
Using Restriction to Optimize Unification
Parsing

D ale Gerdem ann * *

D epartm ent of Linguistics
C ognitive Science Group

Beckm an Institute for Advanced Science and Technology
U niversity of Illinois

1 In troduction
Since Shieber (1985), restriction has been recognized as an important operation
in unification parsing. 1 As Shieber points out, the most straightforward adap
tation of Earley’s algorithm 2 for use with unification grammars fails because
the infinite number of categories in these grammars can cause the predictor step
in the algorithm to go into an infinite loop, creating ever more and more new
predictions (i.e. the problem is that new predictions are not subsumed by pre
vious predictions). The basic idea of restriction is to avoid making predictions
on the basis of all of the information in a DAG, but rather to take some subset
of that information (i.e. a restricted DAG-henceforth RD) and use just that
information to make new predictions. Since there are only a finite number of
possible RDs the predictor step will no longer go into the infinite loop described
above. The price you pay for this move is that some spurious predictions will be
made, but as Shieber points out, the algorithm is still correct since any spunous
predictions will be weeded out by the completer step.

‘ Cognitive Science G roup, Beckm an In stitu te , 405 N. M athews, Urbana, 111 61801;
daleQ tanki.cogvci.u iuc.edu

*1 would like to thank Alan Frisch, Erhard Hinrichs, Lucja Ivariska, Jerry M organ, Mike
M endelson, and Tsuneko Nakatawa for their useful com m ents. Any deficiencies m ust rest with
me. Thanks also to the UIUC Cognitive Science/A rtificial Intelligence fellowship com m ittee
for the support that m ade this research possible.

*By unification parsing I m ean p a n in g of unification grammars. See Seifert (1988) for a
precise definition of a unification grammar.

3I will assume fam iliarity w ith the basic steps of E arley’s algorithm as presented in Earley
(1970). For an introduction to E arley’s algorithm and its relationship to chart parsing in
general see W inograd (1983).

-8- Intemational Parsing Workshop '89

Shieber’s use of restriction in the predictor step is by now well established.
On the other hand, there has been little discussion of the uses of restriction in
other stages of parsing. In this paper, I will argue that restriction can be used
to advantage in at least three additional ways. First, restriction can be used
to significantly speed up the subsumption check on new predictions. Second, it
can be used in the completer step in order to speed up the process of finding
the correct states in the state sets to be completed. And third, it can be used
to add a lookahead component to the unification parser. I will begin this paper
by briefly reviewing Shieber’s use of restriction and then I will discuss the three
additional uses for restriction mentioned above.

2 R estriction in the Predictor Step
The original motivation for restriction was to avoid infinite cycles in the predic
tor step of Earley’s algorithm. Shieber illustrates this problem with a “counting
grammar” but the same point can be made using a type of grammar that is some
what more familiar in recent linguistic theory. Specifically, infinite cycles can
arise in grammars that handle 3ubcategorization with list valued features such
as Head Driven Phrase Structure Grammar (Pollard and Sag, 1987) or PATR
style grammars (Shieber, 1986). To illustrate the problem, suppose that we are
parsing a sentence using a grammar with the PATR style rules in (1,2). The
problem of non-termination can arise with this grammar since rule (2) allows
for lexical items with indefinitely long subcategorization lists.

(1) zO —♦ xl x2
xO [c a t s]
x l [l] [cat np]

cat vp
x2 subcat

f ir s t [1]
rest end

(2) zO

xO

xl x2
cat vp

cat vp

subcat
f ir s t
rest

[2! 1
11] . .

xl [1]

x2 12)

The first step in parsing a sentence with this grammar is to find a rule whose
left hand side unifies with the DAG described by the path equation {cat) = s

-9- International Parsing Workshop '89

(i.e. the start DAG). Since the rule in (l) satisfies this requirement, the next
step is to make a prediction for the xl daughter. In Earley’s algorithm as it was
originally formulated (Earley 1970), the prediction for xl would simply be its
category label (i.e. np). In this unification style grammar, however, category
labels are just features like any other feature. Since the DAGs associated with
each of the non-terminals (xO, x l , . . . , xn) in a rule may express just partial
information about that non-terminal, it is possible that some non-terminals
(such as x2 in the second rule) will not be associated with any category label at
all. The natural solution, then, would be to make a prediction using the entire
DAG associated with a given non-terminal. Suppose, now, that we have parsed
the np in rule (1) and we’re ready to parse x2. The DAG associated with x2
would be (3).

cat vp
[cat np]subcat f ir s t

rest end .

When this DAG unifies with the category on the left hand side of (2) we get
the rule shown in (4).

(4) xO xl x2

xO

xl

cat
subcat
cat

subcat

vp
\2 \
vp

f irs t [i]
rest [2]

f i r s t [cat np]
rest end

. x2 I1!

Now, following the same procedure, the predictor would next make a pre
diction for the non-terminal xl in (4). It can easily be seen that when the DAG
associated with x l unifies with the left hand side of rule (2) the predicted rule
is almost the same as (4) except that the value for (subcat rest) in (4) becomes
the value for (subcat rest rest) in the new predict ,i. In fact, the predictor
step can continue making such predictions ad infinitum and, crucially, the new
predictions will not be subsumed by previous predictions.

To solve this problem Shieber proposes that the predictor step should not
use all of the information in the DAG associated with a non-terminal, but rather
it should use some limited subset of that information. Of course, when some
nodes of the DAG tire eliminated the predictor step can overpredict, but this
does not affect the correctness of the algorithm since these spurious predictions
will not be completable. Shieber’s proposal is basically that before the predictor
step is applied, a RD should be created which contains just the information

-10- Intemational Parsing Workshop '89

associated with a finite set of paths (i.e. a restrictor). 3 In this way, Shieber’s
algorithm allows an infinite number of categories to be divided into a finite
number of equivalence classes. Since the number of possible RDs is finite it
becomes impossible to make the kind of infinite cycle of predictions illustrated
above.

Primarily for notational reasons, I will define restriction in a slightly different
manner from Shieber (1985). For our purpose here we can define the RD D’ of
DAG D to be the least specific DAG D’ C D such that for every path P in the
restrictor if the value of P in D is atomic then the value of P in D’ is the same
as the value of P in D and if the value of P in D is complex then the value of
P in D’ is a variable. This differs from Shieber’s definition in that reentrancies
are eliminated in the RD. Thus the RD is not really a DAG but rather is a
tree and hence it can be represented more easily by a simple list structure. For
example,given the restrictor [(a b), (d e f), (d i j f)], the RD for the DAG in
(5) (from Shieber 1985) will be represented by the indented list shown in (6),
in which variables are indicated by [].4

a [
b c]

’ e W [/ { 9 M l "

d * [; [i l l

k I m

(6) [[a , [[6 , c]] l ,

\ d , [[« , [[/ , O i l] ,

[i , U [[/ . I l l l l l l

3 R estr ic tion in th e Subsum ption Test
The first use of restriction I will discuss involves the subsumption check on new
predictions. In the original Earley’s algorithm (Earley 1970), a check was made
on each new prediction to see that an identical prediction had not already been
made in the same state set. Of course, if duplicate predictions are retained the
parser can fall into the left recursion trap. In Shieber’s adaptation, however, this
identity check is changed to the more general notion of a subsumption check. If
a new DAG is predicted that is subsumed by a previous (more general) DAG,

aT he question of how to select an appropriate restrictor for greatest efficiency m ust remain
a question for further research. See the conclusion of this paper for further discussion.

^E lim inating reentrancies from RDs may also be a reasonable thing to do from a com pu
tational point of view . Judging from the particular restrictors used in Shieber (1985,1986)
it would appear that reentrancies rarely occur in RDs. However, for some purposes it may
be desirable to include more inform ation in R D s. A possible exam ple would be the use of
parsing algorithm s for generation, in which it would be desirable to use as much top down
inform ation as possible.

-11- Intemational Parsing Workshop '89

the new DAG is not retained since any DAGs that could be predicted on the
basis of the new DAG could already have been predicted on the basis of the
more general DAG. Clearly, the move from an identity check to a subsumption
check is the right sort of move to make, but a subsumption check on arbitrarily
large DAGs can be an expensive operation. This seems to be an ideal area in
which restriction could be used to optimize the algorithm.

The move I propose is the following. Initially, new predictions are made in
the manner suggested by Shieber; i.e. make a RD for the category “to the right
of the Dot” and then collect all the rules from the grammar whose left hand side
category unifies with this RD-these rules then constitute the new predictions.
At this point I suggest that the RD used to find these predictions should be
retained along with the new predictions; that is, a list of RDs that have been
used to make predictions should be kept for each state set. I will call this list the
RDJList. Then, the next time the parser enters the predictor step and creates
a new RD from which to make new predictions, a subsumption check can be
made directly between this RD and the RD_List. If the new RD is subsumed
by any member of the RD_List then we can immediately give up trying to make
any new predictions from this RD. Any predictions made from th RD would
necessarily already have been made when the predictor encountered the more
general RD in the RDJList. Thus we avoid both the expense of making new
predictions and the expense of applying the subsumption test to weed these new
predictions out. Moreover, since RDs are typically very small (at least given
the sample restrictors given in Shieber (1985,1986)), the subsumption test that
is performed on them can be applied very quickly.

As an example, suppose that some set of predictions has already been made
using the RD, ([cat, np]], then there is no point in making predictions using
[[cat, np],[num, sing]] since any such predictions would necessarily fail the sub
sumption check; i.e., rules expanding singular noun phrases are more specific
than (or subsumed by) rules expanding noun phrases unspecified for number.
This particular case probably does not arise often in actual parsing, but cases
of left recursion do arise for which this optimization can make a very signifi
cant difference in processing speed. In fact our experience with the UNICORN
natural language processing system (Gerdemann and Hinrichs 1988), has shown
that for grammars with a large amount of left recursion, this simple optimiza
tion can make the difference between taking several minutes of processing time
and several seconds of processing time.

4 R estr ic tion in the C om pleter Step
The next use of restriction I propose involves the completer step. The completer
applies, in Earley’s algorithm, at the point where all of the right hand side of
a rule in some state has been consumed, i.e., the point at which the “Dot” has
been moved all the way to the right in some rule. At this point the completer

-12- International Parsing Workshop '89

goes back to the state set in which the state to be completed was originally
predicted and searches for a prediction in this state set which has a category
“to the right of the Dot* which can unify with the mother node of the rule in
the state to be completed. This search can be quite time consuming since the
completer must attempt to perform a unification for each state in this state set.

In each state, there is a variable F which indicates in which state set that
stace was predicted so the completer can immediately go back to the Fth state
set in order to make the completion. But there is no variable which indicates
which state in the Fth state set could have been responsible for making that
prediction. And, in fact, it would be quite difficult to implement such a direct
backpointer since in many cases a particular state is really only indirectly re
sponsible for some prediction in the sense that it would have been responsible
for the prediction if it had not been for the subsumption check. For example,
suppose we try to implement a system of backpointers as follows. Each state
will be a quintuple (Lab,BP,Dot,F,Dag) where Lab is an arbitrary label, BP is
a kind of backpointer which takes as its value the label of the state that was re
sponsible for predicting the current state and Dot, F, and Dag are as in Shieber’s
adaptation of Earley’s algorithm; i.e., Dot is a pointer to the current position
in the rule represented by Dag, and F is the more general kind of backpointer
which only indicates in which state set the original prediction was made. To
illustrate the problem with this scheme, consider the partial state set in (7), in
which the subscripted t indicates that this is the tth state set.

(7) [Labi, B P 1 , Dotl, F 1 , Dagl], [Lab2, B P 2 , Dot2, F2, Dag2\ , ...]

Now suppose the RD for Dagl is [[cat,np]] and that the RD for Dag2 is
[[cat,np],[num,sing]]. When the predictor looks at state Labi it will make
some number of predictions with backpointers to Labi as in (8) (For example,
[Lab3,Labl,0,i,Dag3] is a new state with an arbitrary label, Lab3, a backpointer
to state Labi, the Dot set at 0 indicating the beginning of the left hand side,
F set to t indicating that the prediction was made in state set i, and Dag3
representing the new rule).

(8) i [. .. [Labi, B P 1 , Dotl, FI, Dagl], [Lab2, B P 2 , Dot2, F2, Dag2],
[LabZ, Labi, DotZ, DagZ], [LabA, Labi, Dot\, FA, Dagi] , ...]

But when the predictor looks at Lab2 no predictions will be made since its RD
ifl subsumed by the RD of Labi. Thus even though (without the subsumption
check) Lab2 could have been responsible for the predictions Lab3 and Lab4, no
backpointers are created for Lab2 .

It is at this point that RDs can again help us out. The idea is that when
the predictor attempts to make predictions on the basis of some state it adds
a RD to that state and to all predictions made from that state as a kind of
marker (or coindexing between a state and the predictions resulting from that

-13- < International Parsing Workshop '89

state). The RD used for this coindexing will be either 1 .) the RD used to
make the predictions or 2.) if no predictions were made because a more general
RD had already been used to make predictions, then this more general RD
is used as the marker. Now the completion step is greatly simplified. The
completer can go back to the Fth state set and attempt unification only on states
that have identical RD-markers. Clearly this move eliminates many attempted
unifications that would be doomed to failure. To implement this idea states
will be defined as quintuples (BP,FP,Dot,F,Dag) where BP is a RD acting as a
backpointer, FP is a RD acting as a forward pointer and F,Dot, and Dag are as
before. Now the analog of (7) will be (9).

(9) i [. . . [BP 1 , F P 1 , Dotl, FI, Dagl\, [BP2, FP2, Dot2, F2, Dag2],...]

In (9) BPl and BP2 will each be instantiated to the value of the RD re
sponsible for the prediction which created their respective state. F P l and FP2 ,
however will be uninstantiated variable since these two states have not yet been
responsible for creating any new predictions. Now assuming that the RDs for
Dagl and Dag2 are as in (7) then when the predictor applies to the first state
shown in (9), the result will be the state set shown in (10).

(10) ,[. . . [B P l , [[cat, np]], Dotl, FI, Dagl],
[BP2, F P 2 , Dot2, F2, Dag2\,
[[[cat, np]], FP3, DotZ, F 3, Dag3],
[[[cat, np]], FPA, DotA, FA, DagA],...]

Then when the predictor looks at the second state in (10), no predictions
will be made as before, however the predictor will register the attempt to make
a prediction by instantiating the variable FP2 as in (11).

(1 1) i [. . . [B P l , [[cat, np]], Dotl, F 1 , Dagl],
[BP2, [[cat, np]], Dot2, F2, Dag2\,
[[[cat, np]], FPZ, DotZ, F 3, Dag3],
[[[cat, np]], FPA, DotA, FA, DagA],...]

Now whenever the descendants of states 3 and 4 are ready to be completed,
it will be easy to go back to this state set and find the states whose forward
pointers are identical to the backpointers of the states to be completed. Thus
many candidates for completion are immediately ruled out.

5 R estr ic tion U sed in Lookahead
The final use for restriction that I propose involves lookahead. Lookahead is one
aspect of Earley’s algorithm which clearly needs modification in order to be used

-14- Intemational Parsing Workshop '89

efficiently with unification grammars or natural language grammars in general.
In the original algorithm, a calculation of lookahead was performed as part of
the prediction step. A simple example can show the problem with Earley’s
version of this procedure. In the S —► NP VP rule, when the predictor makes
a prediction for NP, it is required to add a state for each possible lookahead
string that can be derived from the VP. But given the large number of verbs or
adverbs that can start a VP in a natural language this would require adding a
huge number of states to the state set. Clearly we don’t want to simply list all
the possible lookahead strings, but rather the correct approach would be to find
what features these strings have in common and then add a smaller number of
states with feature based lookaheads.

Aside from the question of what kind of lookahead to calculate, there are
two other questions that need to be considered: first the question of when to
calculate lookahead and second how to calculate it. Beginning with the when
question, it is clear that unification grammars require lookahead to be calculated
at a later point than it is in Earley’s approach. The reason for this is illustrated
by rules like (2) repeated here as (12)

(12) xO

xO

xl x2
cat vp
subcat [l]

x l [1]

x2 [2]

cat

subcat

vp
f ir s t [2]
rest [l]

According to Earley’s approach, when a prediction is made for xl, the looka
head for x2 should be calculated. But in this case, no features for x2 will be
specified until after x l is parsed. This is an extreme situation, but it illustrates
a general problem. It is the normal case in a unification grammar for the result
of parsing one category to affect the feature instantiations on its sister. Clearly,
what needs to be done in this case is to parse x l and then perform a lookahead
on x2. Thus, lookahead should be calculated for a category immediately before
the predictor applies to that category; i.e., lookahead can be considered a quick
check to be made immediately before applying prediction. Unlike Earley’s orig
inal algorithm, then, it is not necessary to put a lookahead string into a state
to be checked at a later point.

The question, then, is how to calculate lookahead. In Earley’s version of the
algorithm, there is a function, Hk which when applied to a category C returns
a set of k-symbol strings of terminals which could begin a phrase of category
C. When applied to unification grammars, however, the problem of having an
infinite number of categories again appears. We certainly cannot list possible
strings of preterminals that can begin each category. It is clear, then, that some

-15- Intemational Parsing Workshop '89

form of restriction is again going to be necessary in order to implement any kind
of lookahead. One, relatively simple, way of implementing this idea is as follows.
When the predictor applies to a category C, the first thing it does is make a RD
for C. Then a table lookup is performed to determine what preterminal cate
gories could begin C. Since there are potentially infinite preterminal categories,
restriction must be applied here too. So more precisely, the table lookup finds
a set of RDs that could unify with whatever actual preterminal could begin a
phrase of category C. Let us call these RDs the preterminal RDs. Then before
the predictor can actually make a prediction a check must be performed to ver
ify that the next item in the input is an instance of a category that can unify
with one of the preterminal RDs. If the check fails, then the prediction is aban
doned. All that remains is to specify how the lookup table is constructed. One
way such a table might be constructed would be to run the parser in reverse for
generation as in Shieber (1988) . Thus, for each possible RD (given a particular
restrictor), the generator is used to determine what preterminal RDs can begin
a phrase of this category.

6 Conclusion
I have argued here that restriction can be used in unification parsing to effect
three optimizations. First, it can be used to greatly speed up the subsumption
test for adding new predictions to the state set, second it can be used to speed up
the searching used in the completer step, and finally it can be used to implement
a form of lookahead. The first two of these uses have been fully implemented
within the UNICORN natural language processing system (Gerdemann and
Hinrichs 1988). The use of restriction with lookahead is still under development.

In general, the fact that unification grammars may have categories of in
definite complexity necessitates some way of focusing on limited portions of
the information contained in these categories. It seems quite likely, then, that
restriction would be useful even in other parsing algorithms for unification gram
mars. The primary question that remains is what portion of the information
in complex DAGs should be used in these algorithms; that is, the question is
how to choos« a restrictor. Up to now, no general principles have been given for
choosing a restrictor for greatest efficiency. Given the proposals in this paper, it
becomes even more critical to find such general principles since restriction can
affect the efficiency of several steps in the parsing algorithm.

References
[1] Jay Earley. An efficient context-free parsing algorithm. Communications of

the ACM , 1970.

[2] Dale Gerdemann and Erhard Hinrichs. UNICORN: a unification parser for

-16- International Parsing Workshop '89

attribute-value grammars. Studies in the Linguistic Sciences, 1988.

[3] Carl Pollard and Ivan Sag. An Information-Based Approach to Syntax and
Semantics: Volume 1 Fundamentals. CSLI Lecture Notes No. IS, Chicago
University Press, Chicago, 1987.

[4] Roland Seiffert. Chart-parsing of unification-based grammars with ID\LP-
rules. In Ewan Klein and Johan van Benthem, editors, Categories, Polymor
phism and Unification, pages 335-54, CCS/ILLI, Edinburgh/Amsterdam,
1987.

[5] Stuart Shieber. An Introduction to Unification-Based Approaches to Gram
mar. CSLI Lecture Notes No. 4, Chicago University Press, Chicago, 1986.

[6] Stuart Shieber. A uniform architecture for parsing and generation. In
COLING-88, pages 614-9, 1988.

[7] Stuart Shieber. Using restriction to extend parsing algorithms for complex-
feature-based formalisms. In ACL Proceedings, 2Srd Annual Meeting,
pages 145-52, 1985.

[8] Terry Winograd. Language as a Cognitive Process: Syntax. Ablex, Nor
wood, 1983.

-17- Intemationai Parsing Workshop '89

