts see
Wir^n (1987), for LR parsing Aho & Ullman (1979).

Our Combine is more general than W inograds (1983) since we use a C K Y variant with complete edges only.

-264- International Parsing Workshop '89

with Greek letters: a, p, y, vertices by: i, j, k; edges 1 as pairs of the rule in dotted notation and their
left and right vertices. We will call the first symbol to the right of the dot in an active edge the required
category. In the following example of an active edge, <A -> B • C D I i,j>, C is the required category,
i the left and j the right vertex. TD, LC are implemented in such a way that they use only active edges,
CKY only complete edges and BI active and complete edges.

2 . 1 .1 . 1 . Top-down (TD)

This strategy can be considered as Earley-like since it is very similar to Earley's algorithm apart from
the fact that it does not use a lookahead Some authors describe its Combine as the 'fundamental rule'
of chart parsing2.

Combine
Whenever a complete edge Ec <A -> a • I j,k> is added to the chart, combine it with all active
edges Ea <B -> p • Cy I ij> ending at Ec’s starting point j if Ec's category A corresponds to Ea's
required category C and build the corresponding new edges <B -> pC ■ y I i,k>.

Propose
Whenever an active edge Ea <A -> a • Bp I i j> is added to the chart, if its required category B is
a nonterminal, for every rule B -> y in the grammar G that expands Ea's required category B
add an empty active edge Ex <B -> • y I j j> .

The parse runs top-down and is triggered by the first active edge <S -> • a I 0,0> expanding a with all
the rules that have the start symbol S as left-hand side. It proceeds in a strict left-to-right fashion, the
next input word is read when all Proposes and Combines up to the current input point have been
executed. Opposed to the TD strategy are the two typical bottom-up parsers LC and CKY. Instead of
using the rule selecting mechanism for building new hypotheses or active edges on the basis of
required categories, the bottom-up parsers trigger the rules from the categories of complete edges.

2 . 1 . 1 . 2 . Left-corner (LC)

As a bottom-up technique new edges are proposed on the basis o f complete edges. The corresponding
grammar rules are triggered if the first symbol o f the right-hand side (RHS) o f the rule , the 'left-
corner', has the same category as the complete edge. LC and TD have the same 'Combine' and expand
active edges from left to right.

Propose
Whenever a complete edge Ea <A -> a • I i j> is added to the chart, for every rule B -> Ap in
the grammar G whose left-corner symbol A has the same category as Ea, add an active edge En
<B -> A • p I i,j> to the chart.

2 . 1 . 1 . 3 . Cocke-Kasami-Younger (CKY)

The second bottom-up parser is a variant of the Cock-Kasami-Younger algorithm. It is similar to CKY
in the sense that it is pure bottom-up and combines only complete edges, but the grammar rules are not
restricted to Chomsky normal form. To achieve this, Combine works from the right to the left and the
rules are proposed on the rightmost symbol of the right-hand side.

Propose
Whenever a complete edge Ea <A -> a • I i j> is added to the chart, propose all rules B -> pA in
the grammar G, whose rightmost symbol is A.

1 Edges con-espond to Earley's (1970) ’states’ and to ’items’ in Aho & Ullman (1977).
2 H. Thompson (1981). We will describe the two operations in a similar style to Thompson and Wir6n (1987).

-265- International Parsing Workshop '89

Combine
Whenever a complete edge Ec <A -> a • I i j> is added to the chart, for each rule B -> pA that is
proposed on A and for each combination of consecutive1 complete edges starting with Ec and
going to the left whose categories satisfy the sequence pA build a new complete edge En <B ->
PA-1 k,j> starting at the vertex k of its left-most edge and ending at the right vertex j of Ec.

2 . 1 .1 . 4 . Bi-directional (BI)

De Roeck (1987) gives the following motivation for bi-directional rule invocation. Form a linguistic
point o f view, certain phenomena like traces are best analysed top-down whereas others are best
discovered from evidence in the string, e.g. in coordination, the conjunction is the best evidence for
triggering the rule. But in the two bottom-up chart parsers the rules are triggered by a fixed handle,
which is either the left-most or the right-most symbol o f the RHS of a rule. In bi-directional chart
parsing the linguist can tailor the rule invoking strategy locally by annotating the rules if they are used
top-down or bottom-up. For bottom-up rules, one has to indicate which symbol they are triggered on.
A rule for coordinating Np’s can be annotated for example 'up' on the conjunction: Np -> Np Conj
Np {up Conj}. When the complete edge for Conj is added to the chart, this rule will be triggered and
it will add an active edge that tries to combine with an NP to the left as well as to the right. The
Propose of the bi-directional parser acts accordir.i the the annotation o f the rules. In order to avoid
duplication Combine has been implemented in such a way that it first combines to the left and only
then to the right. We have to expand the dotted rule notation in the sense that a colon marks the
beginning o f the recognized symbols of an edge and the dot the end o f the recognized parts. Symbols
to the right o f a colon and to the left o f a dot have been recognized. Our implementation proposes only
to the right. An active edge can be left-active, if it is expecting a symbol to the left

Etqpqss
Whenever a complete edge Ea <A -> : y • I i j> is added to the chart, for every rule B -> aAp
annotated bottom-up on the symbol A, add an active edge En <B -> a : A • p I i,j> to the chart.
Whenever an active edge Ea <A -> : a • Bp I i j> is added to the chart, if its required category B
is a nonterminal, add an empty active edge Ex <B ->*51 j,j> for each rule in the grammar G
that is annotated down and that expands Ea's required category B.

Combine
Whenever a left active edge Ea <A -> a : y • p I i,j> is added to the chart, for each combination of
complete edges starting with Ea and going to the left whose categories satisfy the sequence a
build a new active edge En <A -> : ay • p I k,j> starting at the vertex k o f its left-most edge and
ending at the right vertex j of Ea.
Whenever a complete edge Ec <A -> a • I j J o is added to the chart, combine it with all active
edges Ea <B -> : p • Cy I i,j> ending at Ec's starting point j if Ec’s category A corresponds to
Ea’s required category C and build the corresponding new edges <B -> : p C • y I i,k>.

The bi-directional chart parser was included in the tests for verifying the hypothesis if triggering
annotations o f the rules reduce the search space and improve the overall performance.

2.1.2. Top-down filter (tdf)

In general, bottom-up algorithms have a reduced search space by the fact that they are data-driven. On
evidence o f complete edges, that are present in the string, they are faster in finding the corresponding
rules. They do not have to explore the whole search space of the grammar as the TO parser that is
over-productive in active edges. On the other hand, bottom-up parsers have problems in dealing with
rules that have common right parts as in the following example: 'CD' is the common right string o f
both rules A -> BCD and A -> CD. Both rules will fire on a string 'BCD'. Bottom-up chart parsers
are over-productive in complete edges that do not attach to phrases on the left. The next two chapters
deal with filters to reduce over-production o f useless edges: top-down-filtering, a method for bottom-

1 Two complete edges can be combined to the left if the starting vertex o f the first edge corresponds to the ending vertex of the
second one.

*266- International Parsing Workshop '89

up parsers to reduce the production of useless complete edges and lookahead, a method to reduce the
production of unnecessary active edges, useful for TD, LC and BI.

Top-down-filtering is described like running a top-down parser in parallel with a bottom-up parser1.
The bottom-up parser proposes new edges while the top-down process checks if they can be derived
from the root. The tdf rejects all proposed rules that will generate phrases that can't be attached to the
left context. The tdf uses a "reachability relation R where AftB holds if there exists some derivation
from A to B such that B is the left-most element in a string derived from A" (Wiren 1987, cf also Pratt
1975). The reachability relation R can be precompiled so that the tdf can check in constant time if Jl
holds for a new proposed edge.

In the LC parser, the tdf is implemented in the following way: For each nonterminal category A the
transitive closure of the categories that are reachable from A are precalculated . At each vertex, the tdf
keeps a list of the reachable categories. Vertex 0 is initialised with the list of the categories that are
reachable from the root category. For each new active edge En, the tdf adds the categories that are
reachable from the new required category to the tdf -list of reachable categories at the ending vertex of
En. In the function Propose, the tdf checks for every proposed rule if its left-hand side category is in
the list of the reachable categories of the current vertex. Only rules that pass the tdf lead to the creation
of new active edges.

2.1.3 . Lookahead (la)

Top-down-filtering cuts down the production o f useless complete edges in bottom-up parsing by
checking if they can combine with the left context The lookahead function verifies if a new edge can
be attached to the right context. Wiren (1987) reports an experiment where la was used successfully to
reduce the over-production o f active edges in TD or LC2. La is based on the same reachability relation
as tdf but is loolang to the right. Each time an active edge is proposed, the la function checks if the
new required category Cn can reach the preterminal category of the next input word ai+i, that is if
CnR.ai+i holds. We have tested all our parsers without lookahead.

2.1.4. Rule compilation

The third method for reducing the number o f edges in chart parsing is precompiling the grammar rules
into decision trees. Assume two rules used by a LC parser, A -> BC and A -> BDE. The two rules
have the common left part B and can therefore be merged into a single combined rule with a shared
part B: A -> B (C, DE). In parsing, the two rule scan share the common pan B which is represented
by a single active edge. TD and LC compile the rules by factoring out similar left parts. CKY
combines from right to left and does therefore the factoring from the right. BI, based on annotations of
single rules, uses both ways o f building its rule decision trees. Note that building decision trees for
rules is related to the way in which the canonical set of items is built for the construction o f LR parsing
tables. The first step in making a new canonical LR set is done by taking all the items in a set that have
the same category to the right o f the dot. Building decision trees from rules also groups them together
on the basis o f the next category that has to be recognized.

2.2. Tomita's extended LR parser (TOM)

Tomita's Parser (Tomita 1985) is a generalised version o f a LR shift-reduce parser. It is based on two
data structures: a graph structured stack and a parser forest for representing the result. The graph-
structured stack allows nondeterministic parsing o f ambiguous grammars with LR shift-reduce
technique. Tomita (1988) shows that his graph-structured stack is very similar to the chart in chart
parsing. The parse forest allows an efficient representation o f the result While the number o f parses
can grow exponentially, the parse forest grows polynomially. In order to see which part o f the
program is responsible for efficiency, we compare two versions o f Tomita's parser, one with and one
without parse forest

1 J. Slocum (1981b), M .K ay (1982), Pratt (1975), Wirdn (1987).
2 Earley uses the lookahead in a different way: The lookahead is in his Completer and not in the Predictor, as in Wirdns
program m s.

-267- International Parsing Workshop '89

2 .3 . The gram m ar types

Each parser can be run with three different types of context-free grammars. This is done by adding
annotations to the context-free rule skeleton. Whenever all constituents of a context-free rule are
found, before the new edge is constructed, the parser calls for a rule-body procedure (Slocum 1981b)
that evaluates the annotations o f the rule. Each grammar type has a different module for evaluating the
rule-body procedure. If the rule-body procedure returns an error because a test has failed, the new
edge is discarded.

The first grammar type uses simple phrase structure rules with monadic categories that have no
annotations. The second grammar type has annotations that go with simple sets of attribute-value pairs
where the values are atomic. These annotations allow testing and assigning features to particular nodes
of the context-free rules. The third grammar type is unification based and uses complex features and
annotations in the PATR-II style. The three grammar types vary the rule-body procedure overhead
(unification being very time consuming) and therefore show a more realistic picture of the behaviour
of the parsers in real context.

3 . Previous em pirica l com parisons

In this section we report the results o f three practical comparisons o f parsers relevant to our
experiment: Slocum who compared particularly LC and CKY with top-down filter, Tomita who
compared his extended LR parser with Earley's parser and Wiren who compared TD and LC with top-
down filter and lookahead. Each of the comparisons gives an incomplete picture. They usually
compare two basic strategies with different refinements like top-down filtering etc.

One o f the important points for comparisons is stressed by Slocum (1981b): Theoretical calculations
about worst case behaviour o f algorithms can be quite inaccurate because they often neglect the
constant factors that seem to have a dominant effect in practical situations. He writes: "In order to
meaningfully describe performance, one must take into account the complete operational context of the
natural language processing system, particularly the expenses encountered in storage management and
applying rule-body procedures” since a significant portion of the sentence analysis effort may be
invested in evaluating the rule-body procedures. To measure performance accurately he suggests
including "everything one actually pays for in real computing world: Paging, storage management,
building interpretations, rule-body procedure, etc., as well as parse time".

3 . 1 . Slocum : two bottom -up chart parsers, LC vs. C KY

Slocum has conducted two experiments, one at SRI and the second one at LRC, which is more
important for us. In the second experiment, he carefully compared two bottom-up chart parsers: LC
and CKY enhanced with top-down filtering and early constituent tests1. He used the German analysis
grammar 500 rules) o f the MT system that was under development at the time at LRC and a corpus
of 262 sentences going from 1 - 39 words per sentence (15,6 words/sentence average). The rule-body
procedures were rather considerable for a parser test but interesting for realistic performance
evaluation. They consisted o f "the complete analysis procedures for the purpose o f subsequent
translation which includes the production o f a full syntactic and semantic analysis via phrase-structure
rules, feature tests and operations, transformations and case frames".

Given his grammar and test sentences Slocum establishes two things:

1) LC with tdf (without early constituent test) performs best, better than CKY (which is the opposite
of the common expectation). He comments that a tdf increases the search space, but that the overhead
is balanced in practice by the fact that the tdf reduces the number of phrases and therefore particularly
the rule-body procedure overhead, which is considerable in his case. "The overhead for filtering in LC
is less than that in CKY. This situation is due to the fact that LC maintains a natural left-right ordering
of the rule constituents in its internal representation, whereas CKY does not and must therefore
compute it at run time."

1 The early constituent test calls for the parser to evaluate that protion of the rule body-procedure which tests the first
constituent, as soon as it is discovered, to determine if it is acceptable’' (Slocum 1981b)

-268- International Parsing Workshop ’89

2) "The benefits of top-down filtering are dependent on sentence length: in fact filtering is detrimental
for shorter sentences. Averaging over all other strategies, the break-even point for top-down filtering
occurs at about 7 words.”

We conclude this section with a statement from Slocum about filters: "Filtering always increases pure
parse time because the parser sees it as pure overhead The benefits are only observable in overall
system performance, due primarily to a significant reduction in the time/space spent evaluating rule-
body procedures." TTiis point will be important in our comparisons since we use three different
grammar types with rule-body procedures that take increasingly more time.

3 . 2 . Tom ita: The Tom ita parser vs. Earley's algorithm

Tomita (1985) compared his parser empirically with two versions of the Earley algorithm (E-I and E-
II). In our terminology this would correspond to TD and TD+la. WTiile the Tomita parser was
producing a parse forest, E-I and E-13 were run as recognizers and produced no parse.

In the comparison, four pure context-free phrase-structure grammars were used, consisting of a
varying number o f rules: G1 8, G2 40, G3 220 and G4 400 rules. These grammars were tested with
two sets o f sentences, SI: 40 sentences from texts and S2: 13 artificial sentences that have an
increasing number of prepositional phrases (1 to 13). These artificial sentences are useful for testing
growing sentence ambiguity since the number o f parses grows exponentially (Martin et al. 1981).

Tomita’s experiment shows that his algorithm works 5 to 10 times faster than Earley's standard
algorithm (TD), and 2 to 3 times faster than Earley's improved algorithm (TD+la). He states that this
result is due to the pre-compilation of the grammar into an LR table. Tomita summarizes that his
algorithm "is significantly faster than Earley's algorithm, in the context of practical natural language
processing.. . Its parsing time and space remain tractable when sentence length, sentence ambiguity
or grammar size grows in practical applications."

3 . 3 . W iren: top-dow n and bottom -up chart parsers, TD vs. LC

Wiren compared in his experiment two basic chart parsers with several improvements, TD versus LC,
both with lookahead, LC with top-down filtering1. He tested his parsers with grammars G1 to G3
from Tomita, with a reduced number of the two sentence sets, S21 and S2.

The results o f his experiments show that the "directed methods" - based on top-down filtering and
lookahead - reduce significantly the number o f edges and perform better than undirected parsers.
Tested independendy, the selectivity filter (lookahead in our terminology) turned out to be much more
time efficient than top-down filtering that degraded time performance as the grammar grew larger2.
"The maximally directed strategy - .. . with selectivity and top-down filtering - remained the most
efficient one throughout all the experiments, both with respect to edges produced and time consumed."
It performed better than TD with lookahead.

Putting the results o f the three experiments together, we would expect that improved LC performs best
amongst chart parsers. Since the Tomita parser has only been compared with TD, we can expect a
different result by comparing it with improved bottom-up chart parsers that compile their rules into
decision trees (cf. chap. 2.1.4). Tomita and Wir6n measure pure parsing time determined by CPU
time minus time for garbage collection. Their grammars are pure CF grammars using little rule-body
procedure time and it is therefore difficult to predict what the interaction will be between filtering
overhead and rule-body procedure and how this will influence overall performance.

4 . T h e com p arison

4 . 1 . T he parsers

Our main goal was the selection o f a suitable parsing strategy for our on-line MT-system. Since our
application is time critical, one o f the important questions was what combination o f parser and rule-

1 LC k la Kilbury has already been used by Slocum. What it comes down to is that new active edges subsume the complete edges
that have provoked their proposal. Since we use that variant o f LC (cf. 2 .1.1.2) coming from Slocum (1981a), we dont
distinguish betw em a standard LC and the Kilbury variant. -2 6 9 - International Parsing Workshop '89
1 W irfn explains this puzzle with implementational reasons.

body procedure is best for our purpose. One of the objectives was to verify if the Tomita parser is as
efficient as predicted if it is compared to improved bottom-up chart parsers. Since no comparison
existed between all the basic rule invocation strategies for chan parsers, we decided to compare the
Tomita parser with four chart parsers. To guarantee the comparability of the chart parsers, we chose
Slocum's implementation (1981a) as basic design for all chan parsers. We added two supplementary
rule invocation strategies to his bottom-up left-comer (LC) and Cocke-Kasami-Younger strategy
(CKY), namely a top-down Earley-like strategy (TD) and a bi-directional strategy (BI). The basic
chart parsers were augmented by two enhancements, i.e. top-down filtering and compilation of the
rules into decision trees. We took the Tomita parser as described by Tomita (1985) and added a
second version without the parse forest representation. Since its LR(0) parsing table has no
lookahead, we added no lookahead to the chart parsers.

All the programs are implemented in Allegro Common Lisp and tested on a Macintosh II (MC68020
with 5 MB RAM). As main parameters we compared number o f edges, number of rule-body procedure
executions and over-all time.

4 . 2 . The gram m ars and sentences

The first test uses small grammars (22 and 80 rules) together with the same 50 artificial sentences. The
monadic grammars are tested with all 9 parsing strategies (TOM +/-parse forest; TD, LC, CKY, BI,
the bottom-up parsers +/-tdf), for features and unification grammars we use TOM without parse forest
and all the chart parsers. The 50 test sentences are constructed artificially to control parameters like
sentences ambiguity, sentences length and three linguistic phenomena, i.e. PP-attachment, relative
clauses and coordination. They can be classified into two groups, one where ambiguity grows
exponentially with increasing sentence length (PP-attachment and coordination), and a second group,
where the sentence length does not influence ambiguity (they have 1 to 3 readings). The sentence
length varies from 3 to 24 words. Each grammar type has two small grammars with approximately 25
resp. 80 rules.

The second test compares a reduced number of parsers (TOM, TD, LC, CKY, bottom-up +/-tdf) with a
bigger monadic grammar based on the German avalanche corpus that has 750 rules and 300 lexical
items. The 50 test sentences were taken from the avalanche corpus, their length varies from 6 to 42
words (average 19 words per sentence).

5 . T est-resu lts and d iscussion

Before we comment, we will give a brief outline of how we present the test-results in appendix 1 and
2. The seven tables in appendix 1 summarize the statistics for each grammar and set of sentences. We
give the total number o f edges and the total time for each parser over all sentences. The figures for
time indicate overall time1 that includes rule-body procedure etc. The reader should be careful in the
interpretation of the timings; these figures are dependent on machine, lisp system and the way in
which the algorithms are programmed. Nevertheless, we think that they give an indication o f relations.
Appendix 2 shows a limited number of diagrams to illustrate the figures graphically.

In appendix 1, each table shows three fields, one for the number of edges and two for timings: 1) the
total time for all sentences and 2) the time for 26 sentences with low ambiguity. The second group of
test sentences includes relative clauses and coordinations. The number o f words per sentence goes
from 5 to 23 words (13 average) and they have 1 to 5 readings. Time is measured in milliseconds. The
column 'diff indicates the difference o f the parsers from Tomita which is set to 1. In the field ’time
all', we added the average time per word (ms/word) in order to have a figure that can easily be
compared across the different tests. We have listed the number of edges because this figure is often
given as measurement for parser performance. But one can observe that the rankings based on the
number o f edges and the one based on timing do not correspond. This is due to the particular way in
which the chart parsers are implemented. As we have mentioned in chap. 2.1.1, TD and LC keep
only active edges in the chart, whereas CKY has only complete edges and BI both. For TOM, we
counted the number o f shift operations.

Since there is limited space for diagrams, most o f them show three parsers: TOM, TD and LC +/-tdf.
All the diagrams display the time/word relation for a particular grammar and a sentence set. Diagram 1

1 Since we have forced a garbage collection before each sentence, the garbage collector does not interfere with the timings.
-270- International Parsing Workshop 89

and 2 show PP-attachment (high ambiguity: a 20 word sentence has 132 parses), diagram 3 the
time/word relation for the 750 rule grammar and all the avalanche sentences. Diagram 4 represents the
times for LC +/-tdf with the three different grammar types for a set of coordinations in high ambiguity.
Diagram 5 shows all parsers with a set o f relative clauses that have low ambiguity.

5 . 1 . The chart parsers

Our tests confirm Slocum's and Wirdn’s data: the left-comer parser (LC) with top-down filtering is
overall the most efficient chart parser. It ranks highest among the chart parsers with all grammar types
and grammar sizes. The only exceptions are monadic and feature grammars o f the size of 80 rules with
low ambiguity sentences (see below 5.3.). Earley-like top-down (TD) with the two small grammars is
highly overproductive in active edges and therefore a bad choice if it is used without lookahead
Diagram 1 and 2 show how TD is influenced negatively by the ,rammar size, the grammar in diagram
2 has three times more rules. Strangely enough, in the large grammar (table 3 and diagram 3), TD is
converging towards LC as the sentences grow longer. In diagram 3, one can see well its initial
overhead of active edges .

The bi-directional chart parser (BI) was included in the tests for verifying the hypothesis if triggering
annotations on the rules reduce the search space and improve the overall performance. None o f our
tests could confirm such a hypothesis. It seems that top-down filtering or lookahead influence
performance to a greater extent than linguistic triggering annotations. BI did not perform better with
any particular set o f test sentences or grammars.

5 . 2 . The Tom ita parser and chart parsers

Diagram 1 and 2 show how the Tomita parser (to+) performs best in situations o f high ambiguity.
Taking the overall timings in table 1 and 2, TD is 4.75 to 6.53 times slower than TOM (and our
comparison stops at sentences with 20 words with 132 readings). The situation is less dramatic if we
take LC+tdf. Here the difference is 1.67 to 1.9. But, if we take our grammar o f 750 rules with its low
ambiguity sentences, the gap is much smaller: 1.38 for LC+tdf and 2.15 for TD. A closer look at
diagram 1 and 2 shows that TOM without parse forest (to-) is roughly equivalent to LC+tdf (lc+). We
therefore think that the major speed gain o f TOM comes from its parse forest, which is an efficient
way o f packing the parse trees. But, this representation could be used with any parser and is not
specific o f TOM. In diagram 3, TOM and LC+tdf show a constant time difference. Precompiling the
grammar rules into a LR parsing table or precompiling them into decision trees does not make a crucial
difference, even with very long sentences o f up to 42 words and a large grammar of 750 rules.

5 . 3 . F ilters, gram m ar size and rule-body procedures

This chapter tries to address the complex interaction between parsing strategy, grammar size, sentence
ambiguity and overheads for top-down filtering and rule-body procedure. There is no standard
grammar size. According to the grammar type, the size varies. We estimate that unification grammars,
which are highly lexical, might have 50 to 100 rules, grammars with simple features around 5001, and
monadic grammars several thousand rules.
In general, a TD parser is disadvantaged if the grammar has a high branching factor because o f its
overproduction o f active edges (cf. chap. 2.1.3.). Bottom-up parsers suffer from rules with common
right factoring in the right-hand side o f the rules (cf. chap. 2.1.2.). A grammar might produce
different results about TD overproduction or top-down filters according to its branching factor or right
factoring. The effect of a top-down filter is not always a good one. V/e have contradicting results
about top-down filtering. In the test with the monadic grammar o f 750 rules, the two chart parsers
with top-down filter 0c+ and cky+) perform better than their counterparts without filter. Diagram 3
also shows a converging TD and a diverging LC-tdf (lc-) as the sentence length increases. This is due
to the high right factoring o f that grammar. The opposite result is shown by monadic and feature
grammars with 75 rules together with the sample o f low ambiguity sentences. In these cases, the
overhead from the top-down filter deteriorates the efficiency of the chart parsers with top-down filter.
Unfiltered parsers with sentences up to 19 words are faster than the filtered ones. This result is
influenced by the nature o f the grammar as well as its size since the top-down filter with the small
grammars (22 or 30 rules) shows a positive e ffect

1 The Metal German analysis grammar, which is based on simple features, has 500-600 rules,

-271- International Parsing Workshop '99

Another tradeoff is between top-down filter and rule-body procedure. In our tests we compare three
different types of rule-body procedures: no annotadons in monadic grammars or simple features and
unification. Monadic grammars and simple feature grammars have a small rule-body procedure
whereas the overhead for unification is considerable (2/3 for unification and 1/3 for pure parsing).
Diagram 4 shows optically that the top-down filter has a positive effect as the rule-body procedure
grows. With a time consuming rule-body procedure, a top-down filter becomes vital for the overall
efficiency. This statement should not be interpreted as a generalization about simple feature grammars
versus unification. Our point is independent of a particular grammar type but has to do with the
relation between pure parse time and rule-body procedure time.

5 . 4 . Sentence length

As we reported in chap. 3.1., Slocum claims that the benefits of top-down filtering are dependent on
the sentence length and that the break-even point for top-down filtering (averaged over LC and CKY)
occurs at about 7 words. As we have shown above, the question is more complex and influenced
furthermore by the number of parses as well as by the nature and by the size of the grammar (right
factoring and branching factor). Some of our tests show clearly that the length of the sentence is not
necessarily the main parameter. We believe that no generalization is possible unless all the mentioned
factors are taken into account.

5 . 5 . Final choice

The choice of the parsing strategy for our MT-system was guided by the following ideas: Possible
candidates for an on-line parser that parses strictly from left to right are TOM, LC+tdf and TD. Given
the performance, TD was ruled out. The question of the grammar type was more difficult to solve.
The grammar has to predict all the sentences but only the correct ones, no overproduction is allowed.
We therefore have to subclassify heavily by using a system of about 100 grammatical and semantic
features. The worst cases for an empirical efficiency test are sentences with high ambiguity. Diagram 4
shows the performance of the three grammar types where the 20 word sentence has the highest
ambiguity. The average time per word varies heavily according to the grammar type: monadic - 70 ms,
features - 160 ms and unification -1267 ms. Unification is slower by a factor o f about 20. This factor
would be increased by the search for possible next words because it is not a simple matching of
categories but a complicated search that has to take into account all the instantiated variables from
constituents that have already been found Given this poor expectation for unification grammar in on
line parsing, we were left with two grammar types, and we opted for simple monadic grammars,
rather as a matter of computational simplicity. Together with monadic grammars, we chose the Tomita
parser, because it was slightly more performant with the large grammar for the avalanche corpus, and
last but not least, because o f its elegance. We like the idea o f precompiling the grammar into a LR
table.

We have come to the conclusion that it is very difficult to test empirically the performance of
algorithms or better o f programs and to find good generalizations1. Nevertheless, we believe that we
have shown that the parse forest representation is to a large extent responsible for the good
performance o f the Tomita parser, and second, that the difference in efficiency between the Tomita
parser without the parse forest representation and an enhanced left-comer parser with top-down
filtering and compiled rules is small. Two points of empirical research have not been addressed in our
tests, which could also help the practitioners o f computational linguistics when they have to select their
parsing strategies: 1) We have excluded the use of a lookahead We think that this point needs further
investigation (i.e. TOM with an LALR table versus LC+tdf with la). 2) Since the parse forest
representation is highly efficient, its benefits in combination with unification grammars need more
clarification.

6 . A c k n o w le d g e m e n t

I would like to thank Anne De Roeck and Tony Lawson for all the theoretical and practical discussions
as well as for the contribution o f the unification grammar from Anne and the unifyer from Tony.
Thanks also to Mike Rosner, Rod Johnson, Dominique Petitpierre and Thomas Russi for their
comments and useful hints.

1 On a different machine with a different lisp system the same programs might behave differently.

-272- International Parsing Workshop '89

A. Aho and J. Ullman (1979), Principles o f compiler design , Addison Wesly.

J. Earley (1970), An efficient context-free parsing algorithm, Communications o f the ACM 13(2), 94-
102.

M. Kay (1982), Algorithmic schemata and data structures in syntactic processing, CSL-80-12, Xerox
Parc, Palo Alto.

W. Martin, K.Church & R. Paril (1981), Preliminary analysis of a breadth-first parsing algorithm:
Theoretical and experimental results, MTT LCS Technical report.

V. Pratt (1975), LINGOL - A progress report, Proc. 4th IJCAI, Tbilisi, 422-428.

J. Slocum (1981a), A practical comparison o f parsing strategies fo r machine translation and other
natural language processing purposes, PhD University of Texas, Austin.

J. Slocum (1981b), A practical comparison o f parsing strategies, Proc. 19th ACL, Standford.

S. Steel & A. De Roeck (1987), Bi-directional parsing, in: Hallam & Mellish (eds.), Advances in Al,
Proc. o f the 1987 AISB Conference, J. W iley, London.

H.R. Tennant et al. (1 9 8 3), Menu-based natural language understanding, Proc. 21st ACL, 151-158.

H. Thompson (1981), Chart parsing and rule schemata in GPSG, Proc. 19th ACL , Stanford .

M. Tomita (1985), An efficient context-free parsing algorithm fo r natural languages and its
applications, PhD CMU Pittsburg. Also as: Efficient parsing fo r natural language. A fa st
algorithm fo r practical purposes. Kluwer, Boston 1986.

M. Tomita (1987), An efficient augmented-context-free parsing algorithm, Computational Linguistics
13(1/2).

M. Tomita (1988), Graph-structured stack and natural language parsing, Proc. 26th ACL , Buffalo.

J. Winograd (1983), Language as a cognitive process, Syntax, Addison-W esley.

M. Wiren (1987), A comparison o f rule-invocation strategies in context-free chart parsing, Proc. 3rd
European chapter ACL , 226-233.

7 . R e feren ce s

-273- Intemational Parsing Workshop '89

Appendix 1 a

Table 1 Monadic gram m ar: 22 rules

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc+ 6532 5 3.08 24049 2 1.67 38 8000 3 1.07
Ic- 13332 8 6.28 41418 7 2.88 66 12301 6 1.64

o + 3 44 9 2 1.62 33 219 4 2.31 53 1 2901 7 1.72
cky- 6886 6 3.24 34 634 5 2.41 55 9599 4 1.28
bi + 6497 4 3.06 44 483 8 3.10 71 1 5850 9 2.1 1
bi- 9655 7 4.55 36265 6 2.52 58 1 0033 5 1.34
td 1 9766 9 9.31 6821 7 9 4.75 1 09 12985 8 1.73
tom 2124 1 1 .00 14364 1 1.00 23 7498 1 1.00
to-2 3881 3 1 .83 25756 3 1.79 41 7940 2 1.06

Table 2 M onadic gram m ar: 75 rules

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc+ 622 4 5 3.38 24418 3 1.90 39 841 7 6 1.36
Ic- 902 0 8 4.90 27834 6 2.16 44 7318 5 1.18
cky+ 280 3 2 1.52 389 80 7 3.03 62 16481 7 2.66

cky- 488 4 6 2.65 25650 4 1.99 41 6150 1 0.99

bi + 747 6 4 4.06 56649 8 4.40 90 20 084 8 3.24

bi- 827 7 7 4.50 25815 5 2.00 41 6730 4 1.09

td 3 3 0 2 8 9 17.95 84130 9 6.53 134 20665 9 3.33

tom 1840 1 1.00 12883 1 1.00 21 6200 2 1.00

to-2 31 1 7 3 1 .69 2 1899 2 1.70 35 6382 3 1.03

Table 3 M onadic gram m ar: 750 rules

edges rank diff time all
(ms)

rank diff ms/word

lc + 369 3 3 1.94 2 01 32 2 1.28 21
Ic- 18411 6 9 .67 511 32 6 3.26 54
cky+ 1923 2 1.01 36715 4 2.34 39
cky- 6 662 4 3.50 407 85 5 2.60 43
td 16951 5 8.90 337 17 3 2.15 35
tom 1904 1 1.00 15684 1 1.00 16

Abbreviations

+ + top-down filter (tdf)
- tdf

tom Tomita + parse forest
to-2 Tomita - parse forest

274- International Parsing Workshop '89

Appendix 1b

Table 4 Featuro grammar: 30 rulea

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc + 6067 4 2.10 38669 1 0.93 62 11434 2 1.06
Ic- 12666 7 4.39 7641 5 6 1.85 122 18483 8 1.71
cky + 2661 1 0.92 470 15 3 1.14 75 15233 4 1.41
cky- 5304 3 1.84 69844 5 1.69 1 1 1 16213 5 1.50
bi + 61 65 5 2.14 64901 4 1.57 103 17517 7 1.62
bi- 10266 6 3.56 818 69 7 1.98 130 14050 3 1.30
td 2 1 6 6 9 8 7.52 114548 8 2.77 182 16982 6 1.57
to-2 288 3 2 1.00 41368 2 1.00 66 10818 1 1.00

Table 5 Feature grammar: 80 rulea

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc + 6232 4 2.02 4 1265 1 0.96 66 12383 3 1.04

Ic- 896 3 7 2.91 60867 6 1.42 97 14649 5 1.23

cky + 2831 1 0.92 57884 4 1.35 92 2 0668 6 1.73

cky- 4871 3 1.58 592 48 5 1.38 94 13983 4 1.17

bi + 7459 5 2.42 80217 7 1.87 128 26467 8 2.22

bi- 819 8 6 2.66 49901 3 1.16 79 11967 2 1.00

td 3 2 7 9 2 8 10.64 13565 0 8 3.16 216 249 85 7 2.10

to-2 3083 2 1.00 4 2985 2 1.00 68 11917 1 1.00

Tab le 6 Unification gram m ar: 30 rulea

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc + 544 9 3 1.79 144349 1 0.91 251 234 33 1 0.93

Ic- 1 1446 6 3.75 525 2 5 0 7 3.32 913 747 50 8 2.97

cky+ 281 3 1 0.92 153500 2 0.97 267 2 72 33 3 1.08

cky- 706 8 4 2.32 5 3 3 5 1 5 8 3.38 928 73167 7 2.91

bi+ 8 675 5 2.85 2 1 0 3 0 0 5 1.33 366 2 90 34 5 1.16

bi- 14247 7 4.67 3 0 7 9 4 9 6 1.95 536 3 7 8 6 6 6 1.51

td 18795 8 6.16 1 69 68 4 4 1.07 295 2 79 83 4 1.11

to-2 3 04 9 2 1.00 1 58 03 2 3 1.00 275 25 1 3 2 2 1.00

Tab le 7 Unification gram m ar: 80 ru le *

edges rank diff time all
(ms)

rank diff ms/word time 2 rank diff

lc+ 5519 3 2.00 1 08 38 2 1 0.95 188 20531 2 1.03

Ic- 125 27 7 4 .54 272181 8 2.39 473 4 2 5 4 9 8 2.14

cky+ 2 483 1 0.90 122 61 8 3 1.08 213 2 76 03 3 1.39

cky- 570 0 4 2.07 2 6 8 4 6 8 7 2.36 467 4 1 4 8 5 7 2.09

bi+ 6770 5 2.45 135834 4 1.19 236 2 9 9 1 8 4 1.51

bi- 12232 6 4.43 189650 6 1.67 330 3 0 2 1 7 5 1.52

td 3 4 0 9 3 8 12.36 146 20 3 5 1.29 254 31551 6 1.59

to-2 2 75 9 2 1.00 11 3750 2 1.00 198 19866 1 1.00

-275- International Parsing Workshop '89

— td

words
5 8 11 14 17 20

Diagram 1 Monadic-22 PP-attachment
ms
1 2 0

Appendix 2

words
' ~ 3 5 8 1 1 14 1 7 20

Diagram 2 Monadic-75 PP-attachment

1000

ms
1 00 0

ms

1 oo

8 0

6 0

4 0

20

0 4-t i » i \ i t t t i M i i u t n u i u n n i m m i i i n i
1 4 7 1 0 1 3 16 19 2 2 2 5 2 8 31 3 4 3 7 4 0 4 3 4 6 4 9 5 2 sentence nr.
6 10 1 5

Diagram 3 Monadic-750 (all sentences)

1 000
ms

20 2 5 3 0 4 2 words

1 00

1 0

— m +
i n i m -

— f +
. . . f -

— u +

I I I ! u -

8 1 1 1 4 1 7 2 0 words

D iagram 4 LC +/-tdf (30 rules)
3 grammar types, coordination
high ambiguity

70

60

50

40

30

20

10

0

i* '1

— lc+

— Ic-

I l l l ck+

am ck-

WJWA b i+

— b i

— tom

— td

8
»■ -..«■----- *— — f-

11 14 1 7 19 words

Diagram 5 Monadic-75, relative clauses
low ambiguity

-276- International Parsing Workshop ’89

