
P r o b a b il is t ic LR P a r s in g fo r Sp e e c h Re c o g n it io n

J.H.Wright: and E.N.Wrigley

Engineering Mathematics, University of Bristol, U.K.

Abstract

An LR parser for probabilistic context-free grammars is described. Each of
the standard versions of parser generator (SLR, canonical and LA.LR) may be
applied. A graph-structured stack permits action conflicts and allows the
parser to be used with uncertain input, typical of speech recognition
applications. The sentence uncertainty is measured using entropy and is
significantly lower for the grammar than for a first-order Markov model.

1. INTRODUCTION

1.1 Background

The automatic recognition of continuous speech requires more than signal
processing and pattern matching: a model of the language is needed to give
structure to the utterance. At sub-word level, hidden Markov models [1]
have proved of great value in pattern matching. The focus of this paper is
modelling at the linguistic level. Markov models are adaptable and can
handle potentially any sequence of words [2]. Being probabilistic they fit
naturally into the context of uncertainty created by pattern matching.
However, they do not capture the larger-scale structure of language and
they do not provide an interpretation. Grammar models capture more of the
structure of language, but it can be difficult to recover from an early
error in syntactic analysis and there is no watertight grammar.

A systematic treatment of uncertainty is needed in this context, for the
following reasons:

(1) some words and grammar rules are used more often than others;
(2) pattern matching (whether by dynamic time warping, hidden Markov

modelling or multi-layer perceptron [3]) returns a degree of fit for each
word tested, rather than an absolute discrimination; a number of possible
sentences therefore arise;

(3) at the end of an utterance it is desirable that each of these
sentences receive an overall measure of support, given all the data so that
the information is used efficiently.

The type of language model which is the focus of this paper is the
probabilistic context-free grammar (PCFG). This is an obvious enhancement
of an ordinary CFG, the probability information initially intended to
capture (1) above, but as will be seen this opens the way to satisfying (2)
and (3). An LR parser [4,5] is used with an adaptation [6] which enlarges
the scope to include almost any practical CFG. This adaptation also allows
the LR approach to be used with uncertain input [7], and this approach
enables a grammar model to interface with the speech recognition front end

-105- Intemational Parsing Workshop '89

as naturally as does a Markov model

1.2 Probabilistic Context-Free Grammars

A "probabilistic context-free grammar (PCFG)" [8-10] is a 4-tuple <N,T,R,S>
where N is a nonterminal vocabulary including the start symbol S, T is a
terminal vocabulary, and R is a set of production-rules each of which is a
pair of form <A a , p>, with AeN, a€(NuT)*, and p a probability. The
probabilities associated with all the rules having a particular nonterminal
on the LHS must sum to one. A probability is associated with each
derivation by multiplying the probabilities of those rules used, in
keeping with the context-freeness of the grammar.

A very simple PCFG can be seen in figure 1: the symbols in uppercase are
the nonterminals, those in lowercase are the terminals (actually
preterminals) and A denotes the null string.

2. LR PARSING FOR PROBABILISTIC CFGs

The LR parsing strategy can be applied to a PCFG if the rule-probabilities
are driven down into the parsing action table by the parser generator. In
addition, one of the objectives of using the parser in speech recognition
is for providing a set of prior probabilities for possible next words at
successive stages in the recognition of a sentence. The use of these prior
probabilities will be described in section 3.1. In what follows it will be
assumed that the grammars are non-left-recursive, although null rules are
allowed.

2 . 1 SLR Parser

The first aspect of parser construction is the closure function. Suppose
that I is an SLR kernel set consisting of LR(0) items of the form

<A -» a-£, p>

The item probability p can be thought of as a posterior probability of the
item given the terminal string up to that point. The computation of
closure(I) requires that items

<B -> ■ 7r» PbPt>

be added to the set for each rule <B -» 7 r, pr> with B on the LHS, provided
pBpr exceeds some small probability threshold e, where pB is the total
probability of items with B appearing after the dot (in the closed set).

New kernel sets are generated from a closed set of items by the goto
function. If all the items with symbol Xe(NuT) after the dot in a set I
are

<Ak ak -X/9k , pk> for k-l,...,nx , with px - £ pk
k - 1

then the new kernel set corresponding to X is

(<Ak -> akX-£k , pk/px> for k-1, . . . , nx}

and goto(I,X) is the closure of this set. The set already exists if there
-106- International Parsing Workshop '89

is another set which has the same number of elements, an exact counterpart
for each dotted item, and a probability for each item that differs from
that for its counterpart in the new set by at most e.

Starting from an initial state I0 consisting of the closure of

{<S' -> -S, 1>>

where S' is an auxiliary start symbol, this process continues until no
further sets are created. They can then be listed as I0 ,Ii,....

Each state set Ira generates state m and a row in the parsing tables
"action" and "goto". The goto table simply contains the numbers of the
destination states, as for the deterministic LR algorithm, but the
action table also inherits probabilistic information from the grammar.

(1) For each terminal symbol b, if there are items in Im such that the
total Pb>f, and the shift state n is given by goto(Im ,b) - In , then

action[m,b] - <shift-to-n, pb>

(2) For each nonterminal symbol B, if Pb>« and goto(Im ,B)-In then

goto[m,B] - n

(3) If < S ' -> S • , p> G Im then action[m,$] - <accept, p>

(4) If <B -> 7 * , p> E Ira where BhS' then

action[m , FOLLOW(B)] - <reduce-by B -» 7 , p>

For the very simple grammar shown in figure 1 the parsing tables turn out
as shown in figure 2, with shift-reduce optimisation [4,5] applied. The
probability of each entry is underneath.

The range of terminal symbols which can follow a B-reduction is given by
the set FOLLOW(B) which can be obtained from the grammar by a standard
algorithm [4], For a probabilistic grammar, the probability p attached to
the reduce item cannot be distributed over those entries because when the
tables are compiled it is not determined which of those terminals can
actually occur next in that context, so the probability p is attached to
the whole range of entries.

The probability associated with a shift action is the prior probability of
that terminal occurring next at that point in the input string (assuming no
conflicts). Completing the set of prior probabilities involves following
up each reduce action using local copies of the stack until shift actions
block all further progress. The reduce action probability must be
distributed over the shift terminals which emerge. This is done by
allocating this probability to the entries in the action table row for the
state reached after the reduction, in proportion to the probability of each
entry. Some of these entries may be further reduce actions in which case a
similar procedure must be followed, and so on.

2.2 Canonical LR Parser

For the canonical LR parser each item possesses a lookahead distribution:

<A -> a * /?, p, {P(at) m >
-107- International Parsing Workshop '89

The closure operation is more complex than for the SLR parser, because of
the propagation of lookaheads through the non-kernel items. The items to
be added to a kernel set to close it take the form

' 7r » PbPt i (PB(aj))j = l.... i t i)

so that all the items with B after the dot are then

<Ak -> ajj • , pk, { Pk(ai) } 1=1 ,..., in> for k-1, . . . , nB

and
n B Pk lT l F

P8 (aj) - I — I P (/9ka 1 ,aJ)Plt(a1)
k - 1 Pb i- 1

Fwhere P (^ka 1 ,aJ) is the probability of aj occurring first in a string
derived from £kai, which is easily evaluated. A justification of this will
be published elsewhere. The lookahead distribution is copied to the new
kernel set by the goto function.

The first three steps of parsing table construction are essentially the
same as for the SLR parser. In step (4), the item in Im takes the form

<B -» 7 • , p, (P(a1)) 1 = 1.,T|> where B*S '

The total probability p has to be distributed over the possible next input
symbols at, using the lookahead distribution:

actionfm.ai] - <reduce-by B -» 7 , pP(at)>

for all i such that pP(ai)>c. The prior probabilities during parsing
action can now be read directly from the action table.

2.3 LALR Parser

Merging the states of the canonical parser which differ only in lookaheads
for each item causes the probability distribution of lookaheads to be lost,
so for the LALR parser the LR(1) items take the form

<A -» a- (3, p, L> where LCT.

The preferred method for generating the states as described in [4] can be
adapted to the probabilistic case. Reduce entries in the parsing tables
are then controlled by the lookahead sets, with the prior probabilities
found as for the SLR parser.

2.4 Conflicts and Interprecat Lon

An action conflict arises whenever the parser generator attempts to put two
(or more) different entries into the same place in the action table, and
there are two ways to deal with them. The first approach is to resolve
each conflict [11]. This is a dubious practice in the probabilistic case
because there is no clear basis for resolving the probabilities of the
actions in conflict. The second approach is to split the stack and pursue
all options, conceptually in parallel. Toraita [6] has devised an efficient
enhancement of the LR parser which operates in this way. A graph-
structured stack avoids duplication of effort and maintains (so far as

-108- International Parsing Workshop '89

possible) the speed and compactness of Che parser. With this approach the
LR algorithm can handle almost any practical CFG, and is highly suited to
probabilistic grammars, the main distinction being that a probability
becomes attached to each branch.

The generation and action of the probabilistic LR parser can be supported
by a Bayesian interpretation. This is in keeping with the further
adaptation of the algorithm to deal with uncertain input.

3. UNCERTAIN INPUT DATA

3.1 Prediction and Updating Algorithm

The situation envisaged for applications of the probabilistic LR parser in
speech recognition is depicted in figure 3. The parser forms part of a
linguistic analyser whose purpose is to maintain and extend those partial
sentences which are compatible with the input so far. With each partial
sentence there is associated an overall probability and partial sentences
with very low probability are suspended. It is assumed that the pattern
matcher returns likelihoods of words, which is true if hidden Markov models
are used. Other methods of pattern matching return measures which it is
assumed can be interpreted as likelihoods, perhaps via a transformation.

let (s-1 ,2 ,...) represent partial sentences up to stage m (the stage
denoted by a superscript). let D represent the data at stage m, and (D)
represent all the data up to stage m. Each branch 1^ predicts words
a™ (perhaps via the LR parser) with probability P(aj|r^), so the total
prior probability for each word aj is

PCajKD)1"'1) - Is P(a” | C 1)P(rrI|ID)"'1)

Using Bayes' theorem the posterior probabilities of the words are

P(Dn,ia”)P(a” | (D)™"1)
P(aj | (D))

P(D” |aT)P(aTUD)"1)

inwhere P(D“ |a“) is the likelihood. If we define the extended branch r sJ
as then after some manipulation the probability of this is

p (a ^ | r r 1) P (r r 1 | { D) m " 1) m n

PCrTjl (D)“) --------- ---------- -------- — ------------ P(a” I (D)) (1)
P (a j | (D))

This shows that the posterior probability of a™ is distributed over the
extended partial sentences in proportion to their root sentences s ̂
contribution to the total prior probability of that word. If P(rsj| (D))<e
then the branch is suspended. The next set of prior probabilities can now
be derived and the cycle continues.

These results are derived using the following independence assumptions:

P(a?|a*,D“) - P(a^ | a") and P(D"|a“ ,Dk) - P(D’ |a”)

which decouple the data at different stages.

-109- International Parsing Workshop '89

Figure 4 shows successive likelihoods, entered by hand for a (rather
contrived) illustration using the grammar in figure 1. At the end the two
viable sentences (with probabilities) are

"pn tv det n pron tv pn" (0.897)
"det n pron tv pn tv pn” (0.103)

Notice that the string which maximises the likelihood at each stage,

"pn tv pron tv pron tv pn"

might correspond to a line of poetry but is not a sentence in the language.

The graph-structured stack approach of Tomita [6] is used for non-
deterministic input. Each path through the stack graph corresponds to one
or more partial sentences and the probability P(r^|{D)m } has to be
associated with each partial sentence r^.

3.2 Entropy of the Partial Sentences

Despite the pruning the number of partial sentences maintained by the
parser tends to grow with the length of input. It seems sensible to base
the measure of complexity upon the probabilities of the sentences rather
than their number, and the obvious measure is the entropy of the
distribution. The discussion here will assume that the proliferation of
sentences is caused by input uncertainty rather than by action conflicts.
This is likely to be the dominant factor in speech applications.

The sentence entropy is defined as

- - Z P(r”j| (D)“) log p<r^ji (dj")
s > J

where natural logarithms are used. A related measure called "perplexity"
[1 2], defined as

?s " exp(H^)

is the equivalent (in entropy) number of equally-likely sentences.
Substituting for P(j | {D }™) from equation (1) leads to

K? - - P(a*|(D)“)[log P(a*|(D)°) - /l"]
where

. m r-> _ . _ m— 1 . ■ . _ , o — 1 . - _ . „ m -1 . tn m -1.---P(I\ | a j, {D }) log P(TS | a j, { D })

is the entropy contributed by the sentences at stage m - 1 predicting word
aj. The quantities /ij can be evaluated with the prior probabilities.

It can be shown that the sentence entropy has an upper bound as a function
of the likelihoods:

w s < log Ijexp(*j)
. „ e x p (A *)

withequality when P(D | a %) <x ----------------------.
P (a. j | ID))

The constant of proportionality does not matter. Figure 5(a) shows this
*1 International Parsing Workshop '89

upper bound for the grammar in figure 1, and it can be seen chat che
perplexity is equivalent to 35 equally-1 ikely sentences after 10 words

The upper bound is very pessimistic because it ignores the discriminative
power of the pattern matcher. This could be measured in various ways but
it is convenient to define a "likelihood entropy" as

and the "likelihood perplexity" is _ jn P™ ” exp(K^).

The maximum sentence entropy subject to a fixed likelihood entropy can be
found by simulation. Sets of random likelihoods with a given entropy can
be generated from sets of independent uniform random numbers by raising
these to an appropriate power. Permuting these so as to maximise the
sentence entropy greatly reduces the number of sample runs needed to get a
good result. These likelihoods are then fed into the parser and the
procedure repeated to simulate the recognition process. The sentence
entropy is maximised over a number of such runs.

The likelihoods which produce the upper bound line shown in figure 5(a)
have a perplexity which is approximately constant at 6 .6 . This line is
reproduced almost exactly by the above simulation procedure, using a fixed
J3L °f 6 . 6 with 30 sample runs.

The simulation method is easily adapted to compute the average sentence
entropy over the sample runs. For this it is preferable to average the
entropy and then convert to a perplexity rather than average the measured
perplexity values. This process provides an indication of how the parser
will perform in a typical case, assuming a fixed likelihood perplexity as a
parameter (although this could be varied from stage to stage if required).

Figure 5(a) shows how the average compares with the maximum for a fixed T L
of 6 .6 , and how the sentence perplexity is reduced when the likelihoods are
progressively more constrained - 5.0, 3.0 and 2.0).

3.3 Comparison with Inferred Markov Model

Markov models have some advantages over grammar models for speech
recognition in flexibility and ease of use but a major disadvantage is
their limited memory of past events. For an extended utterance the number
of possible sentences compatible with a Markov model may be much greater
than for a grammar model, for the same data. Demonstrating this in the
present context requires the derivation of a first-order Markov model from
a probabilistic grammar [13].

The uncertainty algorithm of section 3.1 will operate largely unchanged
with the prior probabilities obtained from the transition probabilities
rather than from the LR parser. Figure 5(b) contains results corresponding
to those in (a), for the Markov model inferred from the grammar in figure
1. The upper bound reaches 409 after 10 words, for a likelihood perplexity
of approximately 6.3, reducing to 37 for the average (after 30 sample
runs). This falls with the likelihood perplexity but is higher than for
the grammar model. The sentence perplexity for the grammar is twice that
for the inferred Markov model after from six to nine words depending on
This comparison is reproduced for other grammars considered.

-111- Intemational Parsing Workshop '89

References

1. S E Levinson, L R Rabiner and M M Sondhi, "An Introduction to the
Application of the Theory of Probabilistic Functions of a Markov Process to
Automatic Speech Recognition", BSTJ vol 62, ppl035-1074, 1983.

2. R Garside, G Leech and G Sampson (eds), "The Computational Analysis of
English, a Corpus-Based Approach", Longman, 1987.

3. H Bourland and C J Wellekens, "Speech Pattern Discrimination and
Multilayer Perceptrons", Computer Speech and Language, vol 3, ppl-19, 1989.

4. A V Aho, R Sethi and J D Ullman, "Compilers: Principles, Techniques and
Tools", Addison-Wesley, 1985.

5. N P Chapman, "LR Parsing, Theory and Practice", Cambridge University
Press, 1987.

6 . M Tomita, "Efficient Parsing for Natural Language", Kluwer Academic
Publishers, 1986.

7. J H Wright and E N Wrigley, "Linguistic Control in Speech Recognition",
Proceedings of the 7th FASE Symposium, pp545-552, 1988.

8 . P Suppes, "Probabilistic Grammars for Natural Languages", Synthese, vol
22, pp95-116, 1968.

9. W J M Levelt, "Formal Grammars in Linguistics and Psycholinguistics,
volume 1", Mouton, 1974.

10. C S Wetherall, "Probabilistic Languages: A Review and Some Open
Questions", Computing Surveys vol 12, pp361-379, 1980.

11. S M Shieber, "Sentence Disambiguation by a Shift-Reduce Parsing
Technique", Proc. 21st Annual Meeting of Assoc, for Comp. Linguistics,
ppll3-118, 1983.

12. L R Bahl, J Jelinek and R L Mercer, "A Maximum Likelihood Approach to
Continuous Speech Recognition", IEEE Trans, on Pattern Analysis and Machine
Intelligence, vol PAMI-5, ppl79-190, 1983.

13. J H Wright, "Linguistic Modelling for Application in Speech
Recognition", Proceedings of the 7th FASE Symposium, pp391-398, 1988.

(1) S ^ NP VP, 1 . 0 (5) REL -> pron VP, 0.3
(2) NP -> pn, 0 4 (6) VP -» iv, 0.5
(3) NP -» det n REL, 0.6 (7) VP -» tv NP, 0.5
(4) REL -> A, 0 7

Figure 1: A simple probabilistic grammar.

-112- Intemational Parsing Workshop '89

STATE
ACTION GOTO

pn det n pron iv tv $ S NP REL VP

0 sr2
0.4

si
0 .6

s2 s 3
1 s4

1 .0
2 acc
3 sr6

0.5
s5

0.5

1 .0
srl

4 s6
0.3

r4 r4
0.7

r4 sr3
5 sr2 si

--- >
sr 70.4 0 .6

6 sr6
0.5

s5
0.5

sr5

Figure 2: SLR and LALR parsing Cables for the grammar in figure 1.

Figure 3: Linguistic control block diagram for speech recognition.

TERMINAL
> STAGE (m)

1 2 3 4 5 6 7 8

pn 0.9 0.3 0.4 0.9
det 0 .2 0.4

n 0 .2 0.5
pron 0 .8 0.7

I V

tv 0 .8 0 .1 0.9 0 .8
$ 1 .0

Figure 4: Likelihoods for illustration of uncertainty algorithm.

-113- International Parsing Workshop '89

3
5

-1
r

35

A
,

A
ve

ra
g

e

-114- Intemational Parsing Workshop '89

F1
fet
-ir
e

5:
Se

nt
en

ce

pe
rp

le
xi

ti
es

fo
r

(a
)

gr
am

ma
r,

(b
)

Ma
rk

ov

mo
de

l.

