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1 In troduction
Since Shieber (1985), restriction has been recognized as an important operation 
in unification parsing. 1 As Shieber points out, the most straightforward adap
tation of Earley’s algorithm 2 for use with unification grammars fails because 
the infinite number of categories in these grammars can cause the predictor step 
in the algorithm to go into an infinite loop, creating ever more and more new 
predictions (i.e. the problem is that new predictions are not subsumed by pre
vious predictions). The basic idea of restriction is to avoid making predictions 
on the basis of all of the information in a DAG, but rather to take some subset 
of that information (i.e. a restricted DAG-henceforth RD) and use just that 
information to make new predictions. Since there are only a finite number of 
possible RDs the predictor step will no longer go into the infinite loop described 
above. The price you pay for this move is that some spurious predictions will be 
made, but as Shieber points out, the algorithm is still correct since any spunous 
predictions will be weeded out by the completer step.
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*1 would like to thank Alan Frisch, Erhard Hinrichs, Lucja Ivariska, Jerry M organ, Mike 
M endelson, and Tsuneko Nakatawa for their useful com m ents. Any deficiencies m ust rest with  
me. Thanks also to the UIUC Cognitive Science/A rtificial Intelligence fellowship com m ittee  
for the support that m ade this research possible.

*By unification parsing I m ean p a n in g  of unification grammars. See Seifert (1988) for a 
precise definition of a unification grammar.

3I will assume fam iliarity w ith the basic steps of E arley’s algorithm  as presented in Earley 
(1970). For an introduction to E arley’s algorithm  and its relationship to chart parsing in 
general see W inograd (1983).
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Shieber’s use of restriction in the predictor step is by now well established. 
On the other hand, there has been little discussion of the uses of restriction in 
other stages of parsing. In this paper, I will argue that restriction can be used 
to advantage in at least three additional ways. First, restriction can be used 
to significantly speed up the subsumption check on new predictions. Second, it 
can be used in the completer step in order to speed up the process of finding 
the correct states in the state sets to be completed. And third, it can be used 
to add a lookahead component to the unification parser. I will begin this paper 
by briefly reviewing Shieber’s use of restriction and then I will discuss the three 
additional uses for restriction mentioned above.

2 R estriction  in the Predictor Step
The original motivation for restriction was to avoid infinite cycles in the predic
tor step of Earley’s algorithm. Shieber illustrates this problem with a “counting 
grammar” but the same point can be made using a type of grammar that is some
what more familiar in recent linguistic theory. Specifically, infinite cycles can 
arise in grammars that handle 3ubcategorization with list valued features such 
as Head Driven Phrase Structure Grammar (Pollard and Sag, 1987) or PATR 
style grammars (Shieber, 1986). To illustrate the problem, suppose that we are 
parsing a sentence using a grammar with the PATR style rules in (1,2). The 
problem of non-termination can arise with this grammar since rule (2) allows 
for lexical items with indefinitely long subcategorization lists.

(1) zO —♦ xl x2
xO [ c a t  s ] 
x l [l] [ cat np ]

cat vp
x2 subcat

f ir s t  [1 ] 
rest end

(2 ) zO

xO

xl x2 
cat vp

cat vp

subcat
f ir s t
rest

[2! 1
11 ] . .

xl [1 ] 

x2 12)

The first step in parsing a sentence with this grammar is to find a rule whose 
left hand side unifies with the DAG described by the path equation {cat) =  s
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(i.e. the start DAG). Since the rule in (l) satisfies this requirement, the next 
step is to make a prediction for the xl daughter. In Earley’s algorithm as it was 
originally formulated (Earley 1970), the prediction for xl would simply be its 
category label (i.e. np). In this unification style grammar, however, category 
labels are just features like any other feature. Since the DAGs associated with 
each of the non-terminals (xO, x l , . . . ,  xn) in a rule may express just partial 
information about that non-terminal, it is possible that some non-terminals 
(such as x2 in the second rule) will not be associated with any category label at 
all. The natural solution, then, would be to make a prediction using the entire 
DAG associated with a given non-terminal. Suppose, now, that we have parsed 
the np in rule (1 ) and we’re ready to parse x2. The DAG associated with x2 
would be (3).

cat vp
[ cat np ]subcat f ir s t

rest end .

When this DAG unifies with the category on the left hand side of (2) we get 
the rule shown in (4).

(4) xO xl x2

xO

xl

cat
subcat
cat

subcat

vp
\2 \
vp

f irs t [i]
rest [2]

f i r s t  [ cat np ]
rest end

.  x2 I1!

Now, following the same procedure, the predictor would next make a pre
diction for the non-terminal xl in (4). It can easily be seen that when the DAG 
associated with x l  unifies with the left hand side of rule (2) the predicted rule 
is almost the same as (4) except that the value for (subcat rest) in (4) becomes 
the value for (subcat rest rest) in the new predict ,i. In fact, the predictor 
step can continue making such predictions ad infinitum and, crucially, the new 
predictions will not be subsumed by previous predictions.

To solve this problem Shieber proposes that the predictor step should not 
use all of the information in the DAG associated with a non-terminal, but rather 
it should use some limited subset of that information. Of course, when some 
nodes of the DAG tire eliminated the predictor step can overpredict, but this 
does not affect the correctness of the algorithm since these spurious predictions 
will not be completable. Shieber’s proposal is basically that before the predictor 
step is applied, a RD should be created which contains just the information

-10- Intemational Parsing Workshop '89



associated with a finite set of paths (i.e. a restrictor). 3 In this way, Shieber’s 
algorithm allows an infinite number of categories to be divided into a finite 
number of equivalence classes. Since the number of possible RDs is finite it 
becomes impossible to make the kind of infinite cycle of predictions illustrated 
above.

Primarily for notational reasons, I will define restriction in a slightly different 
manner from Shieber (1985). For our purpose here we can define the RD D’ of 
DAG D to be the least specific DAG D’ C D such that for every path P in the 
restrictor if the value of P in D is atomic then the value of P in D’ is the same 
as the value of P in D and if the value of P in D is complex then the value of 
P in D’ is a variable. This differs from Shieber’s definition in that reentrancies 
are eliminated in the RD. Thus the RD is not really a DAG but rather is a 
tree and hence it can be represented more easily by a simple list structure. For 
example,given the restrictor [(a b), (d e f), (d i j f) ], the RD for the DAG in
(5) (from Shieber 1985) will be represented by the indented list shown in (6), 
in which variables are indicated by [].4

a  [
b  c  ]

’ e  W  [ /  { 9  M l "

d *  [ ;  [ i l l

k  I m

( 6 )  [ [ a , [ [ 6 , c ] ] l ,

\ d ,  [ [ « , [ [ / ,  O i l ] ,

[ i ,  U  [ [ / .  I l l l l l l

3 R estr ic tion  in th e  Subsum ption  Test
The first use of restriction I will discuss involves the subsumption check on new 
predictions. In the original Earley’s algorithm (Earley 1970), a check was made 
on each new prediction to see that an identical prediction had not already been 
made in the same state set. Of course, if duplicate predictions are retained the 
parser can fall into the left recursion trap. In Shieber’s adaptation, however, this 
identity check is changed to the more general notion of a subsumption check. If 
a new DAG is predicted that is subsumed by a previous (more general) DAG,

aT he question of how to select an appropriate restrictor for greatest efficiency m ust remain 
a question for further research. See the conclusion of this paper for further discussion.

^E lim inating reentrancies from RDs may also be a reasonable thing to do from a com pu
tational point of view . Judging from the particular restrictors used in Shieber (1985,1986) 
it would appear that reentrancies rarely occur in RDs. However, for some purposes it may 
be desirable to  include more inform ation in R D s. A  possible exam ple would be the use of 
parsing algorithm s for generation, in which it would be desirable to use as much top down 
inform ation as possible.
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the new DAG is not retained since any DAGs that could be predicted on the 
basis of the new DAG could already have been predicted on the basis of the 
more general DAG. Clearly, the move from an identity check to a subsumption 
check is the right sort of move to make, but a subsumption check on arbitrarily 
large DAGs can be an expensive operation. This seems to be an ideal area in 
which restriction could be used to optimize the algorithm.

The move I propose is the following. Initially, new predictions are made in 
the manner suggested by Shieber; i.e. make a RD for the category “to the right 
of the Dot” and then collect all the rules from the grammar whose left hand side 
category unifies with this RD-these rules then constitute the new predictions. 
At this point I suggest that the RD used to find these predictions should be 
retained along with the new predictions; that is, a list of RDs that have been 
used to make predictions should be kept for each state set. I will call this list the 
RDJList. Then, the next time the parser enters the predictor step and creates 
a new RD from which to make new predictions, a subsumption check can be 
made directly between this RD and the RD_List. If the new RD is subsumed 
by any member of the RD_List then we can immediately give up trying to make 
any new predictions from this RD. Any predictions made from th RD would 
necessarily already have been made when the predictor encountered the more 
general RD in the RDJList. Thus we avoid both the expense of making new 
predictions and the expense of applying the subsumption test to weed these new 
predictions out. Moreover, since RDs are typically very small (at least given 
the sample restrictors given in Shieber (1985,1986)), the subsumption test that 
is performed on them can be applied very quickly.

As an example, suppose that some set of predictions has already been made 
using the RD, ([cat, np]], then there is no point in making predictions using 
[[cat, np],[num, sing]] since any such predictions would necessarily fail the sub
sumption check; i.e., rules expanding singular noun phrases are more specific 
than (or subsumed by) rules expanding noun phrases unspecified for number. 
This particular case probably does not arise often in actual parsing, but cases 
of left recursion do arise for which this optimization can make a very signifi
cant difference in processing speed. In fact our experience with the UNICORN 
natural language processing system (Gerdemann and Hinrichs 1988), has shown 
that for grammars with a large amount of left recursion, this simple optimiza
tion can make the difference between taking several minutes of processing time 
and several seconds of processing time.

4 R estr ic tion  in the C om pleter Step
The next use of restriction I propose involves the completer step. The completer 
applies, in Earley’s algorithm, at the point where all of the right hand side of 
a rule in some state has been consumed, i.e., the point at which the “Dot” has 
been moved all the way to the right in some rule. At this point the completer
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goes back to the state set in which the state to be completed was originally 
predicted and searches for a prediction in this state set which has a category 
“to the right of the Dot* which can unify with the mother node of the rule in 
the state to be completed. This search can be quite time consuming since the 
completer must attempt to perform a unification for each state in this state set.

In each state, there is a variable F which indicates in which state set that 
stace was predicted so the completer can immediately go back to the Fth state 
set in order to make the completion. But there is no variable which indicates 
which state in the Fth state set could have been responsible for making that 
prediction. And, in fact, it would be quite difficult to implement such a direct 
backpointer since in many cases a particular state is really only indirectly re
sponsible for some prediction in the sense that it would have been responsible 
for the prediction if it had not been for the subsumption check. For example, 
suppose we try to implement a system of backpointers as follows. Each state 
will be a quintuple (Lab,BP,Dot,F,Dag) where Lab is an arbitrary label, BP is 
a kind of backpointer which takes as its value the label of the state that was re
sponsible for predicting the current state and Dot, F, and Dag are as in Shieber’s 
adaptation of Earley’s algorithm; i.e., Dot is a pointer to the current position 
in the rule represented by Dag, and F is the more general kind of backpointer 
which only indicates in which state set the original prediction was made. To 
illustrate the problem with this scheme, consider the partial state set in (7), in 
which the subscripted t indicates that this is the tth state set.

(7) [Labi, B P  1 , Dotl, F 1 , Dagl], [Lab2, B P 2 , Dot2, F2, Dag2\ , ...]

Now suppose the RD for Dagl is [[cat,np]] and that the RD for Dag2 is 
[[cat,np],[num,sing]]. When the predictor looks at state Labi it will make 
some number of predictions with backpointers to Labi as in (8) (For example, 
[Lab3,Labl,0,i,Dag3] is a new state with an arbitrary label, Lab3, a backpointer 
to state Labi, the Dot set at 0 indicating the beginning of the left hand side, 
F set to t indicating that the prediction was made in state set i, and Dag3 
representing the new rule).

(8) i [ . .. [Labi, B P 1 , Dotl, FI, Dagl], [Lab2, B P 2 , Dot2, F2, Dag2],
[LabZ, Labi, DotZ, DagZ], [LabA, Labi, Dot\, FA, Dagi] , ...]

But when the predictor looks at Lab2 no predictions will be made since its RD 
ifl subsumed by the RD of Labi. Thus even though (without the subsumption 
check) Lab2 could have been responsible for the predictions Lab3 and Lab4, no 
backpointers are created for Lab2 .

It is at this point that RDs can again help us out. The idea is that when 
the predictor attempts to make predictions on the basis of some state it adds 
a RD to that state and to all predictions made from that state as a kind of 
marker (or coindexing between a state and the predictions resulting from that
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state). The RD used for this coindexing will be either 1 .) the RD used to 
make the predictions or 2.) if no predictions were made because a more general 
RD had already been used to make predictions, then this more general RD 
is used as the marker. Now the completion step is greatly simplified. The 
completer can go back to the Fth state set and attempt unification only on states 
that have identical RD-markers. Clearly this move eliminates many attempted
unifications that would be doomed to failure. To implement this idea states
will be defined as quintuples (BP,FP,Dot,F,Dag) where BP is a RD acting as a 
backpointer, FP is a RD acting as a forward pointer and F,Dot, and Dag are as 
before. Now the analog of (7) will be (9).

(9) i [ . . . [BP 1 , F P  1 , Dotl, FI, Dagl\, [BP2, FP2, Dot2, F2, Dag2],...]

In (9) BPl and BP2 will each be instantiated to the value of the RD re
sponsible for the prediction which created their respective state. F P l  and FP2 , 
however will be uninstantiated variable since these two states have not yet been 
responsible for creating any new predictions. Now assuming that the RDs for 
Dagl and Dag2 are as in (7) then when the predictor applies to the first state 
shown in (9), the result will be the state set shown in (10).

(10) ,[. . . [ B P l ,  [[cat, np]], Dotl, FI, Dagl],
[BP2, F P 2 , Dot2, F2, Dag2\,
[[[cat, np]], FP3, DotZ, F 3, Dag3],
[[[cat, np]], FPA, DotA, FA, DagA],...]

Then when the predictor looks at the second state in ( 10), no predictions 
will be made as before, however the predictor will register the attempt to make 
a prediction by instantiating the variable FP2 as in (11).

(1 1 ) i [ .  . . [ B P l ,  [[cat, np]], Dotl, F 1 , Dagl],
[BP2, [[cat, np]], Dot2, F2, Dag2\,
[[[cat, np]], FPZ, DotZ, F 3, Dag3],
[[[cat, np]], FPA, DotA, FA, DagA],...]

Now whenever the descendants of states 3 and 4 are ready to be completed, 
it will be easy to go back to this state set and find the states whose forward 
pointers are identical to the backpointers of the states to be completed. Thus 
many candidates for completion are immediately ruled out.

5 R estr ic tion  U sed  in Lookahead
The final use for restriction that I propose involves lookahead. Lookahead is one 
aspect of Earley’s algorithm which clearly needs modification in order to be used
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efficiently with unification grammars or natural language grammars in general. 
In the original algorithm, a calculation of lookahead was performed as part of 
the prediction step. A simple example can show the problem with Earley’s 
version of this procedure. In the S —► NP VP rule, when the predictor makes 
a prediction for NP, it is required to add a state for each possible lookahead 
string that can be derived from the VP. But given the large number of verbs or 
adverbs that can start a VP in a natural language this would require adding a 
huge number of states to the state set. Clearly we don’t want to simply list all 
the possible lookahead strings, but rather the correct approach would be to find 
what features these strings have in common and then add a smaller number of 
states with feature based lookaheads.

Aside from the question of what kind of lookahead to calculate, there are 
two other questions that need to be considered: first the question of when to 
calculate lookahead and second how to calculate it. Beginning with the when 
question, it is clear that unification grammars require lookahead to be calculated 
at a later point than it is in Earley’s approach. The reason for this is illustrated 
by rules like (2) repeated here as (12 )

(12) xO

xO

xl x2
cat vp 
subcat [l]

x l  [1 ] 

x2 [2]

cat

subcat

vp
f ir s t  [2] 
rest [l]

According to Earley’s approach, when a prediction is made for xl, the looka
head for x2 should be calculated. But in this case, no features for x2 will be 
specified until after x l  is parsed. This is an extreme situation, but it illustrates 
a general problem. It is the normal case in a unification grammar for the result 
of parsing one category to affect the feature instantiations on its sister. Clearly, 
what needs to be done in this case is to parse x l  and then perform a lookahead 
on x2. Thus, lookahead should be calculated for a category immediately before 
the predictor applies to that category; i.e., lookahead can be considered a quick 
check to be made immediately before applying prediction. Unlike Earley’s orig
inal algorithm, then, it is not necessary to put a lookahead string into a state 
to be checked at a later point.

The question, then, is how to calculate lookahead. In Earley’s version of the 
algorithm, there is a function, Hk which when applied to a category C returns 
a set of k-symbol strings of terminals which could begin a phrase of category 
C. When applied to unification grammars, however, the problem of having an 
infinite number of categories again appears. We certainly cannot list possible 
strings of preterminals that can begin each category. It is clear, then, that some
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form of restriction is again going to be necessary in order to implement any kind 
of lookahead. One, relatively simple, way of implementing this idea is as follows. 
When the predictor applies to a category C, the first thing it does is make a RD 
for C. Then a table lookup is performed to determine what preterminal cate
gories could begin C. Since there are potentially infinite preterminal categories, 
restriction must be applied here too. So more precisely, the table lookup finds 
a set of RDs that could unify with whatever actual preterminal could begin a 
phrase of category C. Let us call these RDs the preterminal RDs. Then before 
the predictor can actually make a prediction a check must be performed to ver
ify that the next item in the input is an instance of a category that can unify 
with one of the preterminal RDs. If the check fails, then the prediction is aban
doned. All that remains is to specify how the lookup table is constructed. One 
way such a table might be constructed would be to run the parser in reverse for 
generation as in Shieber (1988) . Thus, for each possible RD (given a particular 
restrictor), the generator is used to determine what preterminal RDs can begin 
a phrase of this category.

6 Conclusion
I have argued here that restriction can be used in unification parsing to effect 
three optimizations. First, it can be used to greatly speed up the subsumption 
test for adding new predictions to the state set, second it can be used to speed up 
the searching used in the completer step, and finally it can be used to implement 
a form of lookahead. The first two of these uses have been fully implemented 
within the UNICORN natural language processing system (Gerdemann and 
Hinrichs 1988). The use of restriction with lookahead is still under development.

In general, the fact that unification grammars may have categories of in
definite complexity necessitates some way of focusing on limited portions of 
the information contained in these categories. It seems quite likely, then, that 
restriction would be useful even in other parsing algorithms for unification gram
mars. The primary question that remains is what portion of the information 
in complex DAGs should be used in these algorithms; that is, the question is 
how to choos« a restrictor. Up to now, no general principles have been given for 
choosing a restrictor for greatest efficiency. Given the proposals in this paper, it 
becomes even more critical to find such general principles since restriction can 
affect the efficiency of several steps in the parsing algorithm.
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